forked from rooneysh/Labelme2YOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabelme2yolo.py
276 lines (213 loc) · 11.5 KB
/
labelme2yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
'''
Created on Aug 18, 2021
@author: xiaosonh
'''
import os
import sys
import argparse
import shutil
import math
from collections import OrderedDict
import json
import cv2
import PIL.Image
from sklearn.model_selection import train_test_split
from labelme import utils
class Labelme2YOLO(object):
def __init__(self, json_dir, to_seg=False):
self._json_dir = json_dir
self._label_id_map = self._get_label_id_map(self._json_dir)
self._to_seg = to_seg
i = 'YOLODataset'
i += '_seg/' if to_seg else '/'
self._save_path_pfx = os.path.join(self._json_dir, i)
def _make_train_val_dir(self):
self._label_dir_path = os.path.join(self._save_path_pfx, 'labels/')
self._image_dir_path = os.path.join(self._save_path_pfx, 'images/')
for yolo_path in (os.path.join(self._label_dir_path + 'train/'),
os.path.join(self._label_dir_path + 'val/'),
os.path.join(self._image_dir_path + 'train/'),
os.path.join(self._image_dir_path + 'val/')):
if os.path.exists(yolo_path):
shutil.rmtree(yolo_path)
os.makedirs(yolo_path)
def _get_label_id_map(self, json_dir):
label_set = set()
for file_name in os.listdir(json_dir):
if file_name.endswith('json'):
json_path = os.path.join(json_dir, file_name)
data = json.load(open(json_path))
for shape in data['shapes']:
label_set.add(shape['label'])
return OrderedDict([(label, label_id) \
for label_id, label in enumerate(label_set)])
def _train_test_split(self, folders, json_names, val_size):
if len(folders) > 0 and 'train' in folders and 'val' in folders:
train_folder = os.path.join(self._json_dir, 'train/')
train_json_names = [train_sample_name + '.json' \
for train_sample_name in os.listdir(train_folder) \
if os.path.isdir(os.path.join(train_folder, train_sample_name))]
val_folder = os.path.join(self._json_dir, 'val/')
val_json_names = [val_sample_name + '.json' \
for val_sample_name in os.listdir(val_folder) \
if os.path.isdir(os.path.join(val_folder, val_sample_name))]
return train_json_names, val_json_names
train_idxs, val_idxs = train_test_split(range(len(json_names)),
test_size=val_size)
train_json_names = [json_names[train_idx] for train_idx in train_idxs]
val_json_names = [json_names[val_idx] for val_idx in val_idxs]
return train_json_names, val_json_names
def convert(self, val_size):
json_names = [file_name for file_name in os.listdir(self._json_dir) \
if os.path.isfile(os.path.join(self._json_dir, file_name)) and \
file_name.endswith('.json')]
folders = [file_name for file_name in os.listdir(self._json_dir) \
if os.path.isdir(os.path.join(self._json_dir, file_name))]
train_json_names, val_json_names = self._train_test_split(folders, json_names, val_size)
self._make_train_val_dir()
# convert labelme object to yolo format object, and save them to files
# also get image from labelme json file and save them under images folder
for target_dir, json_names in zip(('train/', 'val/'),
(train_json_names, val_json_names)):
for json_name in json_names:
json_path = os.path.join(self._json_dir, json_name)
json_data = json.load(open(json_path))
print('Converting %s for %s ...' % (json_name, target_dir.replace('/', '')))
img_path = self._save_yolo_image(json_data,
json_name,
self._image_dir_path,
target_dir)
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
self._save_yolo_label(json_name,
self._label_dir_path,
target_dir,
yolo_obj_list)
print('Generating dataset.yaml file ...')
