Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Panoptic Quality Metrics (PQ): Unexpected PQ value during model evaluation. #5420

Open
Skywalker83 opened this issue Jan 6, 2025 · 1 comment

Comments

@Skywalker83
Copy link

Skywalker83 commented Jan 6, 2025

I'm using a custom dataset (fine-tuning) for the panoptic task using R101-FPN as COCO Panoptic Segmentation baseline (Panoptic FPN).

Both training and inferencing are able to obtain good result. However, when I perform model evaluation I got the following result:

Panoptic Evaluation Results:

PQ SQ RQ #categories
All 669.439 785.069 68.472 71
Things 51.593 75.233 66.680 2
Stuff 687.348 805.644 68.524 69

Evaluation metrics:
{
'PQ': np.float64(669.4392318591345),
'SQ': np.float64(785.0691309166493),
'RQ': 68.47162219667933,
'PQ_th': np.float64(51.592946379865104),
'SQ_th': np.float64(75.23326285684394),
'RQ_th': 66.68010678527925,
'PQ_st': np.float64(687.3478198440408),
'SQ_st': np.float64(805.6440836140348),
'RQ_st': 68.52355017961847
}

I'm not sure why SQ_st is in the hundreds range which I believe it causes PQ to be in hundreds range too. Would appreciate help if anyone could point out any possible issues. Thanks.

Instructions To Reproduce the Issue:

Unable to provide data to reproduce the issue.

Source code:

self._cfg.merge_from_file(self._trained_config_path)
self._predictor = DefaultPredictor(self._cfg)
self._initialize_datasets()

evaluator = COCOPanopticEvaluator(
dataset_name=eval_dataset_name,
output_dir=self._output_dir,
)
val_loader = build_detection_test_loader(self._cfg, eval_dataset_name)

results = inference_on_dataset(self._predictor.model, val_loader, evaluator)

Environment:


sys.platform linux
Python 3.12.7 (main, Oct 16 2024, 04:37:19) [Clang 18.1.8 ]
numpy 1.26.4
detectron2 0.6 @/pvc-data/workspaces/xxx/xxx/.venv/lib/python3.12/site-packages/detectron2
Compiler clang 18.1.3
CUDA compiler not available
DETECTRON2_ENV_MODULE
PyTorch 2.5.1+cu124 @/pvc-data/workspaces/xxx/xxx/.venv/lib/python3.12/site-packages/torch
PyTorch debug build False
torch._C._GLIBCXX_USE_CXX11_ABI False
GPU available No: torch.cuda.is_available() == False
Pillow 11.0.0
torchvision 0.20.1+cu124 @/pvc-data/workspaces/xxx/xxx/.venv/lib/python3.12/site-packages/torchvision
fvcore 0.1.5.post20221221
iopath 0.1.9
cv2 4.10.0


PyTorch built with:

  • GCC 9.3
  • C++ Version: 201703
  • Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
Copy link

github-actions bot commented Jan 6, 2025

You've chosen to report an unexpected problem or bug. Unless you already know the root cause of it, please include details about it by filling the issue template.
The following information is missing: "Instructions To Reproduce the Issue and Full Logs";

@github-actions github-actions bot added needs-more-info More info is needed to complete the issue and removed needs-more-info More info is needed to complete the issue labels Jan 6, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant