-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTester.py
273 lines (223 loc) · 10.3 KB
/
Tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import pytz
from datetime import datetime
from glob import glob
import argparse
import numpy as np
from tqdm import tqdm
import imageio
from math import log10
import pandas as pd
import torch
import torch.nn as nn
from torch import stack
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.utils import save_image
from torchvision.datasets.folder import default_loader as imgloader
from modules import (
Generator,
Gaussian_Predictor,
Decoder_Fusion,
Label_Encoder,
RGB_Encoder,
)
from Trainer import VAE_Model
def get_key(fp):
filename = fp.split("/")[-1]
filename = filename.split(".")[0].replace("frame", "")
return int(filename)
class Dataset_Dance(Dataset):
def __init__(self, root, transform, mode="test", video_len=7, partial=1.0):
super().__init__()
self.img_folder = []
self.label_folder = []
data_num = 5
for i in range(data_num):
self.img_folder.append(
sorted(glob(os.path.join(root, f"test/test_img/{i}/*")), key=get_key)
)
self.label_folder.append(
sorted(glob(os.path.join(root, f"test/test_label/{i}/*")), key=get_key)
)
self.transform = transform
def __len__(self):
return len(self.img_folder)
def __getitem__(self, index):
frame_seq = self.img_folder[index]
label_seq = self.label_folder[index]
imgs = []
labels = []
imgs.append(self.transform(imgloader(frame_seq[0])))
for idx in range(len(label_seq)):
labels.append(self.transform(imgloader(label_seq[idx])))
return stack(imgs), stack(labels)
class Test_model(VAE_Model):
def __init__(self, args):
super(VAE_Model, self).__init__()
self.args = args
# Modules to transform image from RGB-domain to feature-domain
self.frame_transformation = RGB_Encoder(3, args.F_dim)
self.label_transformation = Label_Encoder(3, args.L_dim)
# Conduct Posterior prediction in Encoder
self.Gaussian_Predictor = Gaussian_Predictor(
args.F_dim + args.L_dim, args.N_dim
)
self.Decoder_Fusion = Decoder_Fusion(
args.F_dim + args.L_dim + args.N_dim, args.D_out_dim
)
self.Generator = Generator(input_nc=args.D_out_dim, output_nc=3)
self.mse_criterion = nn.MSELoss()
self.current_epoch = 0
self.val_vi_len = args.val_vi_len
self.batch_size = args.batch_size
def forward(self, x_frame, y_pose):
# normal noise vector: z
z = torch.randn(1, self.args.N_dim, self.args.frame_H, self.args.frame_W)
z = z.to(self.args.device)
# val generator (x_frame: t-1 frame, y_pose: t pose, z: noise vector)
x_frame_feature = self.frame_transformation(x_frame)
y_pose_feature = self.label_transformation(y_pose)
decoder_output = self.Decoder_Fusion(x_frame_feature, y_pose_feature, z)
# predicted y frame (predicted t frame)
pred_frame = self.Generator(decoder_output)
return pred_frame
@torch.no_grad()
def evaluate(self):
val_loader = self.val_dataloader()
pred_seq_list = []
for idx, (img, label) in enumerate(tqdm(val_loader, ncols=80)):
img = img.to(self.args.device)
label = label.to(self.args.device)
pred_seq = self.val_one_step(img, label, idx)
pred_seq_list.append(pred_seq)
# submission.csv is the file you should submit to kaggle
pred_to_int = (np.rint(torch.cat(pred_seq_list).numpy() * 255)).astype(int)
df = pd.DataFrame(pred_to_int)
df.insert(0, "id", range(0, len(df)))
df.to_csv(
os.path.join(self.args.save_root, f"submission.csv"),
header=True,
index=False,
)
def val_one_step(self, img, label, idx=0):
img = img.permute(1, 0, 2, 3, 4) # change tensor into (seq, B, C, H, W)
label = label.permute(1, 0, 2, 3, 4) # change tensor into (seq, B, C, H, W)
assert label.shape[0] == 630, "Testing pose seqence should be 630"
assert img.shape[0] == 1, "Testing video seqence should be 1"
# decoded_frame_list is used to store the predicted frame seq
# label_list is used to store the label seq
# Both list will be used to make gif
decoded_frame_list = [img[0].cpu()]
label_list = []
previous_frame = img[0]
for i in range(label.size(0) - 1):
x_frame = previous_frame
y_pose = label[i + 1]
pred_frame = self.forward(x_frame, y_pose)
decoded_frame_list.append(pred_frame.cpu())
label_list.append(y_pose.cpu())
# Please do not modify this part, it is used for visulization
generated_frame = stack(decoded_frame_list).permute(1, 0, 2, 3, 4)
label_frame = stack(label_list).permute(1, 0, 2, 3, 4)
assert generated_frame.shape == (
1,
630,
3,
32,
64,