self._save_dataset_yaml()
def convert_one(self, json_name):
json_path = os.path.join(self._json_dir, json_name)
json_data = json.load(open(json_path))
print('Converting %s ...' % json_name)
img_path = self._save_yolo_image(json_data, json_name,
self._json_dir, '')
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
self._save_yolo_label(json_name, self._json_dir,
'', yolo_obj_list)
def _get_yolo_object_list(self, json_data, img_path):
yolo_obj_list = []
img_h, img_w, _ = cv2.imread(img_path).shape
for shape in json_data['shapes']:
# labelme circle shape is different from others
# it only has 2 points, 1st is circle center, 2nd is drag end point
if shape['shape_type'] == 'circle':
yolo_obj = self._get_circle_shape_yolo_object(shape, img_h, img_w)
else:
yolo_obj = self._get_other_shape_yolo_object(shape, img_h, img_w)
yolo_obj_list.append(yolo_obj)
return yolo_obj_list
def _get_circle_shape_yolo_object(self, shape, img_h, img_w):
label_id = self._label_id_map[shape['label']]
obj_center_x, obj_center_y = shape['points'][0]
radius = math.sqrt((obj_center_x - shape['points'][1][0]) ** 2 +
(obj_center_y - shape['points'][1][1]) ** 2)
if self._to_seg:
retval = [label_id]
n_part = radius / 10
n_part = int(n_part) if n_part > 4 else 4
n_part2 = n_part << 1
pt_quad = [None for i in range(0, 4)]
pt_quad[0] = [[obj_center_x + math.cos(i * math.pi / n_part2) * radius,
obj_center_y - math.sin(i * math.pi / n_part2) * radius]
for i in range(1, n_part)]
pt_quad[1] = [[obj_center_x * 2 - x1, y1] for x1, y1 in pt_quad[0]]
pt_quad[1].reverse()
pt_quad[3] = [[x1, obj_center_y * 2 - y1] for x1, y1 in pt_quad[0]]
pt_quad[3].reverse()
pt_quad[2] = [[obj_center_x * 2 - x1, y1] for x1, y1 in pt_quad[3]]
pt_quad[2].reverse()
pt_quad[0].append([obj_center_x, obj_center_y - radius])
pt_quad[1].append([obj_center_x - radius, obj_center_y])
pt_quad[2].append([obj_center_x, obj_center_y + radius])
pt_quad[3].append([obj_center_x + radius, obj_center_y])
for i in pt_quad:
for j in i:
j[0] = round(float(j[0]) / img_w, 6)
j[1] = round(float(j[1]) / img_h, 6)
retval.extend(j)
return retval
obj_w = 2 * radius
obj_h = 2 * radius
yolo_center_x= round(float(obj_center_x / img_w), 6)
yolo_center_y = round(float(obj_center_y / img_h), 6)
yolo_w = round(float(obj_w / img_w), 6)
yolo_h = round(float(obj_h / img_h), 6)
return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
def _get_other_shape_yolo_object(self, shape, img_h, img_w):
label_id = self._label_id_map[shape['label']]
if self._to_seg:
retval = [label_id]
for i in shape['points']:
i[0] = round(float(i[0]) / img_w, 6)
i[1] = round(float(i[1]) / img_h, 6)
retval.extend(i)
return retval
def __get_object_desc(obj_port_list):
__get_dist = lambda int_list: max(int_list) - min(int_list)
x_lists = [port[0] for port in obj_port_list]
y_lists = [port[1] for port in obj_port_list]
return min(x_lists), __get_dist(x_lists), min(y_lists), __get_dist(y_lists)
obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape['points'])
yolo_center_x= round(float((obj_x_min + obj_w / 2.0) / img_w), 6)
yolo_center_y = round(float((obj_y_min + obj_h / 2.0) / img_h), 6)
yolo_w = round(float(obj_w / img_w), 6)
yolo_h = round(float(obj_h / img_h), 6)
return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
def _save_yolo_label(self, json_name, label_dir_path, target_dir, yolo_obj_list):
txt_path = os.path.join(label_dir_path,
target_dir,
json_name.replace('.json', '.txt'))
with open(txt_path, 'w+') as f:
for yolo_obj_idx, yolo_obj in enumerate(yolo_obj_list):
yolo_obj_line = ""
for i in yolo_obj:
yolo_obj_line += f'{i} '
yolo_obj_line = yolo_obj_line[:-1]
if yolo_obj_idx != len(yolo_obj_list) - 1:
yolo_obj_line += '\n'
f.write(yolo_obj_line)
def _save_yolo_image(self, json_data, json_name, image_dir_path, target_dir):
img_name = json_name.replace('.json', '.png')
img_path = os.path.join(image_dir_path, target_dir,img_name)
if not os.path.exists(img_path):
img = utils.img_b64_to_arr(json_data['imageData'])
PIL.Image.fromarray(img).save(img_path)
return img_path
def _save_dataset_yaml(self):
yaml_path = os.path.join(self._save_path_pfx, 'dataset.yaml')
with open(yaml_path, 'w+') as yaml_file:
yaml_file.write('train: %s\n' % \
os.path.join(self._image_dir_path, 'train/'))
yaml_file.write('val: %s\n\n' % \
os.path.join(self._image_dir_path, 'val/'))
yaml_file.write('nc: %i\n\n' % len(self._label_id_map))
names_str = ''
for label, _ in self._label_id_map.items():
names_str += "'%s', " % label
names_str = names_str.rstrip(', ')
yaml_file.write('names: [%s]' % names_str)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--json_dir',type=str,
help='Please input the path of the labelme json files.')
parser.add_argument('--val_size',type=float, nargs='?', default=None,
help='Please input the validation dataset size, for example 0.1 ')
parser.add_argument('--json_name',type=str, nargs='?', default=None,
help='If you put json name, it would convert only one json file to YOLO.')
parser.add_argument('--seg', action='store_true',
help='Convert to YOLOv5 v7.0 segmentation dataset')
args = parser.parse_args(sys.argv[1:])
convertor = Labelme2YOLO(args.json_dir, to_seg=args.seg)
if args.json_name is None:
convertor.convert(val_size=args.val_size)
else:
convertor.convert_one(args.json_name)