forked from mbrossar/RINS-W
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
283 lines (240 loc) · 9.83 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from src.utils import pdump, pload, bmtv, bmtm, bmv, pltt, plts
from src.lie_algebra import SO3
from termcolor import cprint
from torch.utils.data.dataset import Dataset
from scipy.interpolate import interp1d
from scipy.signal import savgol_filter
import numpy as np
import matplotlib.pyplot as plt
import pickle
import os
import torch
import sys
class BaseDataset(Dataset):
def __init__(self, predata_dir, train_seqs, val_seqs, test_seqs, mode, dt):
super().__init__()
# where record pre loaded data
self.predata_dir = predata_dir
self.path_normalize_factors = os.path.join(predata_dir, 'nf.p')
self.mode = mode
# choose between training, validation or test sequences
train_seqs, self.sequences = self.get_sequences(train_seqs, val_seqs,
test_seqs)
# get and compute value for normalizing inputs
self.mean_u, self.std_u = self.init_normalize_factors(train_seqs)
self.mode = mode # train, val or test
self._train = False
self._val = False
# noise density
self.imu_std = torch.Tensor([8e-5, 1e-3]).float()
# bias repeatability (without in-run bias stability)
self.imu_b0 = torch.Tensor([1e-3, 1e-3]).float()
# IMU sampling time
self.dt = dt # (s)
self.uni = torch.distributions.uniform.Uniform(-torch.ones(1),
torch.ones(1))
def get_sequences(self, train_seqs, val_seqs, test_seqs):
"""Choose sequence list depending on dataset mode"""
sequences_dict = {
'train': train_seqs,
'val': val_seqs,
'test': test_seqs,
}
return sequences_dict['train'], sequences_dict[self.mode]
def __getitem__(self, i):
"""Get IMU input and ground-truth ZUPT"""
mondict = self.load_seq(i)
N_max = mondict['xs'].shape[0]
u = mondict['us']
x = mondict['xs']
return u, x
def __len__(self):
return len(self.sequences)
def add_noise(self, u):
"""Add Gaussian noise and bias to input"""
noise = torch.randn_like(u)
noise[:, :, :3] = noise[:, :, :3] * self.imu_std[0]
noise[:, :, 3:6] = noise[:, :, 3:6] * self.imu_std[1]
# bias repeatability (without in run bias stability)
b0 = self.uni.sample(u[:, 0].shape).cuda()
b0[:, :, :3] = b0[:, :, :3] * self.imu_b0[0]
b0[:, :, 3:6] = b0[:, :, 3:6] * self.imu_b0[1]
u = u + noise + b0.transpose(1, 2)
return u
def init_train(self):
self._train = True
self._val = False
def init_val(self):
self._train = False
self._val = True
def length(self):
return self._length
def load_seq(self, i):
return pload(self.predata_dir, self.sequences[i] + '.p')
def load_gt(self, i):
return pload(self.predata_dir, self.sequences[i] + '_gt.p')
def init_normalize_factors(self, train_seqs):
if os.path.exists(self.path_normalize_factors):
mondict = pload(self.path_normalize_factors)
return mondict['mean_u'], mondict['std_u']
path = os.path.join(self.predata_dir, train_seqs[0] + '.p')
if not os.path.exists(path):
print("init_normalize_factors not computed")
return 0, 0
print('Start computing normalizing factors ...')
cprint("Do it only on training sequences, it is vital!", 'yellow')
# first compute mean
num_data = 0
for i, sequence in enumerate(train_seqs):
pickle_dict = pload(self.predata_dir, sequence + '.p')
us = pickle_dict['us']
sms = pickle_dict['xs']
if i == 0:
mean_u = us.sum(dim=0)
num_positive = sms.sum(dim=0)
num_negative = sms.shape[0] - sms.sum(dim=0)
else:
mean_u += us.sum(dim=0)
num_positive += sms.sum(dim=0)
num_negative += sms.shape[0] - sms.sum(dim=0)
num_data += us.shape[0]
mean_u = mean_u / num_data
pos_weight = num_negative / num_positive
# second compute standard deviation
for i, sequence in enumerate(train_seqs):
pickle_dict = pload(self.predata_dir, sequence + '.p')
us = pickle_dict['us']
if i == 0:
std_u = ((us - mean_u) ** 2).sum(dim=0)
else:
std_u += ((us - mean_u) ** 2).sum(dim=0)
std_u = (std_u / num_data).sqrt()
normalize_factors = {
'mean_u': mean_u,
'std_u': std_u,
}
print('... ended computing normalizing factors')
print('pos_weight:', pos_weight)
print('This values most be a training parameters !')
print('mean_u :', mean_u)
print('std_u :', std_u)
print('num_data :', num_data)
pdump(normalize_factors, self.path_normalize_factors)
return mean_u, std_u
def read_data(self, data_dir):
raise NotImplementedError
def get_test(self, i):
input_dict = self.load_seq(i)
gt_zupts = input_dict['xs'][:, 0]
us = input_dict['us']
gt_zupts[0] = 0
Nshift = torch.where(gt_zupts == 1)[0][0]
N = us.shape[0] - Nshift
ts = torch.linspace(0, (N-1)*self.dt, N)
return ts, us, Nshift
class KaistDataset(BaseDataset):
"""
Dataloader for the Kaist Data Set.
