-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathplot_utils.py
690 lines (635 loc) · 40.2 KB
/
plot_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import inspect
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
from scipy.special import softmax
from scipy.stats import kendalltau, sem
from tqdm.auto import tqdm
from utils import generate_permutations, statsign, heatmap, annotate_heatmap, engine2name
cm = plt.cm.plasma
stat2name = {
'verbalizer_nlls': 'argmin -log $p_{clf}(y|x, t)$',
'verbalizer_entropys': 'argmin $H_{clf}(y|x)$',
'nlls': 'argmin -log $p(y|x, t)$',
'nony_nlls': 'argmin -log $p(x, t)$',
'-nony_nlls': 'argmax -log $p(x, t)$',
'entropys': 'argmin $H(y|x)$',
'-entropys': 'argmax $H(y|x)$',
'example_nlls': 'argmin -log $p(x, t, y)$',
'waic': 'WAIC',
'waic_gibbs': 'WAIC (Gibbs)',
'test_acc': 'Test Accuracy',
}
plot_stat2name = {
'mean': 'Mean',
'best': 'Best',
'worst': 'Worst',
'test_acc': 'Test Accuracy',
'nlls_$\\beta=0.0$': 'MDL',
'nlls_$\\beta=1.0$': 'MDL$_{\\beta=1}$',
'nlls_$\\beta=100000000.0$': 'CV',
'example_nlls_$\\beta=0.0$': 'MDL$_{x,y}$',
'example_nlls_$\\beta=1.0$': 'MDL$_{x,y,\\beta=1}$',
'example_nlls_$\\beta=100000000.0$': 'CV$_{x,y}$',
'variances': 'NLL Variance',
'waic_bayes': 'WAIC (Bayes)',
'bayes': 'CV$_{Bayes}$',
'waic_gibbs': 'WAIC (Gibbs)',
'gibbs': 'Gibbs Loss',
'nlls_$\\beta=0.0$_$\\alpha=1$': 'MDL+$1\sigma$',
'nlls_$\\beta=1.0$_$\\alpha=1$': '$\\beta=1.0$+$1\sigma$',
'nlls_$\\beta=100000000.0$_$\\alpha=1$': 'CV$_{\\alpha=1}$',
'variances_$\\alpha=1$': 'NLL Variance+$1\sigma$',
'waic_bayes_$\\alpha=1$': 'WAIC$+1\sigma$ (Bayes)',
'bayes_$\\alpha=1$': 'Bayes Loss+$1\sigma$',
'waic_gibbs_$\\alpha=1$': 'WAIC$+1\sigma$ (Gibbs)',
'gibbs_$\\alpha=1$': 'Gibbs Loss+$1\sigma$',
'nlls_$\\beta=0.0$_$\\alpha=1.5$': 'MDL+$1.5\sigma$',
'nlls_$\\beta=1.0$_$\\alpha=1.5$': '$\\beta=1.0$+$1.5\sigma$',
'nlls_$\\beta=100000000.0$_$\\alpha=1.5$': 'CV$_{\\alpha=1.5}$',
'nlls_$\\beta=0.0$_$\\alpha=2$': 'MDL+$2\sigma$',
'nlls_$\\beta=1.0$_$\\alpha=2$': '$\\beta=1.0$+$2\sigma$',
'nlls_$\\beta=100000000.0$_$\\alpha=2$': 'CV$_{\\alpha=2}$',
'variances_$\\alpha=2$': 'NLL Variance+$2\sigma$',
'waic_bayes_$\\alpha=2$': 'WAIC$+2\sigma$ (Bayes)',
'bayes_$\\alpha=2$': 'Bayes Loss+$2\sigma$',
'waic_gibbs_$\\alpha=2$': 'WAIC$+2\sigma$ (Gibbs)',
'gibbs_$\\alpha=2$': 'Gibbs Loss+$2\sigma$',
'nlls_$\\beta=0.0$_$\\alpha=3$': 'MDL+$3\sigma$',
'nlls_$\\beta=1.0$_$\\alpha=3$': '$\\beta=1.0$+$3\sigma$',
'nlls_$\\beta=100000000.0$_$\\alpha=3$': 'CV$_{\\alpha=3}$',
'variances_$\\alpha=3$': 'NLL Variance+$3\sigma$',
'waic_bayes_$\\alpha=3$': 'WAIC$+3\sigma$ (Bayes)',
'bayes_$\\alpha=3$': 'Bayes Loss+$3\sigma$',
'waic_gibbs_$\\alpha=3$': 'WAIC$+3\sigma$ (Gibbs)',
'gibbs_$\\alpha=3$': 'Gibbs Loss+$3\sigma$',
}
scale2name = {
'abs': '',
'diff': 'Gain in ',
'rel': 'Relative ',
}
def plot_type2name(plot_type):
return '-'.join(plot_type.split(' ')[:2])
def load_results(data_name, engines, num_trains, num_dev, seeds, rels, keys):
num_train2engine2seed2rel2template2results = {}
for num_train in tqdm(num_trains, desc='# Train'):
num_train2engine2seed2rel2template2results[num_train] = {}
for engine in tqdm(engines, desc='Engine'):
num_train2engine2seed2rel2template2results[num_train][engine] = []
assert (num_train > 0) or (num_dev is None), 'Not implemented using args.num_dev != None for few-shot evaluation'
save_dir = f'{os.getenv("BASE")}/data/rel2template2results.data_name-{data_name}_UHN.engine-{engine}.num_train-{num_train}.sort_by_weight-False'
if num_dev is not None:
save_dir += f'.num_dev-{num_dev}'
for seed in seeds:
rel2template2results = {}
for rel in rels:
rel2template2results[rel] = {}
for k in keys:
for template, value in np.load(f'{save_dir}/seed-{seed}/{rel if data_name == "TREx" else rel.lower()}.key-{k}.npz').items():
if template not in rel2template2results[rel]:
rel2template2results[rel][template] = {}
rel2template2results[rel][template]['nlls' if k == 'verbalizer_nlls' else k] = value
