-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathconstrained_foopsi.m
302 lines (278 loc) · 11.9 KB
/
constrained_foopsi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
function [c,b,c1,g,sn,sp] = constrained_foopsi(y,b,c1,g,sn,options)
% spike inference using a constrained deconvolution approach:
% min sum(sp)
% c,sp,b,c1
% subject to: sp >= 0
% b >= 0
% G*c = sp
% c1 >= 0
% ||y-b-c - c_in|| <= sn*sqrt(T)
% Variables:
% y: raw fluorescence data (vector of length(T))
% c: denoised calcium concentration (Tx1 vector)
% b: baseline concentration (scalar)
% c1: initial concentration (scalar)
% g: discrete time constant(s) (scalar or 2x1 vector)
% sn: noise standard deviation (scalar)
% sp: spike vector (Tx1 vector)
% USAGE:
% [c,b,c1,g,sn,sp] = constrained_foopsi(y,b,c1,g,sn,OPTIONS)
% The parameters b,cin,g,sn can be given or else are estimated from the data
% OPTIONS: (stuct for specifying options)
% p: order for AR model, used when g is not given (default 2)
% method: methods for performing spike inference
% available methods: 'dual' uses dual ascent
% 'cvx' uses the cvx package available from cvxr.com (default)
% 'lars' uses the least regression algorithm
% 'spgl1' uses the spgl1 package available from
% math.ucdavis.edu/~mpf/spgl1/ (can be faster)
% bas_nonneg: flag for setting the baseline lower bound. if 1, then b >= 0 else b >= min(y)
% noise_range: frequency range over which the noise power is estimated. Default [Fs/4,Fs/2]
% noise_method: method to average the PSD in order to obtain a robust noise level estimate
% lags: number of extra autocovariance lags to be considered when estimating the time constants
% resparse: number of times that the solution is resparsened (default 0). Currently available only with methods 'cvx', 'spgl'
% fudge_factor: scaling constant to reduce bias in the time constant estimation (default 1 - no scaling)
% Written by:
% Eftychios A. Pnevmatikakis, Simons Foundation, 2015
defoptions.p = 2;
defoptions.method = 'cvx';
defoptions.bas_nonneg = 1; % nonnegativity option for baseline estimation
defoptions.noise_range = [0.25,0.5]; % frequency range over which to estimate the noise
defoptions.noise_method = 'logmexp'; % method for which to estimate the noise level
defoptions.lags = 5; % number of extra lags when computing the AR coefficients
defoptions.resparse = 0; % number of times to re-sparse solution
defoptions.fudge_factor = 1; % fudge factor for time constants
if nargin < 6
options = defoptions;
if nargin < 5
sn = [];
if nargin < 4
g = [];
if nargin < 3
c1 = [];
if nargin < 2
b = [];
end
end
end
end
end
if ~isfield(options,'p'); options.p = defoptions.p; end
if ~isfield(options,'method'); options.method = defoptions.method; end
if ~isfield(options,'bas_nonneg'); options.bas_nonneg = defoptions.bas_nonneg; end
if ~isfield(options,'noise_range'); options.noise_range = defoptions.noise_range; end
if ~isfield(options,'noise_method'); options.noise_method = defoptions.noise_method; end
if ~isfield(options,'lags'); options.lags = defoptions.lags; end
if ~isfield(options,'resparse'); options.resparse = defoptions.resparse; end
if ~isfield(options,'fudge_factor'); options.fudge_factor = defoptions.fudge_factor; end
method = options.method;
if isempty(b);
bas_est = 1;
else
bas_est = 0;
end
if isempty(c1)
c1_est = 1;
else
c1_est = 0;
end
y = y(:);
T = length(y);
y_full = y;
mis_data = isnan(y);
