-
Setup a Python environment (>=3.11). Install PyTorch (>=2.0.1) and Deep Graph Library (>=1.1).
-
Install nvcc for cuda compilation. Make sure choose the compatible cuda version with your PyTorch.
conda install cuda -c nvidia/label/cuda-11.8.0
-
Build temporal_sampling GPU operator
cd src/temporal_sampling/ python setup.py build_ext --inplace
-
Download dataset
-
Convert edge CSV to the Temporal-CSR format
python src/gen_graph.py --data WIKI
-
Preprocess negative edges
python src/preprocess.py --data WIKI --clip_root_set
python src/train.py --config config_train/tgat_wiki/TGAT.yml \
--data WIKI \
--gpu 0 \
--cache \
--cached_ratio 0.2
Important Arguments:
--config
: Config of TASER+TGNN reported in the paper. The configs of other datasets/models are under theconfig_train
folder.--data
: The training datasets. Available choices [WIKI, REDDIT, Flight, MovieLens, GDELT]--cache
: Enable GPU caching--cached_ratio
: Ratios of node features cached in GPU.
TASER is MIT licensed, as found in the LICENSE file.