num_train2engine2seed2rel2template2results[num_train][engine].append(rel2template2results)
return num_train2engine2seed2rel2template2results
def compute_generalization_estimates(num_train2engine2seed2rel2template2results, data_name, engines, num_trains, num_dev, rels, keys, betas, norm_waic=False, tiebreak_eps=None):
keys = ['nlls' if k == 'verbalizer_nlls' else k for k in keys]
num_train2engine2seed2rel2stat2results = {}
num_train2permutations = {num_train: generate_permutations(num_train, num_dev, data_name)[0] for num_train in num_trains}
for num_train in tqdm(num_trains, desc='Computing Stats'):
engine2seed2rel2stat2results = {}
for engine in engines:
seed2rel2stat2results = []
for seed, rel2template2results in enumerate(num_train2engine2seed2rel2template2results[num_train][engine]):
rel2stat2results = {}
for rel in rels:
template2results = rel2template2results[rel]
template_list = list(sorted(template2results.keys()))
if len(template2results[template_list[0]]) <= 1:
continue
rel2stat2results[rel] = {}
# Group MDL/LOOCV/Test stats
for stat in keys:
rel2stat2results[rel][stat] = np.array([template2results[template][stat] for template in template_list])
if 'x0_nlls' in keys:
rel2stat2results[rel]['x0y_nlls'] = rel2stat2results[rel]['nlls'] + rel2stat2results[rel]['x0_nlls']
if 'x0y_nlls' in keys:
rel2stat2results[rel]['prompt_nlls'] = rel2stat2results[rel]['example_nlls'] - rel2stat2results[rel]['x0y_nlls']
if 'example_nlls' in keys:
rel2stat2results[rel]['nony_nlls'] = rel2stat2results[rel]['example_nlls'] - rel2stat2results[rel]['nlls']
if data_name == 'TREx':
ranks = np.array([template2results[template]['ranks'] for template in template_list])
accs = ranks == 0
else:
accs = np.array([template2results[template]['verbalizer_accs'] for template in template_list])
rel2stat2results[rel]['test_acc'] = accs[:, :, -1]
if tiebreak_eps is not None: # NB: Can use e.g. 1e-6
rel2stat2results[rel]['mdl_acc'] = accs[:, :, :-1].mean(-1) - ((tiebreak_eps / 100.) * rel2stat2results[rel]['mdl'])
rel2stat2results[rel]['loo_acc'] = accs[:, :, -2] - ((tiebreak_eps / 100.) * rel2stat2results[rel]['loo'])
for beta in betas:
beta_name = f'$\\beta={beta}$'
weights = np.expand_dims(softmax(beta * np.arange(num_train)), [0, 1])
for stat in keys: # (['verbalizer_nlls', 'verbalizer_entropys'] if data_name != 'TREx' else []) + ['nlls', 'x0_nlls', 'example_nlls', 'entropys', 'x0y_nlls', 'prompt_nlls', 'nony_nlls']:
rel2stat2results[rel][f'{stat}_{beta_name}'] = (np.array(rel2stat2results[rel][stat])[:, :, :-1] * weights).sum(axis=2)
if stat in ['nlls'] and (tiebreak_eps is not None):
rel2stat2results[rel][f'{stat}_{beta_name}_acc'] = (accs[:, :, :-1] * weights).sum(-1) - ((tiebreak_eps / 100.) * rel2stat2results[rel][f'{stat}_{beta_name}'])
if stat in ['entropys', 'prompt_nlls', 'nony_nlls']:
rel2stat2results[rel][f'-{stat}_{beta_name}'] = -rel2stat2results[rel][f'{stat}_{beta_name}']
if 'entropys' in keys:
rel2stat2results[rel][f'entropys_test'] = np.array(rel2stat2results[rel]['entropys'])[:, :, -1]
rel2stat2results[rel][f'-entropys_test'] = -rel2stat2results[rel][f'entropys_test']
if 'nony_nlls' in keys:
rel2stat2results[rel]['nony_nlls_first'] = rel2stat2results[rel]['nony_nlls'][:, :, -1]
rel2stat2results[rel]['-nony_nlls_first'] = -rel2stat2results[rel]['nony_nlls_first']
# Compute WAICs
held_in_lls = (-rel2stat2results[rel]['nlls'][:, :len(num_train2permutations[num_train]), :num_train-1]).sum(2)
loo_sample = np.array(num_train2permutations[num_train])[:, -1]
perm_held_in_lls = np.array([held_in_lls[:, loo_sample == ex_no]
for ex_no in range(num_train)]).transpose((1, 0, 2))
posterior = softmax(perm_held_in_lls, axis=2)
template2xy2lls = -np.array([rel2stat2results[rel]['nlls'][:, :len(num_train2permutations[num_train])][:, loo_sample == ex_no, num_train-1]
for ex_no in range(num_train)]).transpose((1, 0, 2))
