-
Notifications
You must be signed in to change notification settings - Fork 30
/
binary-Q1Inter-HFT-NEW.Rmd
6972 lines (6112 loc) · 292 KB
/
binary-Q1Inter-HFT-NEW.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "<img src='www/deriv.jpg' width='240'>"
subtitle: "[Deriv.com](https://github.com/englianhu/binary.com-interview-question) - Interday High Frequency Trading Models Comparison <span style='color:#4E79A7'>**Review**</span>"
author: "[®γσ, Lian Hu](https://englianhu.github.io/) <img src='www/quantitative trader 1.jpg' width='24'> <img src='www/RYU.jpg' width='24'> <img src='www/ENG.jpg' width='24'>® <img src='www/xueba1.jpg' width='24'>"
date: "`r lubridate::today('Asia/Tokyo')`"
output:
html_document:
mathjax: https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js
number_sections: yes
toc: yes
toc_depth: 4
toc_float:
collapsed: yes
smooth_scroll: yes
code_folding: hide
css: CSSBackgrounds.css
---
# Abstract
Due to below isseus from [<span style='color:goldenrod'>*Deriv.com - Interday High Frequency Trading Models Comparison</span> <span style='color:red'>**Blooper**</span>](https://rpubs.com/englianhu/binary-Q1Inter-HFT), here I review the researh by using same dataset.
- Weekly dataset `7200` mins forecast in advanced despite `Saturday` and `Sunday`.
- Use the dataset `data_m1` from `2015-01-05` to `2017-12-31`.
- Use `Close Price` to ease the workload and some errors (ex: OHLC abnor, NA price).
<span style='color:red'>**Load Packages**</span>
```{r, warning = FALSE, message = FALSE}
if(!suppressPackageStartupMessages(require('BBmisc'))) {
utils::install.packages('BBmisc', dependencies = TRUE, INSTALL_opts = '--no-lock')
}
suppressPackageStartupMessages(require('BBmisc'))
# suppressPackageStartupMessages(require('rmsfuns'))
pkgs <- c('devtools', 'knitr', 'kableExtra', 'tint', 'dygraphs',
'devtools','readr', 'lubridate', 'data.table', 'reprex',
'feather', 'purrr', 'quantmod', 'tidyquant', 'plotly',
'furrr', 'flyingfox', 'tidyr', 'jsonlite', 'MASS',
'timetk', 'plyr', 'dplyr', 'stringr', 'magrittr', 'tdplyr',
'tidyverse', 'memoise', 'htmltools', 'formattable', 'rbokeh',
'dash', 'dashCoreComponents', 'dashHtmlComponents', 'dtplyr',
##https://dashr.plotly.com
'zoo', 'forecast', 'seasonal', 'seasonalview', 'rjson',
'rugarch', 'rmgarch', 'mfGARCH', 'sparklyr', 'jcolors',
'microbenchmark', 'dendextend', 'lhmetools', 'ggthemr',
'stringr', 'pacman', 'profmem', 'ggthemes',
'htmltools', 'echarts4r', 'viridis', 'hrbrthemes', 'tsibble',
'fable', 'fabletools', 'tsibbledata', 'tibbletime', 'feasts',
'fpp3', 'prophet', 'fasster')
# https://tidyverts.github.io/tidy-forecasting-principles/tsibble.html
# https://facebook.github.io/prophet/docs/quick_start.html
# https://github.com/mpiktas/midasr
# https://github.com/onnokleen/mfGARCH
# devtools::install_github("business-science/tibbletime")
# devtools::install_github("DavisVaughan/furrr")
suppressAll(lib(pkgs))
# load_pkg(pkgs)
funs <- c('uv_fx.R', 'opt_arma.R', 'multi_seasons.R',
'filterFX.R', 'filter_spec.R', 'mv_fx.R',
'task_progress.R', 'read_umodels.R', 'convertOHLC.R')
l_ply(funs, function(x) source(paste0('./function/', x)))
#l_ply(pkgs, function(x) {
# if(!suppressPackageStartupMessages(require(x))) {
# install.packages(x, dependencies = TRUE, INSTALL_opts = '--no-lock')
# }
# suppressPackageStartupMessages(require(x))
#})
# spark_install()
# if(FALSE) {
# Not run due to side-effects
# spark_home_set()
# }
# sc <- spark_connect(master = 'local')
#spark_install()
#sc <- spark_connect(master = 'local')
.cl = FALSE
## Set the timezone but not change the datetime
Sys.setenv(TZ = 'Asia/Tokyo')
## options(knitr.table.format = 'html') will set all kableExtra tables to be 'html', otherwise need to set the parameter on every single table.
options(warn = -1, knitr.table.format = 'html')#, digits.secs = 6)
## https://stackoverflow.com/questions/39417003/long-vectors-not-supported-yet-abnor-in-rmd-but-not-in-r-script
knitr::opts_chunk$set(cache = TRUE, warning = FALSE,
message = FALSE, cache.lazy = FALSE)
## https://www.researchgate.net/post/How_to_solve_abnor_cannot_allocate_vector_of_size_12_Gb_in_R
#memory.size() ### Checking your memory size
#memory.limit() ## Checking the set limit
#memory.size(size=500000)
#memory.limit(size=56000) ### expanding your memory _ here it goes beyond to your actually memory. This 56000 is proposed for 64Bit.
rm(pkgs, funs)
```
There has few tools :
- [<span style='color:goldenrod'>Introduction to `fable` packages</span>](https://tidyverts.github.io/tidy-forecasting-principles)
- [<span style='color:goldenrod'>Introduction to `prophet` packages</span>](https://facebook.github.io/prophet/docs/installation.html)
- [<span style='color:goldenrod'>Introduction to `fasster` packages</span>](https://github.com/tidyverts/fasster)
Kindly read through [<span style='color:goldenrod'>**Forecasting: Principles and Practice (3rd Edt)**</span>](https://otexts.com/fpp3) to learn time series data modeling and forecasting.