E = speye(T);
E(mis_data,:) = [];
if any(mis_data)
y_full(mis_data) = interp1(find(~mis_data),y(~mis_data),find(mis_data));
end
if isempty(sn)
sn = GetSn(y_full,options.noise_range,options.noise_method);
end
if isempty(g)
g = estimate_time_constants(y_full,options.p,sn,options.lags);
while max(abs(roots([1,-g(:)']))>1) && options.p < 5
warning('No stable AR(%i) model found. Checking for AR(%i) model \n',options.p,options.p+1);
options.p = options.p + 1;
g = estimate_time_constants(y,options.p,sn,options.lags);
end
if options.p == 5
g = 0;
end
%fprintf('Stable AR(%i) model found \n',options.p);
% re-adjust time constant values
rg = roots([1;-g(:)]);
if ~isreal(rg); rg = real(rg) + .001*randn(size(rg)); end
rg(rg>1) = 0.95 + 0.001*randn(size(rg(rg>1)));
rg(rg<0) = 0.15 + 0.001*randn(size(rg(rg<0)));
pg = poly(options.fudge_factor*rg);
g = -pg(2:end);
end
if options.bas_nonneg % lower bound for baseline
b_lb = 0;
else
b_lb = min(y);
end
if strcmpi(method,'dual'); method = 'dual';
elseif strcmpi(method,'cvx'); method = 'cvx';
elseif strcmpi(method,'lars'); method = 'lars';
elseif strcmpi(method,'spgl1'); method = 'spgl1';
else fprintf('Invalid choice of method. Using CVX \n'); method = 'cvx';
end
if strcmpi(method,'dual') && any(mis_data)
warning('Dual method does not support missing data. Switching to CVX');
method = 'cvx';
end
if options.resparse > 0 && (strcmpi(method,'dual') || strcmpi(method,'lars'))
warning('Resparsening is not supported with chosen method. Switching to CVX');
method = 'cvx';
end
pathCell = regexp(path, pathsep, 'split');
g = g(:);
G = spdiags(ones(T,1)*[-g(end:-1:1)',1],-length(g):0,T,T);
gd = max(roots([1,-g'])); % decay time constant for initial concentration
gd_vec = gd.^((0:T-1)');
switch method
case 'dual'
v = G'*ones(T,1);
thr = sn*sqrt(T-sum(mis_data));
if bas_est; b = 0; end
if c1_est; c1 = 0; end
myfun = @(Ald) lagrangian_temporal_gradient(Ald,thr^2,y(~mis_data)-b-c1*gd_vec(~mis_data),bas_est,c1_est);
c = [G\max(G*y,0);zeros(bas_est);zeros(c1_est)];
options_dual = optimset('GradObj','On','Display','Off','Algorithm','interior-point','TolX',1e-8);
ld_in = 10;
[ld,~,flag] = fmincon(myfun,ld_in,[],[],[],[],0,[],[],options_dual);
if (flag == -2) || (flag == -3)
warning('Problem seems unbounded or infeasible. Try a different method.');
end
if bas_est; b = c(T+bas_est); end
if c1_est; c1 = c(end); end
c = c(1:T);
sp = G*c;
case 'cvx'
onPath = ~isempty(which('cvx_begin'));
if onPath
c = zeros(T,1+options.resparse);
sp = zeros(T,1+options.resparse);
bas = zeros(1+options.resparse,1);
cin = zeros(1+options.resparse,1);
w_ = ones(T,1);
for rep = 1:options.resparse+1
[c(:,rep),bas(rep),cin(rep)] = cvx_foopsi(y,b,c1,sn,b_lb,g,w_,~mis_data);
sp(:,rep) = G*c(:,rep);
w_ = 1./(max(sp(:,rep),0) + 1e-8);
end
sp(sp<1e-6) = 0;
c = G\sp;
b = bas;
c1 = cin;
else
error('CVX does not appear to be on the MATLAB path. It can be downloaded from cvxr.com \n');
end
case 'lars'
Ginv = E*[full(G\speye(T)),ones(T,bas_est),gd_vec*ones(1,c1_est)];
if bas_est; b = 0; end
if c1_est; c1 = 0; end
[~, ~, spikes, ~, ~] = lars_regression_noise(y(~mis_data)-b_lb*bas_est - b - c1*gd_vec(~mis_data), Ginv, 1, sn^2*(T-sum(mis_data)));
sp = spikes(1:T);
b = (spikes(T+bas_est)+b_lb)*bas_est + b*(1-bas_est);
c1 = spikes(end)*c1_est + c1*(1-c1_est);
c = G\sp;
case 'spgl1'
onPath = ~isempty(which('spgl1'));
if onPath
Gx = @(x,mode) G_inv_mat(x,mode,T,g,gd_vec,bas_est,c1_est,E);
