-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrainer.py
296 lines (219 loc) · 10.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# -*- coding: utf-8 -*-
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
import models
import time
import os
import math
from utils import logger_setting, Timer
class GradReverse(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
return grad_output.neg() * 0.1
def grad_reverse(x):
return GradReverse.apply(x)
class Trainer(object):
def __init__(self, option):
self.option = option
self._build_model()
self._set_optimizer()
self.logger = logger_setting(option.exp_name, option.save_dir, option.debug)
def _build_model(self):
self.n_color_cls = 8
self.net = models.convnet(num_classes=self.option.n_class)
self.pred_net_r = models.Predictor(input_ch=32, num_classes=self.n_color_cls)
self.pred_net_g = models.Predictor(input_ch=32, num_classes=self.n_color_cls)
self.pred_net_b = models.Predictor(input_ch=32, num_classes=self.n_color_cls)
self.loss = nn.CrossEntropyLoss(ignore_index=255)
self.color_loss = nn.CrossEntropyLoss(ignore_index=255)
if self.option.cuda:
self.net.cuda()
self.pred_net_r.cuda()
self.pred_net_g.cuda()
self.pred_net_b.cuda()
self.loss.cuda()
self.color_loss.cuda()
def _set_optimizer(self):
self.optim = optim.SGD(filter(lambda p: p.requires_grad, self.net.parameters()), lr=self.option.lr, momentum=self.option.momentum, weight_decay=self.option.weight_decay)
self.optim_r = optim.SGD(self.pred_net_r.parameters(), lr=self.option.lr, momentum=self.option.momentum, weight_decay=self.option.weight_decay)
self.optim_g = optim.SGD(self.pred_net_g.parameters(), lr=self.option.lr, momentum=self.option.momentum, weight_decay=self.option.weight_decay)
self.optim_b = optim.SGD(self.pred_net_b.parameters(), lr=self.option.lr, momentum=self.option.momentum, weight_decay=self.option.weight_decay)
#TODO: last_epoch should be the last step of loaded model
lr_lambda = lambda step: self.option.lr_decay_rate ** (step // self.option.lr_decay_period)
self.scheduler = optim.lr_scheduler.LambdaLR(self.optim, lr_lambda=lr_lambda, last_epoch=-1)
self.scheduler_r = optim.lr_scheduler.LambdaLR(self.optim_r, lr_lambda=lr_lambda, last_epoch=-1)
self.scheduler_g = optim.lr_scheduler.LambdaLR(self.optim_g, lr_lambda=lr_lambda, last_epoch=-1)
self.scheduler_b = optim.lr_scheduler.LambdaLR(self.optim_b, lr_lambda=lr_lambda, last_epoch=-1)
@staticmethod
def _weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif classname.find('BatchNorm') != -1:
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def _initialization(self):
self.net.apply(self._weights_init)
if self.option.is_train and self.option.use_pretrain:
if self.option.checkpoint is not None:
self._load_model()
else:
print("Pre-trained model not provided")
def _mode_setting(self, is_train=True):
if is_train:
self.net.train()
self.pred_net_r.train()
self.pred_net_g.train()
self.pred_net_b.train()
else:
self.net.eval()
self.pred_net_r.eval()
self.pred_net_g.eval()
self.pred_net_b.eval()
def _train_step(self, data_loader, step):
_lambda = 0.01
for i, (images,color_labels,labels) in enumerate(data_loader):
images = self._get_variable(images)
color_labels = self._get_variable(color_labels)
labels = self._get_variable(labels)
self.optim.zero_grad()
self.optim_r.zero_grad()
self.optim_g.zero_grad()
self.optim_b.zero_grad()
feat_label, pred_label = self.net(images)
# predict colors from feat_label. Their prediction should be uniform.
_,pseudo_pred_r = self.pred_net_r(feat_label)
_,pseudo_pred_g = self.pred_net_g(feat_label)
_,pseudo_pred_b = self.pred_net_b(feat_label)
# loss for self.net
loss_pred = self.loss(pred_label, torch.squeeze(labels))
loss_pseudo_pred_r = torch.mean(torch.sum(pseudo_pred_r*torch.log(pseudo_pred_r),1))
loss_pseudo_pred_g = torch.mean(torch.sum(pseudo_pred_g*torch.log(pseudo_pred_g),1))
loss_pseudo_pred_b = torch.mean(torch.sum(pseudo_pred_b*torch.log(pseudo_pred_b),1))
loss_pred_ps_color = (loss_pseudo_pred_r + loss_pseudo_pred_g + loss_pseudo_pred_b) / 3.