template2xy2lls2 = -np.array([rel2stat2results[rel]['nlls_$\\beta=100000000.0$'][:, :len(num_train2permutations[num_train])][:, loo_sample == ex_no]
for ex_no in range(num_train)]).transpose((1, 0, 2))
assert np.sum(template2xy2lls != template2xy2lls2) == 0, f'Expected template2xy2lls == template2xy2lls2'
# Using computed posterior
bayes_loss = np.log((np.exp(template2xy2lls) * posterior).sum(2))
gibbs_loss = (template2xy2lls * posterior).sum(2)
variances = ((template2xy2lls ** 2) * posterior).sum(2) - (gibbs_loss ** 2)
waic1s = bayes_loss - (2 * (bayes_loss - gibbs_loss))
waics = bayes_loss - variances
waics_gibbs = gibbs_loss - variances
assert ((waics + 1e-8) >= waics_gibbs).all(), 'Expected Bayes WAIC >= Gibbs WAIC'
rel2stat2results[rel]['variances'] = np.array([variances[:, idx] for idx in loo_sample]).transpose((1, 0))
rel2stat2results[rel]['waic_bayes'] = np.array([waics[:, idx] for idx in loo_sample]).transpose((1, 0))
rel2stat2results[rel]['waic_gibbs'] = np.array([waics_gibbs[:, idx] for idx in loo_sample]).transpose((1, 0))
rel2stat2results[rel]['waic1'] = np.array([waic1s[:, idx] for idx in loo_sample]).transpose((1, 0))
rel2stat2results[rel]['bayes'] = -np.array([bayes_loss[:, idx] for idx in loo_sample]).transpose((1, 0))
rel2stat2results[rel]['gibbs'] = -np.array([gibbs_loss[:, idx] for idx in loo_sample]).transpose((1, 0))
seed2rel2stat2results.append(rel2stat2results)
engine2seed2rel2stat2results[engine] = seed2rel2stat2results
num_train2engine2seed2rel2stat2results[num_train] = engine2seed2rel2stat2results
return num_train2engine2seed2rel2stat2results
def compute_stats(num_train2engine2seed2rel2stat2results, num_train2num_samples, num_train2cyclic_permutations, data_name, engines, num_trains, rels, plot_stat_names, plot_types, num_total_dev, test_transfer=False):
plot_type2num_train2engine2engine2stat2results = {}
for plot_type in tqdm(plot_types, desc='Plot Type'):
num_train2engine2engine2stat2results = {}
for num_train in tqdm(num_trains, desc='# Train'):
num_train2engine2engine2stat2results[num_train] = {}
for engine2 in tqdm(engines, desc='Engine'): # Model which we measure accuracy with
for engine1 in (engines if test_transfer else [engine2]): # Model which we choose prompt with
if engine1 not in num_train2engine2engine2stat2results[num_train]:
num_train2engine2engine2stat2results[num_train][engine1] = {}
scale = 100 if '(%)' in plot_type else 1
stat2 = 'test'
best_func = np.min
if plot_type in {'Test Accuracy of Chosen Prompt (%)', 'Accuracy at Choosing Best Prompt (%)'}:
stat2 = 'test_acc'
best_func = np.max
elif plot_type in {'Frequency of Choosing Worst Prompt (%)'}:
stat2 = 'test_acc'
best_func = np.min
elif plot_type == 'Test MRR of Chosen Prompt (%)':
stat2 = 'test_mrr'
best_func = np.max
# Evaluate baselines
if plot_type in ['Test Accuracy of Chosen Prompt (%)', 'Test MRR of Chosen Prompt (%)', 'Test Loss of Chosen Prompt']:
seed2best = []
seed2mean = []
seed2worst = []
for seed, rel2stat2results in enumerate(num_train2engine2seed2rel2stat2results[num_train][engine2]):
test = [rel2stat2results[rel][stat2].mean(axis=1) for rel in rels]
seed2best.append(np.mean([best_func(t) for t in test]))
seed2worst.append(np.mean([best_func(-t) for t in test]))
seed2mean.append(np.mean([t.mean() for t in test]))
seed2best = np.array(seed2best) * scale
seed2worst = np.array(seed2worst) * scale
seed2mean = np.array(seed2mean) * scale
else:
seed2best = None
seed2worst = None
seed2mean = None
num_train2engine2engine2stat2results[num_train][engine1][engine2] = {}
for stat1 in plot_stat_names:
# Get results
for alpha in [0, 1, 2, 3]:
stat_type2num_sample2seed2rel2scores = {'abs': {}, 'diff': {}, 'rel': {}}
for num_sample in num_train2num_samples[num_train]:
seed2rel2sample2score = []
for seed, rel2stat2results2 in enumerate(num_train2engine2seed2rel2stat2results[num_train][engine2]):
rel2sample2score = []
for rel in rels:
if rel[0] != 'P':
assert len(rels), f'Only LAMA tasks can be grouped together. Please use a single element list for "rels".'