<span style='color:red'>**Progress Function**</span>
```{r}
task_progress <- function(mbase, timeID0 = NULL, scs = 60, .pattern = '^mts|^sets', .loops = TRUE) {
## ------------- 定时查询进度 ----------------------
## 每分钟自动查询与更新以上模拟预测汇价进度(储存文件量)。
require('magrittr')
require('tibble')
if(!is.data.frame(class(mbase))) {
mbase %<>% data.frame
}
if (.loops == TRUE) {
while(1) {
cat('Current Tokyo Time :', as.character(now('Asia/Tokyo')), '\n\n')
y = as_date(mbase$index) %>%
unique
y <- y[weekdays(y) != 'Saturday'] #filter and omit the weekly last price which is 12:00am on saturday
datee = y
if(is.null(timeID0)) {
timeID0 = y[1]
} else if (is.Date(timeID0)) {
timeID0 = as_date(timeID0)
} else {
timeID0 = as_date(mbase$index) %>%
unique
}
y = y[y >= timeID0]
x = list.files(paste0('C:/Users/User/Documents/GitHub/binary.com-interview-question-data/data/fx/USDJPY/'), pattern = .pattern) %>%
str_replace_all('.rds', '') %>%
str_replace_all('.201', '_201') %>%
str_split_fixed('_', '2') %>%
as_tibble %>%
dplyr::rename('Model' = 'V1', 'Date' = 'V2') %>%
dplyr::mutate(Model = factor(Model), Date = as_date(Date))
x = join(tibble(Date = datee), x) %>%
as_tibble
x %<>% na.omit
x %<>% dplyr::mutate(binary = if_else(is.na(Model), 0, 1)) %>%
spread(Model, binary)
z <- ldply(x[,-1], function(zz) {
na.omit(zz) %>% length }) %>%
dplyr::rename(x = V1) %>%
dplyr::mutate(n = length(y), progress = percent(x/n))
print(z)
prg = sum(z$x)/sum(z$n)
cat('\n================', as.character(percent(prg)), '================\n\n')
if (prg == 1) break #倘若进度达到100%就停止更新。
Sys.sleep(scs) #以上ldply()耗时3~5秒,而休息时间60秒。
}
} else {
cat('Current Tokyo Time :', as.character(now('Asia/Tokyo')), '\n\n')
y = as_date(mbase$index) %>%
unique
datee = y
if(is.null(timeID0)) {
timeID0 = y[1]
} else if (is.Date(timeID0)) {
timeID0 = as_date(timeID0)
} else {
timeID0 = as_date(mbase$index) %>%
unique
}
y = y[y >= timeID0]
x = list.files(paste0('C:/Users/User/Documents/GitHub/binary.com-interview-question-data/data/fx/USDJPY/'), pattern = .pattern) %>%
str_replace_all('.rds', '') %>%
str_replace_all('.201', '_201') %>%
str_split_fixed('_', '2') %>%
as_tibble %>%
dplyr::rename('Model' = 'V1', 'Date' = 'V2') %>%
dplyr::mutate(Model = factor(Model), Date = as_date(Date))
x = join(tibble(Date = datee), x) %>%
as_tibble
x %<>% na.omit
x %<>% dplyr::mutate(binary = if_else(is.na(Model), 0, 1)) %>%
spread(Model, binary)
z <- ldply(x[,-1], function(zz) {
na.omit(zz) %>% length }) %>%
dplyr::rename(x = V1) %>%
dplyr::mutate(n = length(y), progress = percent(x/n))
print(z)
prg = sum(z$x)/sum(z$n)
cat('\n================', as.character(percent(prg)), '================\n\n')
}
}
```
# Introduction
Review the [<span style='color:goldenrod'>*Deriv.com - Interday High Frequency Trading Models Comparison</span> <span style='color:red'>**Blooper**</span>](https://rpubs.com/englianhu/binary-Q1Inter-HFT).
# Data
## Read Data
### Raw Data
```{r, warning = FALSE, message = FALSE, results = 'asis'}
data_m1 <- read_rds('C:/Users/User/Documents/GitHub/real-time-fxcm/data/USDJPY/data_m1.rds') %>%
data.table
data_m1 %<>% .[order(index)]
## plot sample data
data_m1[c(1:3, (nrow(data_m1)-3):nrow(data_m1)),] %>%
kbl('html', caption = '1 min Raw Dataset', escape = FALSE) %>%
## https://www.w3schools.com/cssref/css_colors.asp
row_spec(0, background = 'DimGrey') %>%
column_spec(1, background = 'CornflowerBlue') %>%
column_spec(2, background = 'DarkGrey') %>%
column_spec(3, background = 'LightSlateGrey') %>%
column_spec(4, background = 'LightGray', color = 'goldenrod') %>%
column_spec(5, background = 'Gainsboro', color = 'goldenrod') %>%
column_spec(6, background = 'LightGray', color = 'goldenrod') %>%
column_spec(7, background = 'Gainsboro', color = 'goldenrod') %>%
column_spec(8, background = 'LightGray', color = 'goldenrod') %>%
column_spec(9, background = 'Gainsboro', color = 'goldenrod') %>%
column_spec(10, background = 'LightGray', color = 'goldenrod') %>%
column_spec(11, background = 'Gainsboro', color = 'goldenrod') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
kable_material(full_width = FALSE) %>% ##`full_width = FALSE` will auto adjust every single columns width to fit the table full width.
scroll_box(width = '100%', fixed_thead = TRUE, height = '400px')
```
*source : `r paste0(dim(data_m1), collapse = ' x ')`*
As we can know there has few errors from [<span style='color:goldenrod'>*Deriv.com - Interday High Frequency Trading Models Comparison</span> <span style='color:red'>**Blooper**</span>](https://rpubs.com/englianhu/binary-Q1Inter-HFT):
- open price higher than highest price
- open price lower than lowest price
- close price higher than highest price
- close price lower than lowest price
### OHLC Data
Convert to OHLC data as we know from [<span style='color:goldenrod'>*Deriv.com - Interday High Frequency Trading Models Comparison</span> <span style='color:red'>**Blooper**</span>](https://rpubs.com/englianhu/binary-Q1Inter-HFT).
