This repository has been archived by the owner on Mar 3, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 57
/
IntegerDivision.cuh
229 lines (192 loc) · 5.58 KB
/
IntegerDivision.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright 2004-present Facebook. All Rights Reserved.
#pragma once
#include <math.h>
namespace facebook { namespace cuda {
namespace detail {
/**
Host and device implementation for 32-bit a * b into 64 bit, return
high 32 bits
*/
__host__ __device__ __forceinline__ unsigned int mulHi(unsigned int x,
unsigned int y) {
#ifdef __CUDA_ARCH__
return __umulhi(x, y);
#else
unsigned long v = (unsigned long) x * (unsigned long) y;
return (unsigned) (v >> 32);
#endif
}
} // detail
/**
Prototype for integer division by a fixed constant via strength
reduction to mul/shift.
*/
template <typename T>
class FixedDivisor {
};
/**
Specialization for calculating quotients by a fixed signed `d`
using integer multiplication and shifts.
*/
template <>
class FixedDivisor<int> {
public:
typedef int Type;
FixedDivisor(int d)
: d_(d) {
calcSignedMagic();
}
/// Calculates `q = n / d`.
__host__ __device__ __forceinline__ int div(int n) {
return (detail::mulHi(magic_, n) >> shift_);
}
/// Calculates `r = n % d`.
__host__ __device__ __forceinline__ int mod(int n) {
return n - d_ * div(n);
}
/// Calculates `q = n / d` and `r = n % d` together.
__host__ __device__ __forceinline__
void divMod(int n, int* q, int* r) {
const int quotient = div(n);
*q = quotient;
*r = n - d_ * quotient;
}
private:
/**
Calculates magic multiplicative value and shift amount for
calculating `q = n / d` for signed 32-bit integers.
Implementation taken from Hacker's Delight section 10.
`d` cannot be in [-1, 1].
*/
void calcSignedMagic() {
const unsigned int two31 = 0x80000000;
unsigned int ad = abs(d_);
unsigned int t = two31 + ((unsigned int) d_ >> 31);
unsigned int anc = t - 1 - t % ad; // Absolute value of nc.
unsigned int p = 31; // Init. p.
unsigned int q1 = two31 / anc; // Init. q1 = 2**p/|nc|.
unsigned int r1 = two31 - q1 * anc; // Init. r1 = rem(2**p, |nc|).
unsigned int q2 = two31 / ad; // Init. q2 = 2**p/|d|.
unsigned int r2 = two31 - q2 * ad; // Init. r2 = rem(2**p, |d|).
unsigned int delta = 0;
do {
p = p + 1;
q1 = 2 * q1; // Update q1 = 2**p/|nc|.
r1 = 2 * r1; // Update r1 = rem(2**p, |nc|).
if (r1 >= anc) { // (Must be an unsigned
q1 = q1 + 1; // comparison here).
r1 = r1 - anc;
}
q2 = 2 * q2; // Update q2 = 2**p/|d|.
r2 = 2 * r2; // Update r2 = rem(2**p, |d|).
if (r2 >= ad) { // (Must be an unsigned
q2 = q2 + 1; // comparison here).
r2 = r2 - ad;
}
delta = ad - r2;
} while (q1 < delta || (q1 == delta && r1 == 0));
magic_ = q2 + 1;
if (d_ < 0) {
magic_ = -magic_;
}
shift_ = p - 32;
}
int d_;
int magic_;
int shift_;
};
/**
Class for calculating quotients by a fixed unsigned `d` using integer
multiplication, addition and shifts.
*/
template <>
class FixedDivisor<unsigned int> {
public:
typedef unsigned int Type;
FixedDivisor(unsigned int d)
: d_(d) {
calcUnsignedMagic();
}
/// Calculates `q = n / d`.
__host__ __device__ __forceinline__ unsigned int div(unsigned int n) {
if (add_) {
// Calculates (t + q) / 2, avoiding overflow
unsigned int q = detail::mulHi(magic_, n);
unsigned int t = n - q;
t >>= 1;
t += q;
// Shift (t + q) / 2
return (t >> (shift_));
} else {
return (detail::mulHi(magic_, n) >> shift_);
}
}
/// Calculates `r = n % d`.
__host__ __device__ __forceinline__ unsigned int mod(unsigned int n) {
return n - d_ * div(n);
}
/// Calculates `q = n / d` and `r = n % d` together.
__host__ __device__ __forceinline__
void divMod(unsigned int n, unsigned int* q, unsigned int* r) {
const unsigned int quotient = div(n);
*q = quotient;
*r = n - d_ * quotient;
}
private:
/**
Calculates magic multiplicative value, addition indicator and shift
amount for calculating `q = n / d` for unsigned 32-bit
integers. Implementation taken from Hacker's Delight section 10.
`d` must be > 1.
*/
void calcUnsignedMagic() {
int gt = 0;
unsigned int nc = (unsigned int) -1 - (unsigned int) (-(int) d_) % d_;
int p = 31; // Init. p.
unsigned int q1 = 0x80000000 / nc; // Init. q1 = 2**p/nc.
unsigned int r1 = 0x80000000 - q1 * nc; // Init. r1 = rem(2**p, nc).
unsigned int q2 = 0x7FFFFFFF / d_; // Init. q2 = (2**p - 1)/d.
unsigned int r2 = 0x7FFFFFFF - q2 * d_; // Init. r2 = rem(2**p - 1, d).
unsigned int delta = 0;
add_ = false;
do {
p = p + 1;
if (q1 >= 0x80000000) {
gt = 1; // Means q1 > delta.
}
if (r1 >= nc - r1) {
q1 = 2 * q1 + 1; // Update q1.
r1 = 2 * r1 - nc; // Update r1.
} else {
q1 = 2 * q1;
r1 = 2 * r1;
}
if (r2 + 1 >= d_ - r2) {
if (q2 >= 0x7FFFFFFF) {
add_ = true;
}
q2 = 2 * q2 + 1; // Update q2.
r2 = 2 * r2 + 1 - d_; // Update r2.
} else {
if (q2 >= 0x80000000) {
add_ = true;
}
q2 = 2 * q2;
r2 = 2 * r2 + 1;
}
delta = d_ - 1 - r2;
} while (gt == 0 &&
(q1 < delta || (q1 == delta && r1 == 0)));
magic_ = q2 + 1;
shift_ = p - 32;
// We combine the division together for the output
if (add_) {
--shift_;
}
}
unsigned int d_;
unsigned int magic_;
bool add_;
int shift_;
};
} }