"""
def __init__(self, data_dir, predata_dir, train_seqs, val_seqs,
test_seqs, mode, dt):
super().__init__(predata_dir, train_seqs, val_seqs, test_seqs, mode, dt)
# convert raw data to pre loaded data
self.read_data(data_dir)
def read_data(self, data_dir):
r"""Read the data from the dataset"""
# threshold for ZUPT ground truth
sm_velocity_max_threshold = 0.004 # m/s
f = os.path.join(self.predata_dir, 'urban06.p')
if True and os.path.exists(f):
return
print("Start read_data, be patient please")
def set_path(seq):
path_imu = os.path.join(data_dir, seq, "sensor_data",
"xsens_imu.csv")
path_gt = os.path.join(data_dir, seq, "global_pose.csv")
return path_imu, path_gt
time_factor = 1e9 # ns -> s
def interpolate(x, t, t_int, angle=False):
"""
Interpolate ground truth with sensors
"""
x_int = np.zeros((t_int.shape[0], x.shape[1]))
for i in range(x.shape[1]):
if angle:
x[:, i] = np.unwrap(x[:, i])
x_int[:, i] = np.interp(t_int, t, x[:, i])
return x_int
sequences = os.listdir(data_dir)
# read each sequence
for sequence in sequences:
print("\nSequence name: " + sequence)
path_imu, path_gt = set_path(sequence)
imu = np.genfromtxt(path_imu, delimiter=",")
# Urban00-05 and campus00 have only quaternion and Euler data
if not imu.shape[1] > 10:
cprint("No IMU data for dataset " + sequence, 'yellow')
continue
gt = np.genfromtxt(path_gt, delimiter=",")
# time synchronization between IMU and ground truth
t0 = np.max([gt[0, 0], imu[0, 0]])
t_end = np.min([gt[-1, 0], imu[-1, 0]])
# start index
idx0_imu = np.searchsorted(imu[:, 0], t0)
idx0_gt = np.searchsorted(gt[:, 0], t0)
# end index
idx_end_imu = np.searchsorted(imu[:, 0], t_end, 'right')
idx_end_gt = np.searchsorted(gt[:, 0], t_end, 'right')
# subsample
imu = imu[idx0_imu: idx_end_imu]
gt = gt[idx0_gt: idx_end_gt]
t = imu[:, 0]
# take ground truth position
p_gt = gt[:, [4, 8, 12]]
p_gt = p_gt - p_gt[0]
# take ground matrix pose
Rot_gt = torch.Tensor(gt.shape[0], 3, 3)
for j in range(3):
Rot_gt[:, j] = torch.Tensor(gt[:, 1 + 4 * j: 1 + 4 * j + 3])
q_gt = SO3.to_quaternion(Rot_gt)
# convert to angle orientation
rpys = SO3.to_rpy(Rot_gt)
t_gt = gt[:, 0]
# interpolate ground-truth
p_gt = interpolate(p_gt, t_gt, t)
rpys = interpolate(rpys.numpy(), t_gt, t, angle=True)
# convert from numpy
ts = (t - t0)/time_factor
p_gt = torch.Tensor(p_gt)
rpys = torch.Tensor(rpys).float()
q_gt = SO3.to_quaternion(SO3.from_rpy(rpys[:, 0], rpys[:, 1], rpys[:, 2]))
imu = torch.Tensor(imu).float()
# take IMU gyro and accelerometer and magnetometer
imu = imu[:, 8:17]
dt = ts[1:] - ts[:-1]
# compute speed ground truth (apply smoothing)
v_gt = torch.zeros(p_gt.shape[0], 3)
for j in range(3):
p_gt_smooth = savgol_filter(p_gt[:, j], 11, 1)
v_j = (p_gt_smooth[1:] - p_gt_smooth[:-1]) / dt
v_j_smooth = savgol_filter(v_j, 11, 0)
v_gt[1:, j] = torch.Tensor(v_j_smooth)
# ground truth specific motion measurement (binary)
zupts = v_gt.norm(dim=1, keepdim=True) < sm_velocity_max_threshold
zupts = zupts.float()
# set ground truth consistent with ZUPT
v_gt[zupts.squeeze() == 1] = 0
# save for training
mondict = {
'xs': zupts.float(),
'us': imu.float(),
}
pdump(mondict, self.predata_dir, sequence + ".p")
# save ground truth
mondict = {
'ts': ts,
'qs': q_gt.float(),
'vs': v_gt.float(),
'ps': p_gt.float(),
}
pdump(mondict, self.predata_dir, sequence + "_gt.p")