```{r, warning = FALSE, message = FALSE, results = 'asis'}
if(names(data_m1) %>% str_detect('Bid|Ask') %>% any()) {
dsmp <- data_m1[,{
open = (BidOpen + AskOpen)/2
high = (BidHigh + AskHigh)/2
low = (BidLow + AskLow)/2
close = (BidClose + AskClose)/2
.SD[,.(index = index, year = year, week = week,
open = open, high = high, low = low, close = close), ]}, ]
}
## plot sample data
dsmp[c(1:3, (nrow(dsmp)-3):nrow(dsmp)),] %>%
kbl('html', caption = '1 min OHLC Dataset', escape = FALSE) %>%
## https://www.w3schools.com/cssref/css_colors.asp
row_spec(0, background = 'DimGrey') %>%
column_spec(1, background = 'CornflowerBlue') %>%
column_spec(2, background = 'DarkGrey') %>%
column_spec(3, background = 'LightSlateGrey') %>%
column_spec(4, background = 'LightGray', color = 'goldenrod') %>%
column_spec(5, background = 'Gainsboro', color = 'goldenrod') %>%
column_spec(6, background = 'LightGray', color = 'goldenrod') %>%
column_spec(7, background = 'Gainsboro', color = 'goldenrod') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
kable_material(full_width = FALSE) %>% ##`full_width = FALSE` will auto adjust every single columns width to fit the table full width.
scroll_box(width = '100%', fixed_thead = TRUE, height = '400px')
```
*source : `r paste0(dim(dsmp), collapse = ' x ')`*
## Data Cleaning
```{r, warning = FALSE, message = FALSE, results = 'asis'}
dsmp <- dsmp[,{
quarter = quarter(index)
month = month(index)
wkdays = weekdays(index)
wk_1m = 1:7200
dy_1m = 1:1440
hr_1m = 1:60
date = as_date(index)
.SD[,.(index = index, year = year, quarter = quarter,
month = month, week = week, wkdays = wkdays,
wk_1m = wk_1m, dy_1m = dy_1m, hr_1m = hr_1m,
sq = 1:.N, date = date, close = close), ]}, ]
```
```{r, warning = FALSE, message = FALSE, results = 'asis'}
## plot sample data
dsmp[c(1:3, (nrow(dsmp)-3):nrow(dsmp)),] %>%
kbl('html', caption = '1 min Close Price Dataset', escape = FALSE) %>%
## https://www.w3schools.com/cssref/css_colors.asp
## https://public.tableau.com/en-us/gallery/100-color-palettes?gallery=votd
row_spec(0, background = 'DimGrey', color = 'gold', bold = TRUE) %>%
column_spec(1, background = 'CornflowerBlue') %>%
column_spec(2, background = 'Gray') %>%
column_spec(3, background = 'DarkGrey') %>%
column_spec(4, background = 'Gray') %>%
column_spec(5, background = 'DarkGrey') %>%
column_spec(6, background = '#4897D8') %>%
column_spec(7, background = '#556DAC') %>%
column_spec(8, background = '#92AAC7') %>%
column_spec(9, background = '#556DAC') %>%
column_spec(10, background = '#375E97') %>%
column_spec(11, background = 'CornflowerBlue') %>%
column_spec(12, background = 'LightGray', color = 'goldenrod') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
kable_material(full_width = FALSE) %>% ##`full_width = FALSE` will auto adjust every single columns width to fit the table full width.
scroll_box(width = '100%', fixed_thead = TRUE, height = '400px')
```
*source : `r paste0(dim(dsmp), collapse = ' x ')`*
```{r, warning = FALSE, message = FALSE, results = 'asis'}
## Below codes list out all Tuesday to Sunday data details.
# data_abn <- dsmp[wkdays %chin% 'Saturday' & !str_detect(index, '00:00:00') | wkdays %chin% 'Sunday']$date_1m
# date_abn2 <- date_abn[1:length(date_abn) %% 2 == 0]
## --------------------------------------------
date_abn <- dsmp[wkdays %chin% 'Sunday']$date_1m %>%
unique
date_abn_seq <- llply(date_abn, function(dte)
as.character(seq(dte - days(6), dte, by = 'day'))) %>%
unlist %>%
as_date
rm(date_abn, date_abn2)
data_abn <- dsmp[date_1m %in% date_abn_seq]
## plot sample data
data_abn[c(1:3, (nrow(data_abn)-3):nrow(data_abn)),] %>%
kbl('html', caption = '1 min Close Price Dataset (abnor : Tuesday - Sunday)', escape = FALSE) %>%
## https://www.w3schools.com/cssref/css_colors.asp
row_spec(0, background = 'DimGrey') %>%
column_spec(1, background = 'CornflowerBlue') %>%
column_spec(2, background = 'DarkGrey') %>%
column_spec(3, background = 'LightSlateGrey') %>%
column_spec(4, background = '#4E79A7') %>%
column_spec(5, background = 'LightSlateGrey') %>%
column_spec(6, background = 'CornflowerBlue') %>%
column_spec(7, background = '#4E79A7') %>%
column_spec(8, background = 'LightGray', color = 'goldenrod') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
kable_material(full_width = FALSE) %>% ##`full_width = FALSE` will auto adjust every single columns width to fit the table full width.
scroll_box(width = '100%', fixed_thead = TRUE, height = '400px')
```
There has transactions in from *Tuesday (12:01AM)* to *Sunday (12:00AM)* as we can know from above and below.
```{r, eval = FALSE, warning = FALSE, message = FALSE}
## -------------------- eval = FALSE --------------------
matrix(weekdays(unique(as_date(dsmp$index))), ncol = 6, byrow = TRUE)
[104,] "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday" "Sunday"
[105,] "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday" "Sunday"
...
[156,] "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday" "Sunday"
[157,] "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday" "Sunday"
```
There has 2 weeks abnormal data (`r paste(date_abn_seq[c(1,(length(date_abn_seq)/2))], collapse = ' to ')` and `r paste(date_abn_seq[c(((length(date_abn_seq)/2)+1),length(date_abn_seq))], collapse = ' to ')`).
There might probably because of Christmas to postpone 1 day, here I forecast `7200` trading datetime in advanced despite the date and weekdays. Every forecast price will base on the out of sample date. There will no any effects .
```{r, warning = FALSE, message = FALSE}
## save files if not exists
if(!file.exists('C:/Users/User/Documents/GitHub/binary.com-interview-question-data/data/fx/USDJPY/dsmp.rds') & exists('dsmp')) {
saveRDS(dsmp, 'C:/Users/User/Documents/GitHub/binary.com-interview-question-data/data/fx/USDJPY/dsmp.rds')}
## read files if not exists
if(!exists('dsmp')) {
dsmp <- readRDS('C:/Users/User/Documents/GitHub/binary.com-interview-question-data/data/fx/USDJPY/dsmp.rds')}
```
# Modelling
## Due to I have annually length dataset, here I start my 1st forecast date from 1st trading datetime of 2016 (`r dsmp)[year == 2016]$date_1m[1]` which is 2nd year in dataset).
