-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·194 lines (161 loc) · 7.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import sys
import numpy as np
import torch
import inspect
import json
import copy
import argparse
import random
import wandb
import config
import models
from data.utils import get_dataset, prepare_dataset, get_dataloader
from optim.base import train_base
import distributed
def get_args():
parser = argparse.ArgumentParser(allow_abbrev=False)
parser.add_argument('--config_format', default='base', choices=config.registered_formats())
args, rem_args = parser.parse_known_args()
return config.parse_args_with_format(format=args.config_format, base_parser=parser, args=rem_args, namespace=args)
def main(args):
torch.backends.cuda.matmul.allow_tf32 = True # allows us to make sure we're able to use tensorfloat32 during training
torch.backends.cudnn.allow_tf32 = True
distributed_backend = distributed.make_backend_from_args(args)
args = distributed_backend.get_adjusted_args_for_process(args)
args.device = torch.device(args.device)
device_type = "cuda" if "cuda" in str(args.device) else "cpu"
if device_type == "cuda":
torch.cuda.set_device(args.device)
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
print(f"Loading dataset '{args.dataset}'")
if distributed_backend.is_master_process():
prepare_dataset(args)
distributed_backend.sync()
data = get_dataset(args) # data is a dict: {'train': train_tokenized, 'val': eval_tokenized}
if args.data_in_ram:
print("Moving dataset to ram")
data = {'train': np.array(data['train']), 'val': np.array(data['val'])}
print(f"Num training tokens: {len(data['train'])}")
print(f"Num validation tokens: {len(data['val'])}")
data["train"] = get_dataloader(
data["train"],
sequence_length=args.sequence_length,
batch_size=args.batch_size,
seed=args.data_seed,
distributed_backend=distributed_backend,
)
data["val"] = get_dataloader(
data["val"],
sequence_length=args.sequence_length,
batch_size=args.batch_size,
seed=args.data_seed,
)
model = models.make_model_from_args(args).to(args.device) # todo: take care of initializing the model if args.use_pretrained != 'none'
model = distributed_backend.transform_model(model)
group_specs = distributed_backend.get_raw_model(model).get_parameter_group_specs()
param_name_mapping = {p_name: p for p_name, p in model.named_parameters()}
optimized_params_cnt = 0
for g in group_specs:
params = []
for p_name in g["params"]:
translated_p_names = distributed_backend.translate_model_parameter_name_for_node(p_name)
params += [param_name_mapping[p_name] for p_name in translated_p_names]
g["params"] = params
optimized_params_cnt += sum([p.numel() for p in g["params"]])
print("number of optimized parameters: %.2fM" % (optimized_params_cnt/1e6,))
if args.opt == 'adamw':
use_fused = (device_type == 'cuda') and ('fused' in inspect.signature(torch.optim.AdamW).parameters)
print(f"using fused AdamW: {use_fused}")
extra_args = dict(fused=True) if use_fused else dict()
opt = torch.optim.AdamW(group_specs, lr=args.lr, betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay, **extra_args)
elif args.opt == 'adafactor':
from optim.adafactor import Adafactor
opt = Adafactor(group_specs, lr=args.lr)
else:
opt = torch.optim.SGD(group_specs, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
if args.scheduler != 'none':
if args.scheduler in ['cos', 'linear']:
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=opt, max_lr=args.lr, total_steps=args.iterations,
pct_start=args.warmup_percent, anneal_strategy=args.scheduler,
cycle_momentum=False, div_factor=1e2, final_div_factor=args.final_div_factor)
else:
raise NotImplementedError(f"Unknown scheduler type: {args.scheduler}.")
else:
scheduler = None
args.world_size = distributed_backend.get_world_size()
exp_name = args.exp_name
if distributed_backend.is_master_process() and args.wandb:
params_copy = copy.deepcopy(vars(args))
del params_copy['device']
wandb.init(project=args.wandb_project, name=exp_name, config=params_copy, entity=args.wandb_entity)
ckpt_path = os.path.join(args.results_base_folder, args.dataset, args.model, exp_name)
if not os.path.exists(ckpt_path):
if distributed_backend.is_master_process():
os.makedirs(ckpt_path)
elif os.path.isfile(f"{ckpt_path}/summary.json"): # the experiment was already completed
print(f"Already found experiment '{ckpt_path}'.\nSkipping.")
sys.exit(0)
distributed_backend.sync()
itr = 0
rng_state_dict = None
if args.use_pretrained == "auto":
checkpoints = [file for file in os.listdir(ckpt_path) if 'ckpt_' in file]
if checkpoints:
last_iter_found = -1
for ckpt in checkpoints:
ckpt_iter = int(ckpt.split('ckpt_')[1].split('.pt')[0])
if ckpt_iter > last_iter_found:
args.use_pretrained = ckpt
last_iter_found = ckpt_iter
if last_iter_found == -1:
print("WARN: Could not find last checkpoint")
args.use_pretrained = sorted(checkpoint)[-1]
else:
args.use_pretrained = None
if args.use_pretrained is not None:
last_ckpt_path = args.use_pretrained
print(f"Resuming from {last_ckpt_path}")
checkpoint = torch.load(os.path.join(ckpt_path, last_ckpt_path), map_location=args.device)
model_state_dict = {distributed_backend.translate_model_parameter_name_for_node(k.replace("_orig_mod.", ""))[0]:v for k,v in checkpoint['model'].items()}
# FIXME checkpoints from compiled model have _orig_mod keyword
optimizer_state_dict = checkpoint['optimizer']
rng_state_dict = {
module: checkpoint[module] for module in [
"cpu_rng_state",
"gpu_rng_state",
"numpy_rng_state",
"py_rng_state",
"train_sampler_state"
]
}
rng_state_dict["gpu_rng_state"] = rng_state_dict["gpu_rng_state"].type(torch.ByteTensor)
rng_state_dict["cpu_rng_state"] = rng_state_dict["cpu_rng_state"].cpu().type(torch.ByteTensor)
model.load_state_dict(model_state_dict)
opt.load_state_dict(optimizer_state_dict)
itr = checkpoint['itr']
if scheduler is not None:
scheduler_state_dict = checkpoint['scheduler']
scheduler.load_state_dict(scheduler_state_dict)
if True: # all train functions have the same interface
train = train_base
else:
raise NotImplementedError(f"No training method implemented for model type '{args.model}'.")
print(f"\nTraining model={args.model} \n{vars(args)}\n")
stats = train(model, opt, data, args.data_seed, scheduler, args.iterations, args.acc_steps, args.batch_size, args.sequence_length,
eval_freq=args.eval_freq,
distributed_backend=distributed_backend,
ckpt_path=ckpt_path, itr=itr, rng_state_dict=rng_state_dict, extra_args=args)
args.device = None
args.dtype = None
stats['args'] = vars(args)
if distributed_backend.is_master_process():
with open(f"{ckpt_path}/summary.json", "w") as fs:
json.dump(stats, fs)
distributed_backend.finalize()
if __name__ == "__main__":
args = get_args()
main(args)