c = zeros(T,1+options.resparse);
sp = zeros(T,1+options.resparse);
bas = zeros(1+options.resparse,1);
cin = zeros(1+options.resparse,1);
w_ = ones(T,1);
for rep = 1:options.resparse+1
if bas_est; b = 0; w_ = [w_;1e-10]; end
if c1_est; c1 = 0; w_ = [w_;1e-10]; end
options_spgl = spgSetParms('project',@NormL1NN_project ,'primal_norm', @NormL1NN_primal,'dual_norm',@NormL1NN_dual,'verbosity',0,'weights',w_);
[spikes,r,~,~] = spg_bpdn( Gx, y(~mis_data)-b_lb*bas_est - (1-bas_est)*b-(1-c1_est)*c1*gd_vec(~mis_data), sn*sqrt(T-sum(mis_data)),options_spgl);
c(:,rep) = G\spikes(1:T); %Gx([spikes(1:T);0],1); %% calcium signal
bas(rep) = b*(1-bas_est) + bas_est*spikes(T+bas_est)+b_lb*bas_est; %% baseline
cin(rep) = c1*(1-c1_est) + c1_est*spikes(end);
sp(:,rep) = spikes(1:T); %% spiking signal
w_ = 1./(spikes(1:T)+1e-8);
end
b = bas;
c1 = cin;
%sn = norm(r)/sqrt(T);
else
error('SPGL1 does not appear to be on the MATLAB path. It can be downloaded from math.ucdavis.edu/~mpf/spgl1 \n');
end
end
function sn = GetSn(Y,range_ff,method)
% estimate noise level with a power spectral density method
L=length(Y);
% if ~isempty(which('pmtm'))
% [psd_Y,ff] = pmtm(Y,5/2,1000,1);
% end
if ~isempty(which('pwelch'));
[psd_Y,ff]=pwelch(Y,round(L/8),[],1000,1);
else
xdft = fft(Y);
xdft = xdft(1:round(L/2)+1);
psd_Y = (1/L) * abs(xdft).^2;
ff = 0:1/L:1/2;
psd_Y(2:end-1) = 2*psd_Y(2:end-1);
end
ind=ff>range_ff(1);
ind(ff>range_ff(2))=0;
switch method
case 'mean'
sn=sqrt(mean(psd_Y(ind)/2));
case 'median'
sn=sqrt(median(psd_Y(ind)/2));
case 'logmexp'
sn = sqrt(exp(mean(log(psd_Y(ind)/2))));
end
end
function g = estimate_time_constants(y,p,sn,lags)
% estimate time constants from the sample autocovariance function
lags = lags + p;
if ~isempty(which('xcov')) %signal processing toolbox
xc = xcov(y,lags,'biased');
else
ynormed = (y - mean(y));
xc = nan(lags + 1, 1);
for k = 0:lags
xc(k + 1) = ynormed(1 + k:end)' * ynormed(1:end - k);
end
xc = [flipud(xc(2:end)); xc] / numel(y);
end
xc = xc(:);
A = toeplitz(xc(lags+(1:lags)),xc(lags+(1:p))) - sn^2*eye(lags,p);
try
g = pinv(A)*xc(lags+2:end);
catch
g = 0;
end
end
function [f,grad] = lagrangian_temporal_gradient(Al,thr,y_raw,bas_flag,c1_flag)
options_qp = optimset('Display','Off','Algorithm','interior-point-convex');
H = [speye(T),ones(T,bas_flag),gd_vec*ones(1,c1_flag);...
ones(bas_flag,T),T*ones(bas_flag),(1-gd^T)/(1-gd)*ones(c1_flag,bas_flag);...
(gd_vec*ones(1,c1_flag))',(1-gd^T)/(1-gd)*ones(c1_flag,bas_flag),(1-gd^(2*T))/(1-gd^2)*ones(c1_flag,c1_flag)];
Ay = [y_raw;sum(y_raw)*ones(bas_flag);gd_vec'*y_raw*ones(c1_flag)];
c = quadprog(2*Al(1)*H,[v;zeros(bas_flag+c1_flag,1)]-2*Al(1)*Ay,[-G,sparse(T,bas_flag+c1_flag);sparse(bas_flag+c1_flag,T),-speye(bas_flag+c1_flag)]...
,[sparse(T,1);-b_lb*ones(bas_flag);zeros(c1_flag)],[],[],[],[],c,options_qp);
f = v'*c(1:T);
grad = [sum((c(1:T)-y_raw + c(T+bas_flag)*bas_flag + c(end)*gd_vec*c1_flag).^2)-thr];
f = f + Al(:)'*grad;
end
function b = G_inv_mat(x,mode,NT,gs,gd_vec,bas_flag,c1_flag,Emat)
if mode == 1
b = filter(1,[1;-gs(:)],x(1:NT)) + bas_flag*x(NT+bas_flag) + c1_flag*gd_vec*x(end);
b = Emat*b;
%b = G\x(1:NT) + x(NT+bas_flag)*bas_flag + x(end)*c1_flag;
elseif mode == 2
x = Emat'*x;
b = [flipud(filter(1,[1;-gs(:)],flipud(x)));ones(bas_flag,1)*sum(x);ones(c1_flag,1)*(gd_vec'*x)];
%b = [G'\x;ones(bas_flag,1)*sum(x);ones(c1_flag,1)*(gd_vec'*x)] ;
end
end
end