-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheMapPrepCuda.cc
executable file
·374 lines (321 loc) · 12.8 KB
/
eMapPrepCuda.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*
* ePrepCuda - Prepares population for energy calculations on CUDA card
* @author TEAM E51
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "autocomm.h"
#include "typedefs.h"
#include "support.h"
#include "assert.h"
#include "gs.h"
#include "eval.h"
#include "structs.h"
//#include "constants.h"
#include "trilinterp.h"
#include "eintcal.h"
#include "cuda_wrapper.h"
#include "eval_wrapper.h"
#include "eMapPrepCuda.h"
/*extern "C" void eval_wrapper(
Boole b_comp_intermol,
float *crds,
float *cpuenergies,
float *float_arraycpu,
int *int_arraycpu);*/
extern FILE *logFile;
extern class Eval evaluate;
extern int Nnb_array[3];
float *float_arraycpu;
int *int_arraycpu;
Boole b_comp_intermol;
int natoms;
float *crds;
double *energies;
float *cpuenergies;
/**
* Separate cuda preparation function, such that it checks if energies are equal at end
* @param original_population, original population
* @param e_mode energy mode (only supports Always_Eval and Normal_Eval
* @param firstEnergy first energy (needed for comparrison)
* @return whether the evals are equal or not
*/
int eEqualPrepCuda(Population &original_population, int e_mode, double firstEnergy)
{
int i;
for (i = 0; i < original_population.num_individuals(); i++)
{
e_prep(e_mode, i, original_population);
}
eval_wrapper(
b_comp_intermol,
crds,
cpuenergies,
float_arraycpu,
int_arraycpu);
return e_complete_evalEqual(original_population, ::evaluate.getCharge(), firstEnergy);
}
/**
* Mapping evaluation cuda preparation (does necessary functionality that mapping does)
* @param original_population original_population
* @param e_mode energy mode (only support Normal_Eval and Always_Eval)
*/
void eMapPrepCuda(Population &original_population, int e_mode)
{
int k,l,m,n;
int j;
int i;
int indv;
int I_tor = 0;
int indx = 0;
double energy = 0.0L;
#pragma omp critical
{
//int individual = ignlgi_t(omp_get_thread_num())%original_population.num_individuals();
//int gene_number = ignlgi_t(omp_get_thread_num())%original_population[individual].genotyp.num_genes();
for (i = 0; i < original_population.num_individuals(); i++)
{
original_population[i].phenotyp.write(*(original_population[i].genotyp.vread(0)), 0);
original_population[i].phenotyp.write(*(original_population[i].genotyp.vread(1)), 1);
original_population[i].phenotyp.write(*(original_population[i].genotyp.vread(2)), 2);
original_population[i].phenotyp.write(*(original_population[i].genotyp.vread(3)), 3);
original_population[i].phenotyp.write(*(original_population[i].genotyp.vread(4)), 4);
e_prep(e_mode, i, original_population);
/*original_population[individual].phenotyp.write(*(original_population[individual].genotyp.vread(0)), 0);
original_population[individual].phenotyp.write(*(original_population[individual].genotyp.vread(1)), 1);
original_population[individual].phenotyp.write(*(original_population[individual].genotyp.vread(2)), 2);
original_population[individual].phenotyp.write(*(original_population[individual].genotyp.vread(3)), 3);
original_population[individual].phenotyp.write(*(original_population[individual].genotyp.vread(4)), 4);
e_prep(e_mode, individual, original_population);*/
}
eval_wrapper(
b_comp_intermol,
crds,
cpuenergies,
float_arraycpu,
int_arraycpu);
}
e_complete_eval(original_population, ::evaluate.getCharge());
}
/*
* Prepares data for gpu calculations
* @param pop_size population size
* @param penergies energies array
* @param indv which individual we are looking at
* @param pcrds crds
* @param pfloat_arraycpu float array of variables