## Seasonal `ts()`
### Wk >> Dy
I set the length of data as weekly (`7200` minutes which is 5 trading days) and frequency set as `1440` minutes (`1440` minutes is a trading day).
```{r, eval=FALSE}
# --------- eval=FALSE ---------
timeID <- unique(dsmp$date)
bse <- dsmp[year == 2016]$date[1] #"2016-01-04" #1st trading date in 2nd year
timeID %<>% .[. >= bse]
#timeID %<>% .[. >= as_date('2016-01-04')]
vrb <- 7200 #last 7200 observations DT[(.N - (vrb - 1)):.N]
frb <- 1440
for (i in 1:length(timeID)) {
smp <- dsmp[date < timeID[i]][(.N - (vrb - 1)):.N]
frc <- dsmp[date >= timeID[i]][1:frb]
smp1 <- smp[, .(index, close)] %>% lazy_dt
frc1 <- smp[, .(index, close)] %>% lazy_dt
sets <- smp1 %>%
tk_ts(frequency = 1440) %>%
forecast(h = 1440) %>%
llply(tk_tbl)
if(is.double(sets$forecast$index[1])){
sq <- smp %>%
tail(1) %>%
index
if(weekdays(sq) == '土曜日'|weekdays(sq) == 'Saturday') sq <- sq + days(2)
sq <- seq(from = sq + minutes(1), sq + days(1), by = 'min')
sets$forecast$index <- sq
} else {
sets$forecast$index <- data_m1$index[
(which(data_m1$index == smp %>%
index %>%
xts::last()) + 1):(
which(data_m1$index == smp %>%
index %>%
xts::last()) + 1440)]
}
if (!dir.exists(paste0('data/fx/USDJPY')))
dir.create(paste0('data/fx/USDJPY'))
saveRDS(sets, paste0('data/fx/USDJPY/sets.wk.1440.',
as_date(sets$forecast$index[1]), '.rds'))
cat(paste0(
'data/fx/USDJPY/sets.wk.1440.',
as_date(sets$forecast$index[1]), '.rds saved!\n'))
}
```
### Monthly >> Daily
I set the length of dataset as monthly but the frequency set as 1440 minutes (per day). Initial forecast will be based on weekly dataset and then accumulated date-by-date until a monthly dataset.
```{r, eval=FALSE}
# --------- eval=FALSE ---------
#sq <- seq(1 , length(data_m1$index), by = 1440)
#sets <- list()
timeID <- data_m1$index %>%
as_date %>%
unique %>%
sort
timeID %<>% .[. > as_date('2015-01-11')]
for (dt in timeID) {
smp <- data_m1 %>%
tk_xts(silent = TRUE)
dt %<>% as_date
smp <- smp[paste0(dt %m-% months(1) + seconds(59), '/', dt + seconds(59))]
sets <- smp %>%
tk_ts(frequency = 1440) %>%
forecast(h=1440) %>%
llply(tk_tbl)
if(is.double(sets$forecast$index[1])){
sq <- smp %>%
tail(1) %>%
index
if(weekdays(sq) == '土曜日'|weekdays(sq) == 'Saturday') sq <- sq + days(2)
sq <- seq(from = sq + minutes(1), sq + days(1), by = 'min')
sets$forecast$index <- sq
} else {
sets$forecast$index <- data_m1$index[
(which(data_m1$index == smp %>%
index %>%
xts::last()) + 1):(
which(data_m1$index == smp %>%
index %>%
xts::last()) + 1440)]
}
if (!dir.exists(paste0('data/fx/USDJPY')))
dir.create(paste0('data/fx/USDJPY'))
saveRDS(sets, paste0('data/fx/USDJPY/sets.mo.1440.',
as_date(sets$forecast$index[1]), '.rds'))
cat(paste0(
'data/fx/USDJPY/sets.mo.1440.',
as_date(sets$forecast$index[1]), '.rds saved!\n'))
}
```
### Quarterly >> Daily
I set the length of dataset as quarterly but the frequency set as 1440 minutes (per day). Initial forecast will be based on weekly dataset and then accumulated date-by-date until a quarterly dataset.
```{r, eval=FALSE}
# --------- eval=FALSE ---------
#sq <- seq(1 , length(data_m1$index), by = 1440)
#sets <- list()
timeID <- data_m1$index %>%
as_date %>%
unique %>%
sort
timeID %<>% .[. > as_date('2015-01-11')]
for (dt in timeID) {
smp <- data_m1 %>%
tk_xts(silent = TRUE)
dt %<>% as_date
smp <- smp[paste0(dt %m-% months(3) + seconds(59), '/', dt + seconds(59))]
sets <- smp %>%
tk_ts(frequency = 1440) %>%
forecast(h=1440) %>%
llply(tk_tbl)
if(is.double(sets$forecast$index[1])){
sq <- smp %>%
tail(1) %>%
index
if(weekdays(sq) == '土曜日'|weekdays(sq) == 'Saturday') sq <- sq + days(2)
sq <- seq(from = sq + minutes(1), sq + days(1), by = 'min')
sets$forecast$index <- sq
} else {
sets$forecast$index <- data_m1$index[
(which(data_m1$index == smp %>%
index %>%
xts::last()) + 1):(
which(data_m1$index == smp %>%
index %>%
xts::last()) + 1440)]
}
if (!dir.exists(paste0('data/fx/USDJPY')))
dir.create(paste0('data/fx/USDJPY'))
saveRDS(sets, paste0('data/fx/USDJPY/sets.qt.1440.',
as_date(sets$forecast$index[1]), '.rds'))
cat(paste0(
'data/fx/USDJPY/sets.qt.1440.',
as_date(sets$forecast$index[1]), '.rds saved!\n'))
}
```
### Yearly >> Daily
I set the length of dataset as yearly but the frequency set as 1440 minutes (per day). Initial forecast will be based on weekly dataset and then accumulated date-by-date until a yearly dataset.