stat2results1 = num_train2engine2seed2rel2stat2results[num_train][engine1][seed][rel]
stat2results2 = rel2stat2results2[rel]
full_dev_eval_end = None
assert not ((rel.lower() in {'cb', 'copa', 'wsc'}) and (num_total_dev is None)), f'Please set num_total_dev for {rel}'
if (num_total_dev is not None) and (num_total_dev < max(num_train2num_samples[num_train])):
full_dev_eval_end = int((max(num_train2num_samples[num_train]) // num_total_dev) * num_total_dev)
estat2 = stat2results2[stat2][:full_dev_eval_end].mean(axis=1)
sample2score = []
for i in range(max(num_train2num_samples[num_train]) // num_sample):
subsampled_stats = stat2results1[stat1][:, list(range(len(num_train2cyclic_permutations[num_train]))) if data_name != 'TREx' else num_train2cyclic_permutations[num_train]][:, i * num_sample: (i + 1) * num_sample]
estat1 = subsampled_stats.mean(axis=1)
if (alpha != 0) and (num_sample > 1):
estat1 = estat1 + (statsign(stat1) * alpha * subsampled_stats.std(axis=1, ddof=1))
if plot_type == 'Pairwise Prompt Ranking Accuracy (%)':
score = (kendalltau(statsign(stat2) * estat2, statsign(stat1) * estat1).correlation + 1) / 2.
elif plot_type == 'Accuracy at Choosing Best Prompt (%)':
score = np.min(statsign(stat2) * estat2) == (statsign(stat2) * estat2[np.argmin(statsign(stat1) * estat1)])
elif plot_type == 'Frequency of Choosing Worst Prompt (%)':
score = np.max(statsign(stat2) * estat2) == (statsign(stat2) * estat2[np.argmin(statsign(stat1) * estat1)])
elif plot_type in ['Test Accuracy of Chosen Prompt (%)', 'Test MRR of Chosen Prompt (%)', 'Test Loss of Chosen Prompt']:
score = estat2[np.argmin(statsign(stat1) * estat1)]
else:
NotImplemented(f'plot_type = {plot_type}')
sample2score.append(score * scale)
rel2sample2score.append(sample2score)
seed2rel2sample2score.append(rel2sample2score)
seed2rel2sample2score = np.array(seed2rel2sample2score)
stat_type2num_sample2seed2rel2scores['abs'][num_sample] = seed2rel2sample2score
if seed2mean is not None:
stat_type2num_sample2seed2rel2scores['diff'][num_sample] = seed2rel2sample2score - np.expand_dims(seed2mean, axis=(1,2))
stat_type2num_sample2seed2rel2scores['rel'][num_sample] = 100. * stat_type2num_sample2seed2rel2scores['diff'][num_sample] / np.expand_dims(seed2best - seed2mean, axis=(1,2))
for stat_type, num_sample2seed2rel2scores in stat_type2num_sample2seed2rel2scores.items():
alpha_str = "" if alpha == 0 else f"_$\\alpha={alpha}$"
num_train2engine2engine2stat2results[num_train][engine1][engine2][f'{stat_type}_{stat1}{alpha_str}'] = num_sample2seed2rel2scores
if seed2mean is not None:
for score_name, scores in zip(['mean', 'best', 'worst'], [seed2mean, seed2best, seed2worst]):
num_train2engine2engine2stat2results[num_train][engine1][engine2][f'abs_{score_name}'] = scores
num_train2engine2engine2stat2results[num_train][engine1][engine2][f'diff_{score_name}'] = scores - seed2mean
num_train2engine2engine2stat2results[num_train][engine1][engine2][f'rel_{score_name}'] = 100. * num_train2engine2engine2stat2results[num_train][engine1][engine2][f'diff_{score_name}'] / (seed2best - seed2mean)
plot_type2num_train2engine2engine2stat2results[plot_type] = num_train2engine2engine2stat2results
return plot_type2num_train2engine2engine2stat2results
def plot_compute_efficiency(plot_type2num_train2engine2engine2stat2results, plot_type, num_train, engine1, engine2, plot_stat_names, num_train2num_samples, scale, plot_num_estimates, plot_data_name, show_legend=True, show_y=True, notebook=False, save_dir=None):
fig, ax = plt.subplots()
xmax = max(num_train2num_samples[num_train])
if plot_num_estimates and ('beta=0.0' not in plot_stat_names):
xmax //= num_train
plt.xlim(xmin=1, xmax=xmax)
# Plot results
for stat_no, stat in enumerate(plot_stat_names):
num_sample2seed2rel2scores = plot_type2num_train2engine2engine2stat2results[plot_type][num_train][engine1][engine2][f'{scale}_{stat}']
means = []
stderrs = []
for num_sample in num_train2num_samples[num_train]:
mean_mc_scores = num_sample2seed2rel2scores[num_sample].mean((1, 2))
assert len(mean_mc_scores.shape) == 1, f'Expected len(mean_mc_scores.shape) ({len(mean_mc_scores.shape)}) == 1'
