-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathmapping.h
216 lines (192 loc) · 4.18 KB
/
mapping.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*
* Contains implementations of the forward and inverse transform using
* straightforward scalar code (built-in trig operations and branching).
*
* The following functions are defined:
*
* sph2sqr - maps a 3D vector to a 2D point in the unit square
* sqr2sph - maps a 2D point in the unit square to a 3D vector
*
* Written by Petrik Clarberg <[email protected]>, Lund University, 2007-2008.
* This code is released as public domain for use free of charge for any
* purpose, but without any kind of warranty.
*/
#ifndef __MAPPING_H__
#define __MAPPING_H__
#include <cmath>
#include <iostream>
#include <iomanip>
#include "vec.h"
namespace mapping
{
// ------------------------------------------------------------------------
/// Transform a 2D position p=(u,v) in the unit square to a normalized 3D
/// vector on the unit sphere. Straightforward scalar implementation.
// ------------------------------------------------------------------------
inline static vec3f sqr2sph(const vec2f& p)
{
// Transform point from [0,1] to [-1,1]
float u = 2.f*p.x - 1.f;
float v = 2.f*p.y - 1.f;
// Compute lengths (a,b) for rotated square (-45deg) scaled by sqrt(2).
float a = v + u;
float b = v - u;
// Compute (r,phi) differently based on which quadrant we are in.
// There are 8 different cases (3 levels of nestled if-statements).
// We set z to -1 or 1 based on which hemisphere we are in.
float r, phi, z;
if(v >= 0.f)
{
if(u >= 0.f) // quadrant 1
{
if(a <= 1.f) // north
{
r = a;
z = 1.f;
phi = v/r;
}
else // south
{
r = 2.f - a;
z = -1.f;
phi = (1.f - u) / r;
}
}
else // quadrant 2
{
if(b<=1.f) // north
{
r = b;
z = 1.f;
phi = 1.f - u / r;
}
else
{
r = 2.f - b;
z = -1.f;
phi = 1.f + (1.f - v) / r;
}
}
}
else
{
if(u<0.0f) // quadrant 3
{
if(a>=-1.f) // north
{
r = -a;
z = 1.f;
phi = 2.f - v / r;
}
else // south
{
r = 2.f + a;
z = -1.f;
phi = 2.f + (1.f + u) / r;
}
}
else // quadrant 4
{
if(b>=-1.f) // north
{
r = -b;
z = 1.f;
phi = 3.f + u / r;
}
else // south
{
r = 2.f + b;
z = -1.f;
phi = 3.f + (1.f + v) / r;
}
}
}
// Fix division-by-zero problem (r=0).
if(r==0.f) phi = 0.f;
// Compute 3D coordinate (x,y,z)
float r2 = r*r;
phi *= fPI_2;
float sin_t = r * std::sqrt(2.f - r2); // sin(theta)
float x = sin_t * std::cos(phi);
float y = sin_t * std::sin(phi);
z *= 1.f - r2;
return vec3f(x,y,z);
}
// ------------------------------------------------------------------------
/// Transforms a normalized 3D vector to a 2D position in the unit square.
/// Straightforward scalar implementation using built-in trigonometric
/// operations and branching.
// ------------------------------------------------------------------------
inline static vec2f sph2sqr(const vec3f& d)
{
float phi = std::atan2(d.y,d.x) * f2_PI; // phi in [-2,2]
float u, v;
// There are 8 different cases we need to test (3 levels of nestled
// if-statements to compute the (u,v) coordiantes in the square.
if(d.z < 0.0f) // southern hemisphere
{
float r = std::sqrt(1.f + d.z);
if(phi >= 0.f)
{
if(phi <= 1.f)
{
u = 1.f - r*phi;
v = 2.f - r - u;
}
else
{
u = r * (2.f - phi) - 1.f;
v = 2.f - r + u;
}
}
else
{
if(phi >= -1.f)
{
u = r*phi + 1.f;
v = r - 2.f + u;
}
else
{
u = r * (2.f + phi) - 1.f;
v = r - 2.f - u;
}
}
}
else // northern hemisphere
{
float r = std::sqrt(1.f - d.z);
if(phi >= 0.f)
{
if(phi < 1.f)
{
v = r * phi;
u = r - v;
}
else
{
v = r * (2.f - phi);
u = v - r;
}
}
else
{
if(phi > -1.f)
{
v = r * phi;
u = r + v;
}
else
{
v = -r * (2.f + phi);
u = -(r + v);
}
}
}
// Transform (u,v) from [-1,1] to [0,1]
u = 0.5f * (u + 1.f);
v = 0.5f * (v + 1.f);
return vec2f(u,v);
}
} // namespace mapping
#endif // __MAPPING_H__