```{r, eval=FALSE}
# --------- eval=FALSE ---------
#sq <- seq(1 , length(data_m1$index), by = 1440)
#sets <- list()
timeID <- data_m1$index %>%
as_date %>%
unique %>%
sort
timeID %<>% .[. > as_date('2015-01-11')]
for (dt in timeID) {
smp <- data_m1 %>% tk_xts(silent = TRUE)
dt %<>% as_date
smp <- smp[paste0(dt %m-% years(1) + seconds(59), '/', dt + seconds(59))]
sets <- smp %>%
tk_ts(frequency = 1440) %>%
forecast(h=1440) %>%
llply(tk_tbl)
if(is.double(sets$forecast$index[1])){
sq <- smp %>%
tail(1) %>%
index
if(weekdays(sq) == '土曜日'|weekdays(sq) == 'Saturday') sq <- sq + days(2)
sq <- seq(from = sq + minutes(1), sq + days(1), by = 'min')
sets$forecast$index <- sq
} else {
sets$forecast$index <- data_m1$index[
(which(data_m1$index == smp %>%
index %>%
xts::last()) + 1):(
which(data_m1$index == smp %>%
index %>%
xts::last()) + 1440)]
}
if (!dir.exists(paste0('data/fx/USDJPY')))
dir.create(paste0('data/fx/USDJPY'))
saveRDS(sets, paste0('data/fx/USDJPY/sets.yr.1440.',
as_date(sets$forecast$index[1]), '.rds'))
cat(paste0(
'data/fx/USDJPY/sets.yr.1440.',
as_date(sets$forecast$index[1]), '.rds saved!\n'))
}
```
### Weekly >> Weekly
I set the length of dataset as weekly but the frequency set as 7200 minutes (per week).
```{r, eval=FALSE}
# --------- eval=FALSE ---------
#sq <- seq(1 , length(data_m1$index), by = 7200)
#sets <- list()
timeID <- data_m1$index %>%
as_date %>%
unique %>%
sort
timeID %<>% .[. > as_date('2015-01-05')] #2015-01-11
for (dt in timeID) {
smp <- data_m1 %>%
tk_xts(silent = TRUE)
dt %<>% as_date
smp <- smp[paste0(dt %m-% weeks(1) + seconds(59), '/', dt + seconds(59))]
sets <- smp %>%
tk_ts(frequency = 7200) %>%
forecast(h = 7200) %>%
llply(tk_tbl)
if(is.double(sets$forecast$index[1])){
sq <- smp %>%
tail(1) %>%
index
if(weekdays(sq) == '土曜日'|weekdays(sq) == 'Saturday') sq <- sq + days(2)
sq <- seq(from = sq + minutes(1), sq + days(5), by = 'min')
##sqe[regexpr('Saturday|Sunday', weekdays(sqe)) == -1]
sets$forecast$index <- sq
} else {
sets$forecast$index <- data_m1$index[
(which(data_m1$index == smp %>%
index %>%
xts::last()) + 1):(
which(data_m1$index == smp %>%
index %>%
xts::last()) + 7200)]
}
if (!dir.exists(paste0('data/fx/USDJPY')))
dir.create(paste0('data/fx/USDJPY'))
saveRDS(sets, paste0('data/fx/USDJPY/sets.wk.7200.',
as_date(sets$forecast$index[1]), '.rds'))
cat(paste0(
'data/fx/USDJPY/sets.wk.7200.',
as_date(sets$forecast$index[1]), '.rds saved!\n'))
}
```
### Monthly >> Weekly
I set the length of dataset as monthly but the frequency set as 7200 minutes (per week).
```{r, eval=FALSE}
# --------- eval=FALSE ---------
#sq <- seq(1 , length(data_m1$index), by = 7200)
#sets <- list()
timeID <- data_m1$index %>%
as_date %>%
unique %>%
sort
timeID %<>% .[. > as_date('2015-01-05')] #2015-01-11
for (dt in timeID) {
smp <- data_m1 %>%
tk_xts(silent = TRUE)
dt %<>% as_date
smp <- smp[paste0(dt %m-% months(1) + seconds(59), '/', dt + seconds(59))]
sets <- smp %>%
tk_ts(frequency = 7200) %>%
forecast(h = 7200) %>%
llply(tk_tbl)
if(is.double(sets$forecast$index[1])){
sq <- smp %>%
tail(1) %>%
index
if(weekdays(sq) == '土曜日'|weekdays(sq) == 'Saturday') sq <- sq + days(2)
sq <- seq(from = sq + minutes(1), sq + days(5), by = 'min')
sets$forecast$index <- sq
} else {
sets$forecast$index <- data_m1$index[
(which(data_m1$index == smp %>%
index %>%
xts::last()) + 1):(
which(data_m1$index == smp %>%
index %>%
xts::last()) + 7200)]
}
if (!dir.exists(paste0('data/fx/USDJPY')))
dir.create(paste0('data/fx/USDJPY'))
saveRDS(sets, paste0('data/fx/USDJPY/sets.mo.7200.',
as_date(sets$forecast$index[1]), '.rds'))
cat(paste0(
'data/fx/USDJPY/sets.mo.7200.',
as_date(sets$forecast$index[1]), '.rds saved!\n'))
}
```
### Quarterly >> Weekly
I set the length of dataset as quarterly but the frequency set as 7200 minutes (per week).
```{r, eval=FALSE}
# --------- eval=FALSE ---------
#sq <- seq(1 , length(data_m1$index), by = 7200)
#sets <- list()
timeID <- data_m1$index %>%
as_date %>%
unique %>%
sort
timeID %<>% .[. > as_date('2015-01-05')] #2015-01-11
for (dt in timeID) {
smp <- data_m1 %>%
tk_xts(silent = TRUE)
dt %<>% as_date
smp <- smp[paste0(dt %m-% months(3) + days(5), '/', dt + seconds(59))]
sets <- smp %>%
tk_ts(frequency = 7200) %>%
forecast(h = 7200) %>%
llply(tk_tbl)
if(is.double(sets$forecast$index[1])){
sq <- smp %>%
tail(1) %>%
index
if(weekdays(sq) == '土曜日'|weekdays(sq) == 'Saturday') sq <- sq + days(2)
sq <- seq(from = sq + minutes(1), sq + weeks(1), by = 'min')
sets$forecast$index <- sq
} else {
sets$forecast$index <- data_m1$index[
(which(data_m1$index == smp %>%
index %>%
xts::last()) + 1):(
which(data_m1$index == smp %>%
index %>%
xts::last()) + 7200)]
}
if (!dir.exists(paste0('data/fx/USDJPY')))
dir.create(paste0('data/fx/USDJPY'))
saveRDS(sets, paste0('data/fx/USDJPY/sets.qt.7200.',
as_date(sets$forecast$index[1]), '.rds'))
cat(paste0(
'data/fx/USDJPY/sets.qt.7200.',
as_date(sets$forecast$index[1]), '.rds saved!\n'))
}
```
### Yearly >> Weekly
I set the length of dataset as yearly but the frequency set as 7200 minutes (per week).