means.append(np.mean(mean_mc_scores))
stderrs.append(np.std(mean_mc_scores, ddof=1))
means = np.array(means)
stderrs = np.array(stderrs)
if plot_num_estimates and ('beta=0.0' not in stat):
means = means[num_train2num_samples[num_train] >= num_train]
stderrs = stderrs[num_train2num_samples[num_train] >= num_train]
xs = num_train2num_samples[num_train][num_train2num_samples[num_train] >= num_train] / float(num_train)
else:
xs = num_train2num_samples[num_train]
plt.plot(xs, means, label=plot_stat2name[stat], color=cm(stat_no / len(plot_stat_names)))
plt.fill_between(xs, means - stderrs, means + stderrs, alpha=0.3, linewidth=0, color=cm(stat_no / len(plot_stat_names)))
# Plot baselines
if plot_type in ['Test Accuracy of Chosen Prompt (%)', 'Test MRR of Chosen Prompt (%)', 'Test Loss of Chosen Prompt']:
for stat, color in zip(['best', 'mean'], ['k', 'gray']):
scores = plot_type2num_train2engine2engine2stat2results[plot_type][num_train][engine1][engine2][f'{scale}_{stat}']
plt.plot([1, xmax], [scores.mean()] * 2, label=plot_stat2name[stat], color=color)
plt.fill_between([1, xmax], [scores.mean() - np.std(scores, ddof=1)] * 2, [scores.mean() + np.std(scores, ddof=1)] * 2, color='gray', alpha=0.3, linewidth=0)
# Draw plot
if show_legend:
plt.legend(title='Selection\nMethod', loc='upper left', fontsize=12, title_fontsize=12, bbox_to_anchor=(0, 0.95))
print(f'{plot_data_name}: {engine2name[engine2]}')
plt.title(f'$\\bf{{{num_train}-Shot}}$', fontsize=15)
if show_y:
plt.ylabel((scale2name[scale] + plot_type).replace('Test ', '').replace('Choosing Best', 'Choosing\nBest').replace('Accuracy of', 'Accuracy\nof'), fontsize=15)
plt.yticks(fontsize=14)
else:
ax.set_yticklabels([])
plt.xlabel('# Estimates' if plot_num_estimates else 'Number of Forward Passes', fontsize=16)
plt.xscale('log')
ax.set_xticks([], minor=True)
ax.set_xticks(num_train2num_samples[num_train])
ax.set_xticklabels(num_train2num_samples[num_train], fontsize=14)
plt.grid()
if save_dir is not None:
save_file = f'{save_dir}/{inspect.stack()[0][3]}.plot_type-{plot_type2name(plot_type)}.engine-{engine2}.num_train-{num_train}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
def plot_prompt_transfer(plot_type2num_train2engine2engine2stat2results, plot_type, num_train, engines, stat, num_train2num_samples, scale, num_samples, plot_data_name, show_y=True, show_cbar=True, notebook=False, save_dir=None):
assert num_samples in {'One', 'Multi'}, f'Expected num_samples ({num_samples}) in ["One", "Multi"]'
if len(engines) <= 1:
return
engine_names = [engine2name[engine] for engine in engines]
num_samples_index = -1 if num_samples == 'Multi' else (0 if 'beta=0.0' in stat else 1)
data = np.array([[np.mean(plot_type2num_train2engine2engine2stat2results[plot_type][num_train][engine1][engine2][f'{scale}_{stat}'][num_train2num_samples[num_train][num_samples_index]].mean((1, 2))) for engine2 in engines] for engine1 in engines]).transpose()
print('Fixed model we choose prompts with:', data[:, 0])
print('Fixed model we eval acc with: ', data[0])
fig, ax = plt.subplots()
im, cbar = heatmap(data, engine_names, engine_names, ax=ax, cmap="Blues", cbarlabel=f"{scale2name[scale]}Test Accuracy of Chosen Prompt(%)".replace('Accuracy of', 'Accuracy\nof') if show_cbar else None, vmin=0, vmax=55)
annotate_heatmap(im, valfmt="{x:." + str(0 if len(engines) > 6 else 1) + "f}")
plt.xlabel(f'Prompt Selection Model', fontsize=16)
plt.xticks(fontsize=14)
if show_y:
plt.ylabel('Prediction Model', fontsize=16)
plt.yticks(fontsize=14)
else:
ax.set_yticklabels([])
ax.set_yticks([])
print(f'{plot_data_name}: Prompt Transfer across Models\n {plot_stat2name[stat]} ({num_train}-shot{"" if num_samples == "Multi" else ", One Sample Estimate"})')
plt.title(f'{plot_stat2name[stat]}', fontsize=16, fontweight='bold')
fig.tight_layout()
if save_dir is not None:
save_file = f'{save_dir}/{inspect.stack()[0][3]}.plot_type-{plot_type2name(plot_type)}.stat-{stat}.num_train-{num_train}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
