-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathrun_pipeline.m
228 lines (193 loc) · 11 KB
/
run_pipeline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
% complete pipeline for calcium imaging data pre-processing
clear;
addpath(genpath('../NoRMCorre')); % add the NoRMCorre motion correction package to MATLAB path
gcp; % start a parallel engine
foldername = '';
% folder where all the files are located.
filetype = 'tif'; % type of files to be processed
% Types currently supported .tif/.tiff, .h5/.hdf5, .raw, .avi, and .mat files
files = subdir(fullfile(foldername,['*.',filetype])); % list of filenames (will search all subdirectories)
FOV = size(read_file(files(1).name,1,1));
numFiles = length(files);
%% motion correct (and save registered h5 files as 2d matrices (to be used in the end)..)
% register files one by one. use template obtained from file n to
% initialize template of file n + 1;
motion_correct = true; % perform motion correction
non_rigid = true; % flag for non-rigid motion correction
output_type = 'h5'; % format to save registered files
if non_rigid; append = '_nr'; else; append = '_rig'; end % use this to save motion corrected files
options_mc = NoRMCorreSetParms('d1',FOV(1),'d2',FOV(2),'grid_size',[128,128],'init_batch',200,...
'overlap_pre',32,'mot_uf',4,'bin_width',200,'max_shift',24,'max_dev',8,'us_fac',50,...
'output_type',output_type);
template = [];
col_shift = [];
for i = 1:numFiles
fullname = files(i).name;
[folder_name,file_name,ext] = fileparts(fullname);
output_filename = fullfile(folder_name,[file_name,append,'.',output_type]);
options_mc = NoRMCorreSetParms(options_mc,'output_filename',output_filename,'h5_filename','','tiff_filename',''); % update output file name
if motion_correct
[M,shifts,template,options_mc,col_shift] = normcorre_batch_even(fullname,options_mc,template);
save(fullfile(folder_name,[file_name,'_shifts',append,'.mat']),'shifts','-v7.3'); % save shifts of each file at the respective folder
else % if files are already motion corrected convert them to h5
convert_file(fullname,'h5',fullfile(folder_name,[file_name,'_mc.h5']));
end
end
%% downsample h5 files and save into a single memory mapped matlab file
if motion_correct
registered_files = subdir(fullfile(foldername,['*',append,'.',output_type])); % list of registered files (modify this to list all the motion corrected files you need to process)
else
registered_files = subdir(fullfile(foldername,'*_mc.h5'));
end
fr = 30; % frame rate
tsub = 5; % degree of downsampling (for 30Hz imaging rate you can try also larger, e.g. 8-10)
ds_filename = [foldername,'/ds_data.mat'];
data_type = class(read_file(registered_files(1).name,1,1));
data = matfile(ds_filename,'Writable',true);
data.Y = zeros([FOV,0],data_type);
data.Yr = zeros([prod(FOV),0],data_type);
data.sizY = [FOV,0];
F_dark = Inf; % dark fluorescence (min of all data)
batch_size = 2000; % read chunks of that size
batch_size = round(batch_size/tsub)*tsub; % make sure batch_size is divisble by tsub
Ts = zeros(numFiles,1); % store length of each file
cnt = 0; % number of frames processed so far
tt1 = tic;
for i = 1:numFiles
name = registered_files(i).name;
info = h5info(name);
dims = info.Datasets.Dataspace.Size;
ndimsY = length(dims); % number of dimensions (data array might be already reshaped)
Ts(i) = dims(end);
Ysub = zeros(FOV(1),FOV(2),floor(Ts(i)/tsub),data_type);
data.Y(FOV(1),FOV(2),sum(floor(Ts/tsub))) = zeros(1,data_type);
data.Yr(prod(FOV),sum(floor(Ts/tsub))) = zeros(1,data_type);
cnt_sub = 0;
for t = 1:batch_size:Ts(i)
Y = read_file(name,t,min(batch_size,Ts(i)-t+1));
F_dark = min(nanmin(Y(:)),F_dark);
ln = size(Y,ndimsY);
Y = reshape(Y,[FOV,ln]);
Y = cast(downsample_data(Y,'time',tsub),data_type);
ln = size(Y,3);
Ysub(:,:,cnt_sub+1:cnt_sub+ln) = Y;
cnt_sub = cnt_sub + ln;
end
data.Y(:,:,cnt+1:cnt+cnt_sub) = Ysub;
data.Yr(:,cnt+1:cnt+cnt_sub) = reshape(Ysub,[],cnt_sub);
toc(tt1);
cnt = cnt + cnt_sub;
data.sizY(1,3) = cnt;
end
data.F_dark = F_dark;
%% now run CNMF on patches on the downsampled file, set parameters first
sizY = data.sizY; % size of data matrix
patch_size = [40,40]; % size of each patch along each dimension (optional, default: [32,32])
overlap = [8,8]; % amount of overlap in each dimension (optional, default: [4,4])
patches = construct_patches(sizY(1:end-1),patch_size,overlap);
K = 7; % number of components to be found
tau = 8; % std of gaussian kernel (half size of neuron)
p = 2; % order of autoregressive system (p = 0 no dynamics, p=1 just decay, p = 2, both rise and decay)
merge_thr = 0.8; % merging threshold
sizY = data.sizY;
options = CNMFSetParms(...
'd1',sizY(1),'d2',sizY(2),...