```{r, eval=FALSE}
# --------- eval=FALSE ---------
#sq <- seq(1 , length(data_m1$index), by = 7200)
#sets <- list()
timeID <- data_m1$index %>%
as_date %>%
unique %>%
sort
timeID %<>% .[. > as_date('2015-01-05')] #2015-01-11
for (dt in timeID) {
smp <- data_m1 %>%
tk_xts(silent = TRUE)
dt %<>% as_date
smp <- smp[paste0(dt %m-% years(1) + seconds(59), '/', dt + seconds(59))]
sets <- smp %>%
tk_ts(frequency = 7200) %>%
forecast(h = 7200) %>%
llply(tk_tbl)
if(is.double(sets$forecast$index[1])){
sq <- smp %>%
tail(1) %>%
index
if(weekdays(sq) == '土曜日'|weekdays(sq) == 'Saturday') sq <- sq + days(2)
sq <- seq(from = sq + minutes(1), sq + days(5), by = 'min')
sets$forecast$index <- sq
} else {
sets$forecast$index <- data_m1$index[
(which(data_m1$index == smp %>%
index %>%
xts::last()) + 1):(
which(data_m1$index == smp %>%
index %>%
xts::last()) + 7200)]
}
if (!dir.exists(paste0('data/fx/USDJPY')))
dir.create(paste0('data/fx/USDJPY'))
saveRDS(sets, paste0('data/fx/USDJPY/sets.yr.7200.',
as_date(sets$forecast$index[1]), '.rds'))
cat(paste0(
'data/fx/USDJPY/sets.yr.7200.',
as_date(sets$forecast$index[1]), '.rds saved!\n'))
}
```
## Seasonal ARIMA
### Introduce SARIMA
- [Seasonal model with auto.arima](https://stats.stackexchange.com/questions/355839/seasonal-model-with-auto-arima)
- [Seasonality not taken account of in `auto.arima()`](https://stats.stackexchange.com/questions/213201/seasonality-not-taken-account-of-in-auto-arima) ask about why there has no
- [8.5 Non-seasonal ARIMA models](https://otexts.org/fpp2/non-seasonal-arima.html) introduce a non-seasonal ARIMA model.
- [8.9 Seasonal ARIMA models](https://otexts.org/fpp2/seasonal-arima.html) introduce the arima and also sarima models, teach we how to get the `P,D,Q`.
- [Seasonality in `auto.arima()` from forecast package](https://stackoverflow.com/questions/37400062/seasonality-in-auto-arima-from-forecast-package) ask the question which is what I am trying to know (normal arima model only get `(p,d,q)` but not `(P,D,Q)`). The answer is do NOT set both `approximation` and `stepwise` to `FALSE`.
- [Is there a way to force seasonality from `auto.arima`](https://stackoverflow.com/questions/37046275/is-there-a-way-to-force-seasonality-from-auto-arima) ask about how to model a force-seasonal-ARIMA. The topic talk about the `D` parameter in `auto.arima` which governs seasonal differencing. The example shows that `D=1` will get a smaller AIC/BIC figures than default `D=NULL`.
- [Why does `auto.arima` drop my seasonality component when `stepwise=FALSE` and `approximation=FALSE`](https://stackoverflow.com/questions/24390859/why-does-auto-arima-drop-my-seasonality-component-when-stepwise-false-and-approx) ask about why the `stepwise=FALSE` and `approximation=FALSE` got the better AIC than default model. The answer describe that normally `max.order=5` where we can get a better truly seasonal model, just increase the `max.order=10`. There is not too much gained using `approximation=FALSE`. What that does is force it to evaluate the likelihood more accurately for each model, but the approximation is quite good and much faster, so is usually acceptable.
- [How to read p,d and q of `auto.arima()`?](https://stats.stackexchange.com/questions/178577/how-to-read-p-d-and-q-of-auto-arima) ask about what is the meaning of `a$arma` and somebody answer the help page in `auto.arima()` has descibe that `a$arma` is `(p, q, P, Q, s, d, D)`.
- [In R, `auto.arima` fails to capture seasonality](https://stackoverflow.com/questions/43600827/in-r-auto.arima-fails-to-capture-seasonality) simulate an annual dataset with set `trace=TRUE`, `stepwise=FALSE` and `D=1` but didn't provides the answer to get optimal `P,D,Q`.
- [How I can get best arima model in R (closed)](https://stats.stackexchange.com/questions/160343/how-i-can-get-best-arima-model-in-r) only say the `auto.arima()` able get the best model, however does not provides the answer how to get the optimal `P,D,Q` instead of only `p,d,q`.
- [how to extract integration order (d) from auto.arima](https://stackoverflow.com/questions/19483952/how-to-extract-integration-order-d-from-auto-arima) ask that the `ndiffs()` sometimes give the different resukt than best model, describe the `a$arma`. More generally, the order `(d)` is the next to last element; the seasonal order `(D)` is the last. So `a$arma[length(a$arma)-1]` is the order d and `a$arma[length(a$arma)]` is the seasonal order.
- [How to read p,d and q of `auto.arima()`?](https://stats.stackexchange.com/questions/178577/how-to-read-p-d-and-q-of-auto-arima) describe the help page in `auto.arima()` has descibe that `a$arma` is `(p, q, P, Q, d, D)`.
- [How to interpret the second part of an auto arima result in R?](https://stackoverflow.com/questions/47119765/how-to-interpret-the-second-part-of-an-auto-arima-result-in-r) interpret the seasonal arima model.
- [extract ARIMA specificaiton](https://stackoverflow.com/questions/23617662/extract-arima-specificaiton) provides a function how to extract the `a$arma[c(1, 6, 2, 3, 7, 4, 5)]` from an `auto.arima()`.
- [How to include seasonality in auto arima with regressors in R?](https://stats.stackexchange.com/questions/295004/how-to-include-seasonality-in-auto-arima-with-regressors-in-r) use a `xreg` for seasonal model.
- [Step-by-Step Graphic Guide to Forecasting through ARIMA Modeling using R – Manufacturing Case Study Example (Part 4)](http://ucanalytics.com/blogs/step-by-step-graphic-guide-to-forecasting-through-arima-modeling-in-r-manufacturing-case-study-example/) forecast seasonal sales by using `auto.arima()`.