def plot_results_by_engine(acc_plot_type2num_train2engine2engine2stat2results, plot_type, num_train, engines, plot_stat_names, acc_num_train2num_samples, scale, num_samples, top, bottom, plot_data_name, show_legend=True, show_y=True, show_legend_title=True, legend_bbox_to_anchor=None, figsize=None, notebook=False, save_dir=None):
assert num_samples in {'One', 'Multi'}, f'Expected num_samples ({num_samples}) in ["One", "Multi"]'
plot_baselines = (plot_type == 'Test Accuracy of Chosen Prompt (%)') and (scale == 'abs')
num_bars = (len(plot_stat_names) + (3 if plot_baselines else 0))
width = (1. / (num_bars + 1))
x = np.arange(len(engines)) # the label locations
fig, ax = plt.subplots(figsize=figsize)
# Plot means
if plot_baselines:
for baseline, color in zip(['worst', 'mean'], ['r', 'orange' if figsize is None else 'gray']):
means = []
stderrs = []
for engine2 in engines:
engine1 = engine2
mean_mc_scores = acc_plot_type2num_train2engine2engine2stat2results[plot_type][num_train][engine1][engine2][f'{scale}_{baseline}']
means.append(np.mean(mean_mc_scores))
stderrs.append(sem(mean_mc_scores, axis=None))
if baseline == 'worst':
means = -np.array(means)
print(means)
ax.bar(x, means, width, yerr=stderrs, label=plot_stat2name[baseline], color=color)
x = x + width
# Plot prompt selection results
for stat_no, stat in enumerate(plot_stat_names):
num_samples_index = -1 if num_samples == 'Multi' else (0 if 'beta=0.0' in stat else 1)
means = []
stderrs = []
for engine2 in engines:
engine1 = engine2
num_sample2seed2rel2scores = acc_plot_type2num_train2engine2engine2stat2results[plot_type][num_train][engine1][engine2][f'{scale}_{stat}']
mean_mc_scores = num_sample2seed2rel2scores[acc_num_train2num_samples[num_train][num_samples_index]]
means.append(np.mean(mean_mc_scores))
stderrs.append(sem(mean_mc_scores, axis=None))
ax.bar(x, means, width, yerr=stderrs, label=plot_stat2name[stat], color=cm(stat_no / len(plot_stat_names)))
x = x + width
# Plot best prompt
if plot_baselines:
means = []
stderrs = []
for engine2 in engines:
engine1 = engine2
mean_mc_scores = acc_plot_type2num_train2engine2engine2stat2results[plot_type][num_train][engine1][engine2][f'{scale}_best']
means.append(np.mean(mean_mc_scores))
stderrs.append(sem(mean_mc_scores, axis=None))
ax.bar(x, means, width, yerr=stderrs, label=plot_stat2name['best'], color='g')
x = x + width
plt.ylim(top=top, bottom=bottom)
if show_y:
ylabel = (scale2name[scale] + plot_type).replace('Accuracy', 'Acc.').replace('Choosing Worst', 'Choosing\nWorst').replace('Best', 'Top')
if scale == 'rel':
ylabel = ylabel.replace('of Chosen', 'of\nChosen')
ax.set_ylabel(ylabel, fontsize=15)
plt.yticks(fontsize=14)
ax.set_xticks(x - ((num_bars + 1) * width / 2))
ax.set_xticklabels([engine2name[engine] for engine in engines])
plt.xticks(fontsize=14)
ax.set_xlabel('Model Parameters (B)', fontsize=16)
print(f'({num_train}-shot{"" if num_samples == "Multi" else ", One Sample Estimate"})')
if plot_data_name != 'LAMA-UHN':
plt.title(f'$\\bf{{{plot_data_name}}}$', fontsize=16) # 18
plt.xlim(left=-width, right=x[-1])
ax.set_axisbelow(True)
plt.grid(axis='y')
fig_width, fig_height = plt.gcf().get_size_inches()
print(fig_width, fig_height)
if show_legend:
if show_legend_title:
plt.legend(title='Selection\nMethod', fontsize=12, title_fontsize=12, bbox_to_anchor=legend_bbox_to_anchor) # loc='upper left',
else:
plt.legend(fontsize=12, bbox_to_anchor=legend_bbox_to_anchor) # loc='upper left',
if save_dir is not None:
save_file = f'{save_dir}/{inspect.stack()[0][3]}.plot_type-{plot_type2name(plot_type)}.num_samples-{num_samples}.num_train-{num_train}.scale-{scale}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
def plot_results_by_num_train(plot_type2num_train2engine2engine2stat2results, plot_type, num_trains, engines, stat, num_train2num_samples, scale, num_samples, show_legend=True, show_y=True, notebook=False, save_dir=None):
assert num_samples in {'One', 'Multi'}, f'Expected num_samples ({num_samples}) in ["One", "Multi"]'
fig, ax = plt.subplots()
plt.xlim(left=min(num_trains), right=max(num_trains))
for engine_no, engine in enumerate(engines):
num_samples_index = -1 if num_samples == 'Multi' else (0 if 'beta=0.0' in stat else 1)
means = []
stderrs = []
for num_train in num_trains:
