Skip to content

Latest commit

 

History

History
28 lines (17 loc) · 875 Bytes

README.md

File metadata and controls

28 lines (17 loc) · 875 Bytes

feast-denormalized-tutorial

Feast + Denormalized

This repository contains an example application of using Denormalized to process features in real-time and sink them to an online feast store.

Getting started

Install UV

  • uv venv --python 3.12 && source .venv/bin/activate

  • uv sync --dev

  • uv pip install -e .

  • Start kafka in docker docker run -p 9092:9092 --name kafka apache/kafka

  • create the feature store: python src/feature_repo/

  • Start emitting events: python src/session_generator/

  • Start the pipelines: python src/pipelines/

Docker

It is also possible to run the example using the provider docker-compose file:

  • docker compose up --build

The features can be viewed in realtime using the print_features.ipynb notebook jupyter-lab