forked from birtwistlelab/Mechanistic_Pan-Cancer_Model
-
Notifications
You must be signed in to change notification settings - Fork 1
/
PARCDL_rateconstants_sd.py
216 lines (131 loc) · 5.31 KB
/
PARCDL_rateconstants_sd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import math
import csv
import numpy as np
# import sys
def PARCDL_rateconstants_sd(ke50,mExp_mpc,kTLnat,kTLd,EIF4Efree,S_TL,S_d):
# returns kTLCd,kTL,kXd,xp_mpc
data = []
with open('observables_mat_18.csv', newline='') as csvfile:
spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|')
for row in spamreader:
x = ', '.join(row)
x = x.split(',')
data.append(x)
data = data[1:]
data2 = []
for row in data:
data2.append(row[2:103])
ObsMat = np.matrix(data2)
xpi = []
for x in kTLnat:
try:
xpi.append(x * mExp_mpc / kTLd)
except:
xpi.append(0)
# this is how you remove nans from matrix!!!!!! remember this syntax!!!
for i in range(len(xpi)):
xpi[i][np.isnan(xpi[i])] = 0
xpi[i][np.isinf(xpi[i])] = 0
# kTL **
temp=1/((EIF4Efree/(ke50+EIF4Efree)));
kTL = []
for item in kTLnat:
kTL.append(item*temp)
xp_mpc = np.multiply(kTLnat,mExp_mpc)/kTLd
xp_mpc[np.isnan(xp_mpc)] = 0
xp_mpc[np.isinf(xp_mpc)] = 0
# important - the setting dimension to 2 in matlab is the same as setting axis to 1 in numpy. sums by row instead of by column
inds = np.nonzero(np.sum(S_TL,axis=1))[0]
inds0 = np.matrix.transpose(inds)
kTLCd = []
for i in range(len(inds)):
genes2include = np.nonzero(S_TL[inds0[i],:])
genes2include = genes2include[1]
kTLCd.append(sum(np.multiply(kTLd[genes2include],(xp_mpc[genes2include]/sum(xp_mpc[genes2include]))))) #Sum of the fraction of each gene
kTLCd = np.matrix(kTLCd)
kTLCd[np.isnan(kTLCd)]=0
kTLCd = np.matrix.transpose(kTLCd)
kXd = []
for i in range(S_d.shape[1]):
ProtInd = np.nonzero(S_d[:,i]==-1)
tmp = []
for j in range(ObsMat[ProtInd,:][0].shape[1]):
tmp.append(int((ObsMat[ProtInd,:][0][0,j])))
Obs2Include = np.nonzero(tmp)
# this takes care of a weird off-by-1 error i was getting for all i>=37. no idea why there was an error, but this fixes it
if i >= 37:
Obs2Include = Obs2Include[0] + 1
# starting at i = 37, Obs2Include is off by 1 beginning at that point
if i < 37:
if Obs2Include:
# important syntax here! use for all matrix - array problems!!!
try:
kXd.append(max(np.squeeze(np.asarray(kTLCd[Obs2Include]))))
except:
try:
kXd.append(kTLCd[Obs2Include][0,0])
except:
kXd.append(0)
else:
kXd.append(0)
else:
if Obs2Include.any():
try:
kXd.append(max(np.squeeze(np.asarray(kTLCd[Obs2Include]))))
except Exception as exc:
try:
kXd.append(kTLCd[Obs2Include][0,0])
except:
kXd.append(0)
else:
kXd.append(0)
# decrease all beginning indices by 1 because matlab
# leave end indices because they're included in matlab but not in python
a=0;
kAd=kXd[a:a+47];a=a+47;
kRd=kXd[a:a+56];a=a+56;
kRPd1=kXd[a:a+33];a=a+33;
kRPd2=kXd[a:a+29];a=a+29;
kRPd3=kXd[a:a+29];a=a+29;
kRPd4=kXd[a:a+33];a=a+33;
kRPd5=kXd[a:a+29];a=a+29;
kRPd6=kXd[a:a+29];a=a+29;
kRPd7=kXd[a:a+29];a=a+29;
kRPd8=kXd[a:a+29];a=a+29;
kRPd9=kXd[a:a+29];a=a+29;
kRPd10=kXd[a:a+29];a=a+29;
kRPd11=kXd[a:a+29];a=a+29;
kRPd12=kXd[a:a+29];a=a+29;
kRPd13=kXd[a:a+29];a=a+29;
kRPd14=kXd[a:a+29];a=a+29;
kPd=kXd[a:a+89];
# Rate constant modified for internalized receptors
kRPd3 = np.array(kRPd3)
kRPd3[2:4]=8.3711E-4;
kRPd3[[0,1,4,5,6,7,10,15]]=2.1301E-4;
kRPd3[[8,9,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28]]=8.7106E-5;
kRPd4 = np.array(kRPd4)
kRPd4[2:4]=8.3711E-4; kRPd4[[0,1,4,5,6,7,10,15]]=2.1301E-4; kRPd4[[8,9,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]]=8.7106E-5;
kRPd6 = np.array(kRPd6)
kRPd6[2:4]=8.3711E-4; kRPd6[[0,1,4,5,6,7,10,15]]=2.1301E-4; kRPd6[[8,9,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28]]=8.7106E-5;
kRPd10 = np.array(kRPd10)
kRPd10[2:4]=8.3711E-4; kRPd10[[0,1,4,5,6,7,10,15]]=2.1301E-4; kRPd10[[8,9,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28]]=8.7106E-5;
kPd = np.array(kPd)
# Rate constants modified for degradation of lipids
kPd[6]=0.00001; #PIP
kPd[7]=0.00001; #PI3P
kPd[8]=0.00108*10; #DAG
kPd[26]=0.081; #IP3
kPd[27]=4.83E-5; #PIP2
kPd[28]=4.83E-5; #PIP3
# Other rate constant modifications
kPd[21:24] = math.log(2)/4/3600; #pMPK1 (DUSP), pcFos, pcFos_cJun
# kXd=[kAd';kRd';kRPd1';kRPd2';kRPd3';kRPd4';kRPd5';kRPd6';kRPd7';kRPd8';kRPd9';kRPd10';kRPd11';kRPd12';kRPd13';kRPd14';kPd'];
to_transpose=[kAd,kRd,kRPd1,kRPd2,kRPd3,kRPd4,kRPd5,kRPd6,kRPd7,kRPd8,kRPd9,kRPd10,kRPd11,kRPd12,kRPd13,kRPd14,kPd];
giant_array = np.array([])
for item in to_transpose:
giant_array = np.append(giant_array,item)
kXd = np.matrix(giant_array)
kXd = np.matrix.transpose(kXd)
# need to cast some lists into arrays here before returning
return np.array(kTLCd),np.array(kTL),kXd,xp_mpc