num_sample2seed2rel2scores = plot_type2num_train2engine2engine2stat2results[plot_type][num_train][engine][engine][f'{scale}_{stat}']
mean_mc_scores = num_sample2seed2rel2scores[num_train2num_samples[num_train][num_samples_index]].mean((1, 2))
means.append(np.mean(mean_mc_scores))
stderrs.append(sem(mean_mc_scores, axis=None))
means = np.array(means)
stderrs = np.array(stderrs)
plt.plot(num_trains, means, label=engine2name[engine], color=cm(engine_no / len(engines)))
plt.fill_between(num_trains, means - stderrs, means + stderrs, alpha=0.3, linewidth=0, color=cm(engine_no / len(engines)))
if show_y:
plt.ylabel((scale2name[scale] + plot_type).replace('Test ', '').replace('Choosing Best', 'Choosing\nBest').replace('of Chosen', 'of\nChosen'), fontsize=15)
plt.yticks(fontsize=14)
else:
ax.set_yticklabels([])
if show_legend:
plt.legend(title='Model', bbox_to_anchor=(1, 1), fontsize=13, title_fontsize=15)
plt.title(f'$\\bf{{{plot_stat2name[stat]}}}${"" if num_samples == "Multi" else " (One Sample Estimate)"}', fontsize=15)
plt.xlabel('Number of Examples', fontsize=16)
ax.set_xticks(num_trains)
plt.xticks(fontsize=14)
plt.grid()
if save_dir is not None:
save_file = f'{save_dir}/{inspect.stack()[0][3]}.plot_type-{plot_type2name(plot_type)}.stat-{stat}.num_samples-{num_samples}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
def plot_results_distribution(plot_type2num_train2engine2engine2stat2results, plot_type, num_train, engines, plot_stat_names, num_train2num_samples, scale, num_samples, plot_info, plot_data_name, show_legend=True, show_y=True, notebook=False, save_dir=None):
assert num_samples in {'One', 'Multi'}, f'Expected num_samples ({num_samples}) in ["One", "Multi"]'
save_filebase = f'{save_dir}/{inspect.stack()[0][3]}.plot_type-{plot_type2name(plot_type)}.num_train-{num_train}.plot_info-{plot_info}'
gains = []
if plot_info == 'expectation':
width = 1. / (len(plot_stat_names) + 1)
x = np.arange(len(engines)) # the label locations
fig, ax = plt.subplots()
for stat_no, stat in enumerate(plot_stat_names):
num_samples_index = -1 if num_samples == 'Multi' else (0 if 'beta=0.0' in stat else 1)
if plot_info == 'cdf':
fig, ax = plt.subplots()
means = []
stddevs = []
for engine_no, engine in enumerate(engines):
num_sample2seed2rel2scores = plot_type2num_train2engine2engine2stat2results[plot_type][num_train][engine][engine][f'{scale}_{stat}']
valid_stats = num_sample2seed2rel2scores[num_train2num_samples[num_train][num_samples_index]].flatten()
gains.append((plot_stat2name[stat], engine2name[engine], valid_stats.mean(), valid_stats.std(ddof=1)))
means.append(valid_stats.mean())
stddevs.append(valid_stats.std(ddof=1))
if plot_info == 'pdf':
plt.hist(valid_stats)
print(f'({num_train}-shot{"" if num_samples == "Multi" else ", One Sample Estimate"})')
plt.title(f'$\\bf{{{plot_stat2name[stat]}}}$', fontsize=15)
if plot_data_name == 'TREx':
plt.tight_layout()
if save_dir is not None:
save_file = f'{save_filebase}.stat-{stat}.engine-{engine}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
elif plot_info == 'cdf':
plt.plot(sorted(valid_stats), np.linspace(0, 100, len(valid_stats)), label=engine2name[engine], color=cm(engine_no / len(engines)))
if plot_info == 'cdf':
if show_legend:
plt.legend(title='Params (B)', fontsize=12, title_fontsize=11)
plt.ylim(bottom=0, top=100)
if show_y:
plt.ylabel('% of Time Acc. Gain\nBelow Threshold', fontsize=16)
plt.yticks(fontsize=14)
else:
ax.set_yticklabels([])
plt.xticks(fontsize=14)
plt.xlabel('Threshold for Acc. Gain over Mean Prompt', fontsize=16)
print(f'Chance of Accuracy Gain with {plot_stat2name[stat]} ({num_train}-shot{"" if num_samples == "Multi" else ", One Sample Estimate"})')
title = f'$\\bf{{{plot_data_name if plot_data_name != "TREx" else plot_stat2name[stat]}}}$'
print(title)
if plot_data_name != 'LAMA-UHN':
plt.title(title, fontsize=18)
plt.grid()
if plot_data_name == 'TREx':
plt.tight_layout()
if save_dir is not None:
save_file = f'{save_filebase}.stat-{stat}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
elif plot_info == 'expectation':
ax.bar(x, means, width, yerr=stddevs, label=plot_stat2name[stat], color=cm(stat_no / len(plot_stat_names)))