loss = loss_pred + loss_pred_ps_color*_lambda
loss.backward()
self.optim.step()
self.optim.zero_grad()
self.optim_r.zero_grad()
self.optim_g.zero_grad()
self.optim_b.zero_grad()
feat_label, pred_label = self.net(images)
feat_color = grad_reverse(feat_label)
pred_r,_ = self.pred_net_r(feat_color)
pred_g,_ = self.pred_net_g(feat_color)
pred_b,_ = self.pred_net_b(feat_color)
# loss for rgb predictors
loss_pred_r = self.color_loss(pred_r, color_labels[:,0])
loss_pred_g = self.color_loss(pred_g, color_labels[:,1])
loss_pred_b = self.color_loss(pred_b, color_labels[:,2])
loss_pred_color = loss_pred_r + loss_pred_g + loss_pred_b
loss_pred_color.backward()
self.optim.step()
self.optim_r.step()
self.optim_g.step()
self.optim_b.step()
if i % self.option.log_step == 0:
msg = "[TRAIN] cls loss : %.6f, rgb : %.6f, MI : %.6f (epoch %d.%02d)" \
% (loss_pred,loss_pred_color/3.,loss_pred_ps_color,step,int(100*i/data_loader.__len__()))
self.logger.info(msg)
def _train_step_baseline(self, data_loader, step):
for i, (images,color_labels,labels) in enumerate(data_loader):
images = self._get_variable(images)
labels = self._get_variable(labels)
self.optim.zero_grad()
feat_label, pred_label = self.net(images)
# loss for self.net
loss_pred = self.loss(pred_label, torch.squeeze(labels))
loss_pred.backward()
self.optim.step()
# TODO: print elapsed time for iteration
if i % self.option.log_step == 0:
msg = "[TRAIN] cls loss : %.6f (epoch %d.%02d)" \
% (loss_pred,step,int(100*i/data_loader.__len__()))
self.logger.info(msg)
def _validate(self, data_loader):
self._mode_setting(is_train=False)
self._initialization()
if self.option.checkpoint is not None:
self._load_model()
else:
print("No trained model for evaluation provided")
import sys
sys.exit()
num_test = 10000
total_num_correct = 0.
total_num_test = 0.
total_loss = 0.
for i, (images,color_labels,labels) in enumerate(data_loader):
start_time = time.time()
images = self._get_variable(images)
colro_labels = self._get_variable(color_labels)
labels = self._get_variable(labels)
self.optim.zero_grad()
_, pred_label = self.net(images)
loss = self.loss(pred_label, torch.squeeze(labels))
batch_size = images.shape[0]
total_num_correct += self._num_correct(pred_label,labels,topk=1).data[0]
total_loss += loss.data[0]*batch_size
total_num_test += batch_size
avg_loss = total_loss/total_num_test
avg_acc = total_num_correct/total_num_test
msg = "EVALUATION LOSS %.4f, ACCURACY : %.4f (%d/%d)" % \
(avg_loss,avg_acc,int(total_num_correct),total_num_test)
self.logger.info(msg)
def _num_correct(self,outputs,labels,topk=1):
_, preds = outputs.topk(k=topk, dim=1)
preds = preds.t()
correct = preds.eq(labels.view(1, -1).expand_as(preds))
correct = correct.view(-1).sum()
return correct
def _accuracy(self, outputs, labels):
batch_size = labels.size(0)
_, preds = outputs.topk(k=1, dim=1)
preds = preds.t()
correct = preds.eq(labels.view(1, -1).expand_as(preds))
correct = correct.view(-1).float().sum(0, keepdim=True)
accuracy = correct.mul_(100.0 / batch_size)
return accuracy
def _save_model(self, step):
torch.save({
'step': step,
'optim_state_dict': self.optim.state_dict(),
'net_state_dict': self.net.state_dict()
}, os.path.join(self.option.save_dir,self.option.exp_name, 'checkpoint_step_%04d.pth' % step))
print('checkpoint saved. step : %d'%step)
def _load_model(self):
ckpt = torch.load(self.option.checkpoint)
self.net.load_state_dict(ckpt['net_state_dict'])
self.optim.load_state_dict(ckpt['optim_state_dict'])
def train(self, train_loader, val_loader=None):
self._initialization()
if self.option.checkpoint is not None:
self._load_model()
self._mode_setting(is_train=True)
timer = Timer(self.logger, self.option.max_step)
start_epoch = 0
for step in range(start_epoch, self.option.max_step):
if self.option.train_baseline:
self._train_step_baseline(train_loader, step)
else:
self._train_step(train_loader,step)
self.scheduler.step()
self.scheduler_r.step()
self.scheduler_g.step()
self.scheduler_b.step()
if step == 1 or step % self.option.save_step == 0 or step == (self.option.max_step-1):
if val_loader is not None:
self._validate(step, val_loader)
self._save_model(step)
def _get_variable(self, inputs):
if self.option.cuda:
return Variable(inputs.cuda())
return Variable(inputs)