-
Notifications
You must be signed in to change notification settings - Fork 697
/
train_wavernn.py
159 lines (120 loc) · 5.99 KB
/
train_wavernn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import time
import numpy as np
import torch
from torch import optim
import torch.nn.functional as F
from utils.display import stream, simple_table
from utils.dataset import get_vocoder_datasets
from utils.distribution import discretized_mix_logistic_loss
from utils import hparams as hp
from models.fatchord_version import WaveRNN
from gen_wavernn import gen_testset
from utils.paths import Paths
import argparse
from utils import data_parallel_workaround
from utils.checkpoints import save_checkpoint, restore_checkpoint
def main():
# Parse Arguments
parser = argparse.ArgumentParser(description='Train WaveRNN Vocoder')
parser.add_argument('--lr', '-l', type=float, help='[float] override hparams.py learning rate')
parser.add_argument('--batch_size', '-b', type=int, help='[int] override hparams.py batch size')
parser.add_argument('--force_train', '-f', action='store_true', help='Forces the model to train past total steps')
parser.add_argument('--gta', '-g', action='store_true', help='train wavernn on GTA features')
parser.add_argument('--force_cpu', '-c', action='store_true', help='Forces CPU-only training, even when in CUDA capable environment')
parser.add_argument('--hp_file', metavar='FILE', default='hparams.py', help='The file to use for the hyperparameters')
args = parser.parse_args()
hp.configure(args.hp_file) # load hparams from file
if args.lr is None:
args.lr = hp.voc_lr
if args.batch_size is None:
args.batch_size = hp.voc_batch_size
paths = Paths(hp.data_path, hp.voc_model_id, hp.tts_model_id)
batch_size = args.batch_size
force_train = args.force_train
train_gta = args.gta
lr = args.lr
if not args.force_cpu and torch.cuda.is_available():
device = torch.device('cuda')
if batch_size % torch.cuda.device_count() != 0:
raise ValueError('`batch_size` must be evenly divisible by n_gpus!')
else:
device = torch.device('cpu')
print('Using device:', device)
print('\nInitialising Model...\n')
# Instantiate WaveRNN Model
voc_model = WaveRNN(rnn_dims=hp.voc_rnn_dims,
fc_dims=hp.voc_fc_dims,
bits=hp.bits,
pad=hp.voc_pad,
upsample_factors=hp.voc_upsample_factors,
feat_dims=hp.num_mels,
compute_dims=hp.voc_compute_dims,
res_out_dims=hp.voc_res_out_dims,
res_blocks=hp.voc_res_blocks,
hop_length=hp.hop_length,
sample_rate=hp.sample_rate,
mode=hp.voc_mode).to(device)
# Check to make sure the hop length is correctly factorised
assert np.cumprod(hp.voc_upsample_factors)[-1] == hp.hop_length
optimizer = optim.Adam(voc_model.parameters())
restore_checkpoint('voc', paths, voc_model, optimizer, create_if_missing=True)
train_set, test_set = get_vocoder_datasets(paths.data, batch_size, train_gta)
total_steps = 10_000_000 if force_train else hp.voc_total_steps
simple_table([('Remaining', str((total_steps - voc_model.get_step())//1000) + 'k Steps'),
('Batch Size', batch_size),
('LR', lr),
('Sequence Len', hp.voc_seq_len),
('GTA Train', train_gta)])
loss_func = F.cross_entropy if voc_model.mode == 'RAW' else discretized_mix_logistic_loss
voc_train_loop(paths, voc_model, loss_func, optimizer, train_set, test_set, lr, total_steps)
print('Training Complete.')
print('To continue training increase voc_total_steps in hparams.py or use --force_train')
def voc_train_loop(paths: Paths, model: WaveRNN, loss_func, optimizer, train_set, test_set, lr, total_steps):
# Use same device as model parameters
device = next(model.parameters()).device
for g in optimizer.param_groups: g['lr'] = lr
total_iters = len(train_set)
epochs = (total_steps - model.get_step()) // total_iters + 1
for e in range(1, epochs + 1):
start = time.time()
running_loss = 0.
for i, (x, y, m) in enumerate(train_set, 1):
x, m, y = x.to(device), m.to(device), y.to(device)
# Parallelize model onto GPUS using workaround due to python bug
if device.type == 'cuda' and torch.cuda.device_count() > 1:
y_hat = data_parallel_workaround(model, x, m)
else:
y_hat = model(x, m)
if model.mode == 'RAW':
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
elif model.mode == 'MOL':
y = y.float()
y = y.unsqueeze(-1)
loss = loss_func(y_hat, y)
optimizer.zero_grad()
loss.backward()
if hp.voc_clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hp.voc_clip_grad_norm)
if np.isnan(grad_norm):
print('grad_norm was NaN!')
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / i
speed = i / (time.time() - start)
step = model.get_step()
k = step // 1000
if step % hp.voc_checkpoint_every == 0:
gen_testset(model, test_set, hp.voc_gen_at_checkpoint, hp.voc_gen_batched,
hp.voc_target, hp.voc_overlap, paths.voc_output)
ckpt_name = f'wave_step{k}K'
save_checkpoint('voc', paths, model, optimizer,
name=ckpt_name, is_silent=True)
msg = f'| Epoch: {e}/{epochs} ({i}/{total_iters}) | Loss: {avg_loss:.4f} | {speed:.1f} steps/s | Step: {k}k | '
stream(msg)
# Must save latest optimizer state to ensure that resuming training
# doesn't produce artifacts
save_checkpoint('voc', paths, model, optimizer, is_silent=True)
model.log(paths.voc_log, msg)
print(' ')
if __name__ == "__main__":
main()