-
Notifications
You must be signed in to change notification settings - Fork 116
/
image_tf_serving.py
265 lines (230 loc) · 9.76 KB
/
image_tf_serving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import tensorflow as tf
import grpc
import numpy as np
import copy
import io
from time import time
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
from PIL import Image
from prodigy.components.loaders import get_stream
from prodigy.components.preprocess import fetch_images
from prodigy.core import recipe, recipe_args
from prodigy.util import log, b64_uri_to_bytes, split_string
from object_detection.utils import label_map_util
@recipe(
"image.servingmodel",
dataset=recipe_args["dataset"],
ip=("Tensorflow serving ip", "positional", None, str),
port=("Tensorflow serving port", "positional", None, str),
model_name=("Tensorflow serving model name", "positional", None, str),
label_map_path=("Path to label_map.pbtxt", "positional", None, str),
source=recipe_args["source"],
threshold=("Score threshold", "option", "t", float, None, 0.5),
api=recipe_args["api"],
exclude=recipe_args["exclude"],
use_display_name=("Whether to use display_name in label_map.pbtxt",
"flag", "D", bool),
label=(("One or more comma-separated labels. "
"If not given inferred from labelmap"),
"option", "l", split_string, None, None),
)
def image_servingmodel(dataset,
ip,
port,
model_name,
label_map_path,
source=None,
threshold=0.5,
api=None,
exclude=None,
use_display_name=False,
label=None
):
log("RECIPE: Starting recipe image.servingmodel", locals())
# key class names
reverse_class_mapping_dict = label_map_util.get_label_map_dict(
label_map_path=label_map_path,
use_display_name=use_display_name)
if label is None:
label = [k for k in reverse_class_mapping_dict.keys()]
# key int
class_mapping_dict = {v: k for k, v in reverse_class_mapping_dict.items()}
stream = get_stream(source, api=api, loader="images", input_key="image")
stream = fetch_images(stream)
return {
"view_id": "image_manual",
"dataset": dataset,
"stream": get_image_stream(stream, class_mapping_dict,
ip, port, model_name, float(threshold)),
"exclude": exclude,
'config': {
'label': ', '.join(label) if label is not None else 'all',
'labels': label, # Selectable label options,
}
}
def get_image_stream(stream, class_mapping_dict, ip, port, model_name, thresh):
"""Function that gets the image stream with bounding box information
Arguments:
stream (iterable): input image image stream
class_mapping_dict (dict): with key as int and value as class name
ip (str): tensorflow serving IP
port (str): tensorflow serving port
model_name (str): model name in tensorflow serving
thresh (float): score threshold for predictions
Returns:
A generator that constantly yields a prodigy task
"""
for eg in stream:
if not eg["image"].startswith("data"):
msg = "Expected base64-encoded data URI, but got: '{}'."
raise ValueError(msg.format(eg["image"][:100]))
pil_image = Image.open(io.BytesIO(b64_uri_to_bytes(eg["image"])))
pil_image = preprocess_pil_image(pil_image)
np_image = np.array(pil_image)
predictions = get_predictions(np_image, class_mapping_dict,
ip, port, model_name)
eg["width"] = pil_image.width
eg["height"] = pil_image.height
eg["spans"] = [get_span(pred, pil_image)
for pred in zip(*predictions) if pred[2] >= thresh]
task = copy.deepcopy(eg)
yield task
def get_predictions(numpy_image, class_mapping_dict, ip, port, model_name):
"""Gets predictions for a single image using Tensorflow serving
Arguments:
numpy_image (np.ndarray): numpy array of image
class_mapping_dict (dict): with key as int and value as class name
ip (str): tensorflow serving IP
port (str): tensorflow serving port
model_name (str): model name in tensorflow serving
Returns:
A tuple containing numpy arrays:
(class_ids, class_names, scores, boxes)
"""
if len(numpy_image.shape) == 3:
numpy_image = np.expand_dims(numpy_image, axis=0)
boxes, class_ids, scores = _tf_odapi_client(numpy_image,
ip,
port, model_name)
class_names = np.array([class_mapping_dict[class_id]
for class_id in class_ids])
return (class_ids, class_names, scores, boxes)
def preprocess_pil_image(pil_img, color_mode='rgb', target_size=None):
"""Preprocesses the PIL image
Arguments
img: PIL Image
color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb".