), f"The shape of output should be (1, 630, 3, 32, 64), but your output shape is {generated_frame.shape}"
self.make_gif(
generated_frame[0], os.path.join(self.args.save_root, f"pred_seq{idx}.gif")
)
# Reshape the generated frame to (630, 3 * 64 * 32)
generated_frame = generated_frame.reshape(630, -1)
return generated_frame
def make_gif(self, images_list, img_name):
new_list = []
for img in images_list:
new_list.append(transforms.ToPILImage()(img))
new_list[0].save(
img_name,
format="GIF",
append_images=new_list,
save_all=True,
duration=20,
loop=0,
)
def val_dataloader(self):
transform = transforms.Compose(
[
transforms.Resize((self.args.frame_H, self.args.frame_W)),
transforms.ToTensor(),
]
)
dataset = Dataset_Dance(
root=self.args.DR, transform=transform, video_len=self.val_vi_len
)
val_loader = DataLoader(
dataset,
batch_size=1,
num_workers=self.args.num_workers,
drop_last=True,
shuffle=False,
)
return val_loader
def load_checkpoint(self):
if self.args.ckpt_path != None:
checkpoint = torch.load(self.args.ckpt_path)
self.load_state_dict(checkpoint["state_dict"], strict=True)
def main(args):
# check output path
if not os.path.exists(args.save_root):
print(f"Path --save_root={args.save_root} does not exist")
exit()
if not os.path.exists(args.ckpt_path):
print(f"Path --ckpt_path={args.ckpt_path} does not exist")
exit()
model = Test_model(args).to(args.device)
model.load_checkpoint()
model.evaluate()
if __name__ == "__main__":
# fmt: off
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument('--batch_size', type=int, default=2)
parser.add_argument('--lr', type=float, default=0.001, help="initial learning rate")
parser.add_argument('--device', type=str, choices=["cuda", "cpu"], default="cuda")
parser.add_argument('--optim', type=str, choices=["Adam", "AdamW"], default="Adam")
parser.add_argument('--gpu', type=int, default=1)
parser.add_argument('--no_sanity', action='store_true')
parser.add_argument('--test', action='store_true')
parser.add_argument('--make_gif', action='store_true')
parser.add_argument('--DR', type=str, required=True, help="Your Dataset Path")
parser.add_argument('--save_root', type=str, required=True, help="The path to save your data")
parser.add_argument('--num_workers', type=int, default=16)
parser.add_argument('--num_epoch', type=int, default=70, help="number of total epoch")
parser.add_argument('--per_save', type=int, default=3, help="Save checkpoint every seted epoch")
parser.add_argument('--partial', type=float, default=1.0, help="Part of the training dataset to be trained")
parser.add_argument('--train_vi_len', type=int, default=16, help="Training video length")
parser.add_argument('--val_vi_len', type=int, default=630, help="valdation video length")
parser.add_argument('--frame_H', type=int, default=32, help="Height input image to be resize")
parser.add_argument('--frame_W', type=int, default=64, help="Width input image to be resize")
# Module parameters setting
parser.add_argument('--F_dim', type=int, default=128, help="Dimension of feature human frame")
parser.add_argument('--L_dim', type=int, default=32, help="Dimension of feature label frame")
parser.add_argument('--N_dim', type=int, default=12, help="Dimension of the Noise")
parser.add_argument('--D_out_dim', type=int, default=192, help="Dimension of the output in Decoder_Fusion")
# Teacher Forcing strategy
parser.add_argument('--tfr', type=float, default=1.0, help="The initial teacher forcing ratio")
parser.add_argument('--tfr_sde', type=int, default=10, help="The epoch that teacher forcing ratio start to decay")
parser.add_argument('--tfr_d_step', type=float, default=0.1, help="Decay step that teacher forcing ratio adopted")
parser.add_argument('--ckpt_path', type=str, default=None,help="The path of your checkpoints")
# Training Strategy
parser.add_argument('--fast_train', action='store_true')
parser.add_argument('--fast_partial', type=float, default=0.4, help="Use part of the training data to fasten the convergence")
parser.add_argument('--fast_train_epoch', type=int, default=5, help="Number of epoch to use fast train mode")
# Kl annealing stratedy arguments
parser.add_argument('--kl_anneal_type', type=str, default='Cyclical', help="")
parser.add_argument('--kl_anneal_cycle', type=int, default=10, help="")
parser.add_argument('--kl_anneal_ratio', type=float, default=1, help="")
# fmt: on
args = parser.parse_args()
main(args)