- [Frequency parameter and its impact on auto.arima results](https://stats.stackexchange.com/questions/187304/frequency-parameter-and-its-impact-on-auto-arima-results)^[[Seasonal periods](https://robjhyndman.com/hyndsight/seasonal-periods/) describe very details on the `seasonal period` parameters determination.] ask about the determination of frequency parameter for `seasonal period` where the author of `forecast` package provides a details and concise answer.
- [`auto.arima` Warns `NaNs` Produced on Std abnor](https://stats.stackexchange.com/questions/26999/auto-arima-warns-nans-produced-on-std-abnor) suggested set `stepwise=FALSE` and `approximation=FALSE` is better model.
> If you look at the help file of auto.arima and navigate to the section "Value", you are directed to the help file of arima function and there you find the following (under the section "Value") regarding the arma slot:
A compact form of the specification, as a vector giving the number of AR, MA, seasonal AR and seasonal MA coefficients, plus the period and the number of non-seasonal and seasonal differences.
That is what the seven elements you reported correspond to. In your case, you have a non-seasonal `ARIMA(1,2,0)`.
*Source : How to read p,d and q of `auto.arima()`? (which is 1 among the reference link above.)*
> So far, we have restricted our attention to non-seasonal data and non-seasonal ARIMA models. However, ARIMA models are also capable of modelling a wide range of seasonal data.
A seasonal ARIMA model is formed by including additional seasonal terms in the ARIMA models we have seen so far. It is written as follows:
| ARIMA | $\underbrace{(p, d, q)}$ | $\underbrace{(P, D, Q)_{m}}$ |
|:-------:|:------------------------------:|:-----------------------------:|
| | ↑ | ↑ |
| | Non-seasonal part of the model | Seasonal part of the model |
where `m = number of observations per year`. We use uppercase notation for the seasonal parts of the model, and lowercase notation for the non-seasonal parts of the model.
The seasonal part of the model consists of terms that are similar to the non-seasonal components of the model, but involve backshifts of the seasonal period. For example, an $ARIMA(1,1,1)(1,1,1)_{4}$ model (without a constant) is for quarterly data (m = 4), and can be written as
$$(1 - {\color{Red}\phi_{1}}B)~(1 - {\color{Red}\Phi_{1}}B^{4}) (1 - B) (1 - B^{4})y_{t} = (1 + {\color{Red}\theta_{1}}B)~ (1 + {\color{Red}\Theta_{1}}B^{4})\varepsilon_{t}$$
The additional seasonal terms are simply multiplied by the non-seasonal terms.
`auto.arima(euretail, stepwise=FALSE, approximation=FALSE)` is better than `auto.arima(euretail)`.
> The `auto.arima()` function uses `nsdiffs()` to determine D (the number of seasonal differences to use), and `ndiffs()` to determine d (the number of ordinary differences to use). The selection of the other model parameters `(p, q, P and Q)` are all determined by minimizing the AICc, as with non-seasonal ARIMA models.
*Source : 8.9 Seasonal ARIMA models (which is 1 among the reference link above.)*
Above *8.5 Non-seasonal ARIMA models* reference link describe the `auto.arima()` and the default setting is `seasonal=TRUE` where it will automatically model^[help of `auto.arima()` describe the `seasonal : If FALSE, restricts search to non-seasonal models.`] .
> The default arguments are designed for rapid estimation of models for many time series. If you are analysing just one time series, and can afford to take some more time, it is recommended that you set stepwise=FALSE and approximation=FALSE.
Non-stepwise selection can be slow, especially for seasonal data. The stepwise algorithm outlined in Hyndman & Khandakar (2008) is used except that the default method for selecting seasonal differences is now based on an estimate of seasonal strength (Wang, Smith & Hyndman, 2006) rather than the Canova-Hansen test. There are also some other minor variations to the algorithm described in Hyndman and Khandakar (2008).
*Source : help section of `auto.arima()`.*
>`ARIMA(2,1,1)(1,0,0)[12]` is seasonal ARIMA. `[12]` stands for number of periods in season, i.e. months in year in this case. `(1,0,0)` stands for seasonal part of model. Take a look at [this](https://onlinecourses.science.psu.edu/stat510/node/67).
*Source : extract ARIMA specificaiton (which is 1 among the reference link above.)*
> You can force a seasonal model by setting `D=1`, although `auto.arima()` runs for quite some time with forced seasonality. (Note that the information criteria are not comparable between the original and the differenced series.)
$$
\begin{array}{l,l,l}
&\text{Training} & \text{Test}\\
\mathrm{ARIMA}(2,1,1) & 5.729 & 7.657\\
\mathrm{SARIMA}(1,1,0)_{52}\text{ with drift} & 6.481 & 7.390\\
\text{3 harmonics, }\mathrm{ARIMA}(2,1,0) & 5.578 & 5.151\\
\text{4 harmonics, }\mathrm{ARIMA}(2,1,1) & 5.219 & 5.188
\end{array}
$$
*Source : Seasonality not taken account of in `auto.arima()` (which is 1 among the reference link above.)*
> The problem with fitting seasonal ARIMA to daily data is that the "seasonal component" may only operate on the weekends or maybe just the weekdays thus overall there is a non-significnat "seasonal component". Now what you have to do is to augment your data set with 6 dummies representing the days of the week and perhaps monthly indicators to represent annual effects. Now consider incorporating events such as holidays and include any lead, contemoraneous or lag effect around these known variables. No there may be unusual values (pulses) or level shifts or local time trends in the data. Furthermore the day-of-the-week effects may have changed over time e.g. there was no Saturday effect for the first 20 weeks but a Saturday effect for the last 50 weeks.If you wish to post tour daily data I will give it a try and maybe other readers of the list might also contribute their analysis to help guide you through this.
*Source : Auto.arima with daily data: how to capture seasonality/periodicity?*
### Modelling SARIMA
#### Seasonal Data
- [*Seasonality not taken account of in `auto.arima()`*](https://stats.stackexchange.com/a/213455/68357) compares few models and concludes that the harmonics ARIMA is the best fit model.
- Non-stepwise model will slow down the seasonal model.
- `a$arma[c(1, 6, 2, 3, 7, 4, 5)]` is $(p,d,q)(P,D,Q)_{s}$.
- [How does R's auto.arima() function determine the order of differencing when estimating a regression with seasonal ARIMA abnors?](https://stats.stackexchange.com/questions/30220/how-does-rs-auto-arima-function-determine-the-order-of-differencing-when-esti?answertab=votes#tab-top) talk about the OCSB test where [Major changes to the forecast package](https://robjhyndman.com/hyndsight/forecast3/) describe the improvement in `forecast` package.