The desired image format.
target_size: Either `None` (default to original size)
or tuple of ints `(img_height, img_width)`.
Returns
Preprocessed PIL image
"""
if color_mode == 'grayscale':
if pil_img.mode != 'L':
pil_img = pil_img.convert('L')
elif color_mode == 'rgba':
if pil_img.mode != 'RGBA':
pil_img = pil_img.convert('RGBA')
elif color_mode == 'rgb':
if pil_img.mode != 'RGB':
pil_img = pil_img.convert('RGB')
else:
raise ValueError('color_mode must be "grayscale", "rgb", or "rgba"')
if target_size is not None:
width_height_tuple = (target_size[1], target_size[0])
if pil_img.size != width_height_tuple:
pil_img = pil_img.resize(width_height_tuple, Image.NEAREST)
return pil_img
def get_span(prediction, pil_image, hidden=True):
"""Function which returns a prodigy span
Arguments:
prediction (iterable): containing one class_id, name, prob, box
pil_image (pil.Image): A PIL image
hidden (bool)
Returns:
A span (dict) with following keys:
score, label, label_id, points, hidden
"""
class_id, name, prob, box = prediction
name = str(name, "utf8") if not isinstance(name, str) else name
image_width = pil_image.width
image_height = pil_image.height
ymin, xmin, ymax, xmax = box
xmin = xmin*image_width
xmax = xmax*image_width
ymin = ymin*image_height
ymax = ymax*image_height
box_width = abs(xmax - xmin)
box_height = abs(ymax - ymin)
rel_points = [
[xmin, ymin],
[xmin, ymin+box_height],
[xmin+box_width, ymin+box_height],
[xmin+box_width, ymin]
]
return {
"score": prob,
"label": name,
"label_id": int(class_id),
"points": rel_points,
"hidden": hidden,
}
def _tf_odapi_client(image, ip, port, model_name,
signature_name="detection_signature", input_name="inputs",
timeout=300):
"""Client for using Tensorflow Serving with Tensorflow Object Detection API
Arguments:
data (np.ndarray/bytes): A numpy array of data or bytes. No Default
ip (str): IP address of tensorflow serving. No Default
port (str/int): Port of tensorflow serving. No Default
model_name (str): Model name. No Default
signature_name (str): Signature name. Default "detection_signature".
input_name (str): Input tensor name. Default "inputs".
timeout (str): timeout for API call. Default 300 secs
returns:
a tuple containing numpy arrays of (boxes, classes, scores)
"""
start_time = time()
result = _generic_tf_serving_client(image, ip, port,
model_name, signature_name,
input_name, timeout
)
log("time taken for image shape {} is {} secs".format(image.shape,
time()-start_time))
# boxes are ymin.xmin,ymax,xmax
boxes = np.array(result.outputs['detection_boxes'].float_val)
classes = np.array(result.outputs['detection_classes'].float_val)
scores = np.array(result.outputs['detection_scores'].float_val)
boxes = boxes.reshape((len(scores), 4))
classes = np.squeeze(classes.astype(np.int32))
scores = np.squeeze(scores)
return (boxes, classes, scores)
def _generic_tf_serving_client(data, ip, port, model_name,
signature_name, input_name, timeout=300):
"""A generic tensorflow serving client that predicts using given data
Arguments:
data (np.ndarray): A numpy array of data. No Default
ip (str): IP address of tensorflow serving. No Default
port (str/int): Port of tensorflow serving. No Default
model_name (str): Model name. No Default
signature_name (str): Signature name. No Default
input_name (str): Input tensor name. No Default
timeout (str): timeout for API call. Default 300 secs
returns:
Prediction protobuf
"""
assert isinstance(data, np.ndarray), \
"data must be a numpy array but got {}".format(type(data))
channel = grpc.insecure_channel('{}:{}'.format(ip, port))
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
request = predict_pb2.PredictRequest()
request.model_spec.name = model_name
request.model_spec.signature_name = signature_name
request.inputs['{}'.format(input_name)
].CopyFrom(tf.contrib.util.make_tensor_proto(
data,
shape=data.shape))
result = stub.Predict(request, timeout)
return result