* @param pint_arraycpu int array of variables
*/
void Eval::evalPrep(unsigned int pop_size,
double * penergies,
int indv,
float *pcrds,
float *pfloat_arraycpu,
int *pint_arraycpu)
{
register int i;
int B_outside= 0;
int I_tor = 0;
int indx = 0;
double energy = 0.0L;
cnv_state_to_coords(stateNow, vt, tlist, stateNow.ntor, crdpdb, crd, natom);
for (i=0; (i<natom)&&(!B_outside); i++) {
B_outside = is_out_grid_info(crd[i][0], crd[i][1], crd[i][2]);
}
int j,k,l,m;
//trilinterp setup
pint_arraycpu[INTBOUTS * pop_size + indv] = (int)B_outside;
for (j = 0; j < natom; j++)
{
for(k = 0; k < SPACE; k++)
{
pcrds[indv * natom * SPACE + j * SPACE + k] = (float)crd[j][k];
}
}
pfloat_arraycpu[FLOATINFO * pop_size + 0] = (float)info->center[0];
pfloat_arraycpu[FLOATINFO * pop_size + 1] = (float)info->center[1];
pfloat_arraycpu[FLOATINFO * pop_size + 2] = (float)info->center[2];
pfloat_arraycpu[FLOATINFO * pop_size + 3] = (float)info->lo[0];
pfloat_arraycpu[FLOATINFO * pop_size + 4] = (float)info->lo[1];
pfloat_arraycpu[FLOATINFO * pop_size + 5] = (float)info->lo[2];
pfloat_arraycpu[FLOATINFO * pop_size + 6] = (float)info->inv_spacing;
pfloat_arraycpu[FLOATINFO * pop_size + 7] = (float)info->hi[0];
pfloat_arraycpu[FLOATINFO * pop_size + 8] = (float)info->hi[1];
pfloat_arraycpu[FLOATINFO * pop_size + 9] = (float)info->hi[2];
//eintcal setup
pint_arraycpu[INTINCELEC * pop_size + indv] = (int)B_calcIntElec;
pfloat_arraycpu[FLOATSCALE14 * pop_size + indv] = (float)scale_1_4;
pint_arraycpu[INTNONBONDCUT * pop_size + indv] = (int)B_use_non_bond_cutoff;
pfloat_arraycpu[FLOATUNBOUNDINTERNAL * pop_size + indv] = (float)unbound_internal_FE;
penergies[indv] = 0.0L;
if (B_isGaussTorCon) {
for (I_tor = 0; I_tor <= stateNow.ntor; I_tor++)
{
if (B_isTorConstrained[I_tor] == 1) {
indx = RadiansToDivs( WrpModRad(stateNow.tor[I_tor]) );
if (B_ShowTorE) {
penergies[indv] += (double)(US_TorE[I_tor] = US_torProfile[I_tor][indx]);
} else {
penergies[indv] += (double)US_torProfile[I_tor][indx];
}
}
} // I_tor
}//if
num_evals++;
}
/**
* Allocates memory for the CPU
* @param num_individuals number of individuals
* @param natoms number of atoms
*/
void cpu_alloc(int num_individuals, int natoms)
{
float_arraycpu = (float *)malloc(sizeof(float) * FLOATSIZE * num_individuals);
int_arraycpu = (int *)malloc(sizeof(int) * INTSIZE * num_individuals);
b_comp_intermol = ::evaluate.getBCompIntEn();
natoms = ::evaluate.getNAtom();
crds = (float *)malloc(sizeof(float) * natoms * SPACE * num_individuals);
energies = (double *)malloc(sizeof(double) * num_individuals);
cpuenergies = (float *)malloc(sizeof(float) * num_individuals);
}
/**
* Frees memory for the CPU
*/
void cpu_free(void)
{
free(float_arraycpu);
free(int_arraycpu);
free(crds);
free(energies);
free(cpuenergies);
}
/**
* Helper function for preparing evaluations on GPU
* @param e_mode energy mode
* @param i individual being looked at
* @param original_population original population
*/
void e_prep(int e_mode, int i, Population &original_population)
{
//int individual = ignlgi_t(omp_get_thread_num())%original_population.num_individuals();
//gene_number = ignlgi_t(omp_get_thread_num())%pure[individual].genotyp.num_genes();
int index = INTEVALFLAG * original_population.num_individuals() + i;
switch(e_mode)
{
case Always_Eval:
//int_arraycpu[INTEVALFLAG * original_population.num_individuals() + i] = 0;
int_arraycpu[index] = 0;
//int_arraycpu[INTEVALFLAG * individual + i] = 0;
make_state_from_rep(original_population[i].phenotyp.getRep(), ::evaluate.getPTRState());
::evaluate.evalPrep(
original_population.num_individuals(),
energies,
i,
crds,
float_arraycpu,
int_arraycpu);
original_population[i].phenotyp.setEvalFlag(1);
