Skip to content

Latest commit

 

History

History
91 lines (68 loc) · 1.91 KB

README.md

File metadata and controls

91 lines (68 loc) · 1.91 KB

Safaa

Safaa is a Python package designed for handling false positive detection in copyright notices. Additionally, it can declutter copyright notices, removing unnecessary extra text.

Features

  • Load pre-trained models or train your own.
  • Integration with scikit-learn for training and prediction.
  • Integrated with spaCy for named entity recognition and decluttering tasks.
  • Preprocessing tools to ensure data consistency and quality.
  • Ability to handle local or default model directories.

Installation

To install Safaa, simply use pip:

pip install safaa

Usage

Initialization

from safaa.Safaa import *
agent = SafaaAgent()

Preprocessing Data

data = ["Your raw data here"]
preprocessed_data = agent.preprocess_data(data)

Predicting False Positives

predictions = agent.predict(data)

Decluttering Copyright Notices

decluttered_data = agent.declutter(data, predictions)

Training Models

To train the false positive detector:

training_data = ["Your training data here"]
labels = ["Your labels here"]
agent.train_false_positive_detector_model(training_data, labels)

To train the named entity recognition model:

train_path = "path/to/train.spacy"
dev_path = "path/to/dev.spacy"
agent.train_ner_model(train_path, dev_path)

Saving Trained Models

save_path = "path/to/save"
agent.save(save_path)

Dependencies

  • scikit-learn
  • spaCy
  • joblib
  • regex
  • os
  • shutil

License

This project is licensed under the GNU LESSER GENERAL PUBLIC LICENSE, Version 2.1, February 1999.

Contact Information