'deconv_method','constrained_foopsi',... % neural activity deconvolution method
'p',p,... % order of calcium dynamics
'ssub',2,... % spatial downsampling when processing
'tsub',2,... % further temporal downsampling when processing
'merge_thr',merge_thr,... % merging threshold
'gSig',tau,...
'max_size_thr',300,'min_size_thr',10,... % max/min acceptable size for each component
'spatial_method','regularized',... % method for updating spatial components
'df_prctile',50,... % take the median of background fluorescence to compute baseline fluorescence
'fr',fr/tsub,... % downsamples
'space_thresh',0.35,... % space correlation acceptance threshold
'min_SNR',2.0,... % trace SNR acceptance threshold
'cnn_thr',0.2,... % cnn classifier acceptance threshold
'nb',1,... % number of background components per patch
'gnb',3,... % number of global background components
'decay_time',0.5... % length of typical transient for the indicator used
);
%% Run on patches (the main work is done here)
[A,b,C,f,S,P,RESULTS,YrA] = run_CNMF_patches(data.Y,K,patches,tau,0,options); % do not perform deconvolution here since
% we are operating on downsampled data
%% compute correlation image on a small sample of the data (optional - for visualization purposes)
Cn = correlation_image_max(data,8);
%% classify components
rval_space = classify_comp_corr(data,A,C,b,f,options);
ind_corr = rval_space > options.space_thresh; % components that pass the correlation test
% this test will keep processes
%% further classification with cnn_classifier
try % matlab 2017b or later is needed
[ind_cnn,value] = cnn_classifier(A,FOV,'cnn_model',options.cnn_thr);
catch
ind_cnn = true(size(A,2),1); % components that pass the CNN classifier
end
%% event exceptionality
fitness = compute_event_exceptionality(C+YrA,options.N_samples_exc,options.robust_std);
ind_exc = (fitness < options.min_fitness);
%% select components
keep = (ind_corr | ind_cnn) & ind_exc;
%% run GUI for modifying component selection (optional, close twice to save values)
% run_GUI = false;
% if run_GUI
% Coor = plot_contours(A,Cn,options,1); close;
% GUIout = ROI_GUI(A,options,Cn,Coor,keep,ROIvars);
% options = GUIout{2};
% keep = GUIout{3};
% end
%% view contour plots of selected and rejected components (optional)
throw = ~keep;
Coor_k = [];
Coor_t = [];
figure;
ax1 = subplot(121); plot_contours(A(:,keep),Cn,options,0,[],Coor_k,[],1,find(keep)); title('Selected components','fontweight','bold','fontsize',14);
ax2 = subplot(122); plot_contours(A(:,throw),Cn,options,0,[],Coor_t,[],1,find(throw));title('Rejected components','fontweight','bold','fontsize',14);
linkaxes([ax1,ax2],'xy')
%% keep only the active components
A_keep = A(:,keep);
C_keep = C(keep,:);
%% extract residual signals for each trace
if exist('YrA','var')
R_keep = YrA(keep,:);
else
R_keep = compute_residuals(data,A_keep,b,C_keep,f);
end
%% extract fluorescence on native temporal resolution
options.fr = options.fr*tsub; % revert to origingal frame rate
N = size(C_keep,1); % total number of components
T = sum(Ts); % total number of timesteps
C_full = imresize(C_keep,[N,T]); % upsample to original frame rate
R_full = imresize(R_keep,[N,T]); % upsample to original frame rate
F_full = C_full + R_full; % full fluorescence
f_full = imresize(f,[size(f,1),T]); % upsample temporal background
S_full = zeros(N,T);
P.p = 0;
ind_T = [0;cumsum(Ts(:))];
options.nb = options.gnb;
for i = 1:numFiles
inds = ind_T(i)+1:ind_T(i+1); % indeces of file i to be updated
[C_full(:,inds),f_full(:,inds),~,~,R_full(:,inds)] = update_temporal_components_fast(registered_files(i).name,A_keep,b,C_full(:,inds),f_full(:,inds),P,options);
disp(['Extracting raw fluorescence at native frame rate. File ',num2str(i),' out of ',num2str(numFiles),' finished processing.'])
end
%% extract DF/F and deconvolve DF/F traces
[F_dff,F0] = detrend_df_f(A_keep,[b,ones(prod(FOV),1)],C_full,[f_full;-double(F_dark)*ones(1,T)],R_full,options);
C_dec = zeros(N,T); % deconvolved DF/F traces
S_dec = zeros(N,T); % deconvolved neural activity
bl = zeros(N,1); % baseline for each trace (should be close to zero since traces are DF/F)
neuron_sn = zeros(N,1); % noise level at each trace
g = cell(N,1); % discrete time constants for each trace
if p == 1; model_ar = 'ar1'; elseif p == 2; model_ar = 'ar2'; else; error('This order of dynamics is not supported'); end
for i = 1:N
spkmin = options.spk_SNR*GetSn(F_dff(i,:));
lam = choose_lambda(exp(-1/(options.fr*options.decay_time)),GetSn(F_dff(i,:)),options.lam_pr);
[cc,spk,opts_oasis] = deconvolveCa(F_dff(i,:),model_ar,'method','thresholded','optimize_pars',true,'maxIter',20,...
'window',150,'lambda',lam,'smin',spkmin);
bl(i) = opts_oasis.b;
C_dec(i,:) = cc(:)' + bl(i);
S_dec(i,:) = spk(:);
neuron_sn(i) = opts_oasis.sn;
g{i} = opts_oasis.pars(:)';
disp(['Performing deconvolution. Trace ',num2str(i),' out of ',num2str(N),' finished processing.'])
end