- [Frequency parameter and its impact on auto.arima results](https://stats.stackexchange.com/questions/187304/frequency-parameter-and-its-impact-on-auto-arima-results) talk about the frequency parameter for `seasonal period` while the author of `forecast` package provides [Seasonal periods](https://robjhyndman.com/hyndsight/seasonal-periods/) where describe very details on the `seasonal period` parameters determination.
- [Auto.arima with daily data: how to capture seasonality/periodicity?](https://stats.stackexchange.com/questions/14742/auto-arima-with-daily-data-how-to-capture-seasonality-periodicity), the author of `forecast` package answered `salests <- ts(data,start=2010,frequency=7)` and `modArima <- auto.arima(salests)` for weekly seasonality determination.
- [Why is this xts frequency always 1?](https://stackoverflow.com/questions/34454947/why-is-this-xts-frequency-always-1)
>**Improved auto.arima()**
The `auto.arima()` function is widely used for automatically selecting ARIMA models. It works quite well, except that selection of $D$, the order of seasonal differencing, has always been poor. Up until now, the default has been to use the Canova-Hansen test to select $D$. Because the CH test has a null hypothesis of deterministic seasonality based on dummy variables, the function will often select $D=0$. So I’ve now switched to using the OCSB test for selecting $D$ which has a null hypothesis involving a seasonal difference, so it is much more likely to choose $D=1$ than previously. I’ve done extensive testing of the forecasts obtained under the two methods, and the OCSB test leads to better forecasts. Hence it is now the default. This means that the function may return a different ARIMA model than previously when the data are seasonal.
A separate function for selecting the seasonal order has also been made visible. So you can now call `nsdiffs()` to find the recommended number of seasonal differences without calling auto.arima(). There is also a `ndiffs()` function for selecting the number of first differences. Within `auto.arima()`, `nsdiffs()` is called first to select $D$, and then `ndiffs()` is applied to `diff(x,D)` if $D > 0$ or to $x$ if $D=0$.
> **Double-seasonal Holt-Winters**
The new dshw() function implements *Taylor’s (2003)* double-seasonal Holt-Winters method. This allows for two levels of seasonality. For example, with hourly data, there is often a daily period of 24 and a weekly period of 168. These are modelled separately in the `dshw()` function.
> I am planning some major new functionality to extend this to the various types of complex seasonality discussed in my recent JASA paper. Hopefully that will be ready in the next few weeks – I have a research assistant working on the new code.
*Source : Major changes to the forecast package*
- [Forecasting Daily Data with Multiple Seasonality in R](http://www.dbenson.co.uk/Rparts/subpages/forecastR/) provides the example for seasonal modelling. Now we start modelling harmonics model (which is using `xreg`).
- [R/msts.R](https://rdrr.io/cran/forecast/src/R/msts.R) introduced a multi seasonal time series objects, intended to be used for models that support multiple seasonal periods. The msts class inherits from the ts class and has an additional "msts" attribute which contains the vector of seasonal periods. All methods that work on a ts class, should also work on a msts class.
- [Multiseasonal models for multivariate time series](https://stats.stackexchange.com/questions/355746/multiseasonal-models-for-multivariate-time-series) and [Forecast double seasonal time series with multiple linear regression in R](https://petolau.github.io/Forecast-double-seasonal-time-series-with-multiple-linear-regression-in-R/) provides example for multi-seasonal modelling.
- [How to setup `xreg` argument in `auto.arima()` in R? [closed]](https://stats.stackexchange.com/questions/41070/how-to-setup-xreg-argument-in-auto-arima-in-r) using `xreg` for multivariate modelling.
- [Find Arima equation using auto.arima, daily long-term data (msts), 3 seasonal regressors, and calculating K in fourier](https://stats.stackexchange.com/questions/135521/find-arima-equation-using-auto-arima-daily-long-term-data-msts-3-seasonal-re) introduced 3 seasonal modelling.
- [R - Putting time series with frequency of 20 min into the function `stl()`](https://stackoverflow.com/questions/17738746/r-putting-time-series-with-frequency-of-20-min-into-the-function-stl)
- ["Frequency" value for seconds/minutes intervals data in R](https://stats.stackexchange.com/questions/120806/frequency-value-for-seconds-minutes-intervals-data-in-r)
- [Time Series and Forecasting using R](http://manishbarnwal.com/blog/2017/05/03/time_series_and_forecasting_using_R/)
```
library(forecast)
# create some artifical data
modelfitsample <- data.frame(Customer_Visit=rpois(49,3000),Weekday=rep(1:7,7),
Christmas=c(rep(0,40),1,rep(0,8)),Day=1:49)
# Create matrix of numeric predictors
xreg <- cbind(Weekday=model.matrix(~as.factor(modelfitsample$Weekday)),
Day=modelfitsample$Day,
Christmas=modelfitsample$Christmas)
# Remove intercept
xreg <- xreg[,-1]
# Rename columns
colnames(xreg) <- c("Mon","Tue","Wed","Thu","Fri","Sat","Day","Christmas")
# Variable to be modelled
visits <- ts(modelfitsample$Customer_Visit, frequency=7)
# Find ARIMAX model
modArima <- auto.arima(visits, xreg=xreg)
```
*Source : [How to setup `xreg` argument in `auto.arima()` in R? [closed]](https://stats.stackexchange.com/questions/41070/how-to-setup-xreg-argument-in-auto-arima-in-r)*
```
library(forecast)
ts_ <- ts(PaulsData$Temperature, frequency = 1)
msts_ <- msts(ts_, c(7,30,365))
fit <- auto.arima(ts_, seasonal=F, xreg=fourier(msts_, K=c(3,5,10))) # i,j,k
```
*Source : [Find Arima equation using auto.arima, daily long-term data (msts), 3 seasonal regressors, and calculating K in fourier](https://stats.stackexchange.com/questions/135521/find-arima-equation-using-auto-arima-daily-long-term-data-msts-3-seasonal-re)*
```{r, eval=FALSE}
ts_ <- data_m1$close %>%
ts()
mts_ <- data_m1 %>%
msts(seasonal.periods = c(1440, 7200), start = index(.)[1])
fit1 <- auto.arima(ts_, seasonal = FALSE, xreg=fourier(mts_, K=c(3,5,10)))