x = x + width
if plot_info == 'expectation':
if show_y:
ax.set_ylabel('Accuracy Gain (%)', fontsize=15)
plt.yticks(fontsize=14)
else:
ax.set_yticklabels([])
ax.set_xticks(x - ((len(plot_stat_names) + 1) * width / 2))
ax.set_xticklabels([engine2name[engine] for engine in engines])
plt.xticks(rotation=0)
print(f'({num_train}-shot{"" if num_samples == "Multi" else ", One Sample Estimate"})')
plt.title(f'$\\bf{{{plot_data_name}}}$', fontsize=15)
plt.xlim(left=-width, right=x[-1])
if show_legend:
ax.legend(bbox_to_anchor=(1, 0.9), fontsize=12)
plt.grid(axis='y')
if plot_data_name == 'TREx':
fig.tight_layout()
if save_dir is not None:
save_file = f'{save_filebase}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
return pd.DataFrame(gains, columns=['Criterion', 'Model', '$\mu$', '$\sigma$'])
def plot_results_distribution_by_stat(plot_type2num_train2engine2engine2stat2results, plot_type, num_train, engines, plot_stat_names, num_train2num_samples, scale, num_samples, plot_info, plot_data_name, show_y=True, notebook=False, save_dir=None):
save_filebase = f'{save_dir}/{inspect.stack()[0][3]}.plot_type-{plot_type2name(plot_type)}.num_train-{num_train}.plot_info-{plot_info}'
cm = plt.cm.plasma
assert num_samples in {'One', 'Multi'}, f'Expected num_samples ({num_samples}) in ["One", "Multi"]'
gains = []
if plot_info == 'expectation':
width = 1. / (len(engines) + 1)
x = np.arange(len(plot_stat_names)) # the label locations
fig, ax = plt.subplots()
for engine_no, engine in enumerate(engines):
if plot_info == 'cdf':
fig, ax = plt.subplots()
means = []
stddevs = []
for stat_no, stat in enumerate(plot_stat_names):
num_samples_index = -1 if num_samples == 'Multi' else (0 if 'beta=0.0' in stat else 1)
num_sample2seed2rel2scores = plot_type2num_train2engine2engine2stat2results[plot_type][num_train][engine][engine][f'{scale}_{stat}']
valid_stats = num_sample2seed2rel2scores[num_train2num_samples[num_train][num_samples_index]].flatten()
gains.append((plot_stat2name[stat], engine2name[engine], valid_stats.mean(), valid_stats.std(ddof=1)))
means.append(valid_stats.mean())
stddevs.append(valid_stats.std(ddof=1))
if plot_info == 'pdf':
plt.hist(valid_stats)
title = f'{plot_stat2name[stat]} {num_samples} Sample Estimate ({engine2name[engine2]} {num_train}-shot)'
plt.title(title)
if save_dir is not None:
save_file = f'{save_filebase}.engine-{engine}.stat-{plot_stat2name[stat]}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
elif plot_info == 'cdf':
plt.plot(sorted(valid_stats), np.linspace(0, 100, len(valid_stats)), label=plot_stat2name[stat], color=cm(stat_no / len(plot_stat_names)))
if plot_info == 'cdf':
plt.legend(fontsize=15)
plt.ylim(bottom=0, top=100)
if show_y:
plt.ylabel('% of Time Acc. Gain\nBelow Threshold', fontsize=16)
plt.yticks(fontsize=14)
else:
ax.set_yticklabels([])
plt.yticks(fontsize=14)
plt.xticks(fontsize=14)
plt.xlabel('Threshold for Acc. Gain over Random Prompt', fontsize=15)
title = f'UCB: Chance of Acc. Gain (GPT3 {engine2name[engine]}B{"" if num_samples == "Multi" else ", One Sample Estimate"})'
print(title)
if plot_data_name != 'LAMA-UHN':
plt.title(title, fontsize=18)
plt.grid()
# plt.tight_layout()
if save_dir is not None:
save_file = f'{save_filebase}.engine-{engine}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
elif plot_info == 'expectation':
ax.bar(x, means, width, yerr=stddevs, label=plot_stat2name[stat], color=cm(stat_no / len(plot_stat_names)))
x = x + width
if plot_info == 'expectation':
if show_y:
ax.set_ylabel('Accuracy Gain (%)', fontsize=15)
plt.yticks(fontsize=14)
else:
ax.set_yticklabels([])
ax.set_xticks(x - ((len(engines) + 1) * width / 2))
ax.set_xticklabels([plot_stat2name[stat] for stat in plot_stat_names])
plt.xticks(rotation=0)
plt.title(f'{num_samples} Sample Estimate')
plt.xlim(left=-width, right=x[-1])
ax.legend(bbox_to_anchor=(1, 0.9))
plt.grid(axis='y')
fig.tight_layout()
if save_dir is not None:
save_file = f'{save_filebase}.pdf'
plt.savefig(save_file, bbox_inches='tight')
print('Saving to:', save_file)
if notebook:
plt.show()
plt.clf()
return pd.DataFrame(gains, columns=['Criterion', 'Model', '$\mu$', '$\sigma$'])