break;
case Normal_Eval:
//int_arraycpu[INTEVALFLAG * original_population.num_individuals() + i] = (int)original_population[i].phenotyp.getEvalFlag();
int_arraycpu[index] = (int)original_population[i].phenotyp.getEvalFlag();
//int_arraycpu[INTEVALFLAG * individual + i] = (int)original_population[i].phenotyp.getEvalFlag();
if (!original_population[i].phenotyp.getEvalFlag())
{
make_state_from_rep(original_population[i].phenotyp.getRep(), ::evaluate.getPTRState());
::evaluate.evalPrep(
original_population.num_individuals(),
energies,
i,
crds,
float_arraycpu,
int_arraycpu);
original_population[i].phenotyp.setEvalFlag(1);
}
break;
default:
fprintf(logFile, "Unknown Evaluation Mode!\n");
break;
}
}
/**
* Completes the evaluation (checks for finite and if answers are not numbers
* Also stores remaining values into class
* @param original_population original population
* @param charges charges
*/
void e_complete_eval(Population &original_population, Real *charges)
{
int indv;
int i;
for (indv = 0; indv < original_population.num_individuals(); indv++)
{
if(!int_arraycpu[INTEVALFLAG * original_population.num_individuals() + indv])
{
energies[indv] += (double)cpuenergies[indv];
if (!finite(energies[indv]))
{
(void)fprintf( logFile, "eval.cc: ERROR! energy is infinite!\n\n");
for (i=0; i<natoms; i++)
{
(void)fprintf(logFile, FORMAT_PDBQ_ATOM_RESSTR, "", i+1, "C INF 1", crds[indv * natoms * SPACE + i * SPACE + X], crds[indv * natoms * SPACE + i * SPACE + Y], crds[indv * natoms * SPACE + i * SPACE + Z], 0.0, 0.0, charges[i]);
(void)fprintf(logFile, "\n");
} // i
}
if (ISNAN(energies[indv]))
{
(void)fprintf( logFile, "eval.cc: ERROR! energy is not a number!\n\n");
for (i=0; i<natoms; i++)
{
(void)fprintf(logFile, FORMAT_PDBQ_ATOM_RESSTR, "", i+1, "C NaN 1", crds[indv * natoms * SPACE + i * SPACE + X], crds[indv * natoms * SPACE + i * SPACE + Y], crds[indv * natoms * SPACE + i * SPACE + Z], 0.0, 0.0, charges[i]);
(void)fprintf(logFile, "\n");
} // i
}
original_population[indv].phenotyp.setValue(energies[indv]);
}
}
}
/**
* Completes the evaluation (checks for finite and if answers are not numbers
* Also stores remaining values into class and does check for energies equal
* @param original_population original population
* @param charges charges
* @return if energies are equal
*/
int e_complete_evalEqual(Population &original_population, Real *charges, double firstEnergy)
{
int indv;
int i;
int energiesEqual = 1;
for (indv = 1; indv < original_population.num_individuals(); indv++)
{
if(!int_arraycpu[INTEVALFLAG * original_population.num_individuals() + indv])
{
// fprintf(stderr, "energies = %E\n", energies[indv]);
energies[indv] += (double)cpuenergies[indv];
if (!finite(energies[indv]))
{
(void)fprintf( logFile, "eval.cc: ERROR! energy is infinite!\n\n");
for (i=0; i<natoms; i++)
{
(void)fprintf(logFile, FORMAT_PDBQ_ATOM_RESSTR, "", i+1, "C INF 1", crds[indv * natoms * SPACE + i * SPACE + X], crds[indv * natoms * SPACE + i * SPACE + Y], crds[indv * natoms * SPACE + i * SPACE + Z], 0.0, 0.0, charges[i]);
(void)fprintf(logFile, "\n");
} // i
}
if (ISNAN(energies[indv]))
{
(void)fprintf( logFile, "eval.cc: ERROR! energy is not a number!\n\n");
for (i=0; i<natoms; i++)
{
(void)fprintf(logFile, FORMAT_PDBQ_ATOM_RESSTR, "", i+1, "C NaN 1", crds[indv * natoms * SPACE + i * SPACE + X], crds[indv * natoms * SPACE + i * SPACE + Y], crds[indv * natoms * SPACE + i * SPACE + Z], 0.0, 0.0, charges[i]);
(void)fprintf(logFile, "\n");
} // i
}
original_population[indv].phenotyp.setValue(energies[indv]);
}
energiesEqual = energiesEqual && (original_population[indv].phenotyp.getValue() == firstEnergy);
}
return energiesEqual;
}