-
Notifications
You must be signed in to change notification settings - Fork 1
/
样本数据 - II.Rmd
941 lines (761 loc) · 34.5 KB
/
样本数据 - II.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
---
title: "盈利模式"
subtitle: "分析购彩助手数据 (第II部)"
author: "特邀导师 - 菜菜 <img src='文艺坊图库/景知夏小姐.jpg' height='24'>"
date: "`r lubridate::today()`"
output:
html_document:
mathjax: https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js
number_sections: yes
toc: yes
toc_depth: 4
toc_float:
collapsed: yes
smooth_scroll: yes
code_folding: hide
css: CSSBackgrounds.css
html_notebook:
mathjax: https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js
number_sections: yes
toc: yes
toc_depth: 4
toc_float:
collapsed: yes
smooth_scroll: yes
code_folding: hide
css: CSSBackgrounds.css
---
# 主题
<img src='文艺坊图库/商场如战场.png' width='560'>
[[**主题曲**]{style="color:blue"}](https://github.com/englianhu/report/discussions)
🚄东方快车,🚄一带一路。
<audio controls loop autoplay src="文艺坊歌曲库/東方快車合唱團 Oriental Express - 紅紅青春敲呀敲 《黑松沙士》廣告主題曲.mp3" controls></audio>
<br><br>
# 设定
## SCSS 设置
<style>
pre {
overflow-x: auto;
}
pre code {
word-wrap: normal;
white-space: pre;
}
.table-hover > tbody > tr:hover {
background-color: #8D918D;
}
</style>
```{r load-sass, class.source='bg-success', class.output='bg-primary'}
# install.packages('remotes', dependencies = TRUE, INSTALL_opts = '--no-lock')
library('BBmisc', 'rmsfuns')
#remotes::install_github("rstudio/sass")
lib('sass')
## https://support.rstudio.com/hc/en-us/articles/200532197
## https://community.rstudio.com/t/r-does-not-display-korean-chinese/30889/3?u=englianhu
#Sys.setlocale("LC_CTYPE", "en_US.UTF-8")
#Sys.setlocale("LC_CTYPE", "zh_CN.UTF-8")
#Sys.setlocale(category = "LC_CTYPE", "Chinese (Simplified)_China.936")
#Sys.setlocale(locale = "Chinese")
#Sys.setlocale(locale = "Japanese")
#Sys.setlocale(locale = "English")
# rmarkdown::render('/home/englianhu/Documents/owner/ryo-cn.Rmd', encoding = 'UTF-8')
#Sys.setlocale("LC_CTYPE", "UTF-8")
#Sys.setlocale(locale = "UTF-8")
#Sys.setlocale(category = "LC_ALL", locale = "chs")
#Sys.setlocale(category = "LC_ALL", locale = "UTF-8")
#Sys.setlocale(category = "LC_ALL", locale = "Chinese")
#Sys.setlocale(category = "LC_ALL", locale = "zh_CN.UTF-8")
Sys.setlocale("LC_ALL", "en_US.UTF-8")
```
```{scss set-scss, class.source='bg-success', class.output='bg-primary'}
/* https://stackoverflow.com/a/66029010/3806250 */
h1 { color: #002C54; }
h2 { color: #2F496E; }
h3 { color: #375E97; }
h4 { color: #556DAC; }
h5 { color: #92AAC7; }
/* ----------------------------------------------------------------- */
/* https://gist.github.com/himynameisdave/c7a7ed14500d29e58149#file-broken-gradient-animation-less */
.hover01 {
/* color: #FFD64D; */
background: linear-gradient(155deg, #EDAE01 0%, #FFEB94 100%);
transition: all 0.45s;
&:hover{
background: linear-gradient(155deg, #EDAE01 20%, #FFEB94 80%);
}
}
.hover02 {
color: #FFD64D;
background: linear-gradient(155deg, #002C54 0%, #4CB5F5 100%);
transition: all 0.45s;
&:hover{
background: linear-gradient(155deg, #002C54 20%, #4CB5F5 80%);
}
}
.hover03 {
color: #FFD64D;
background: linear-gradient(155deg, #A10115 0%, #FF3C5C 100%);
transition: all 0.45s;
&:hover{
background: linear-gradient(155deg, #A10115 20%, #FF3C5C 80%);
}
}
```
```{r gb-opts, class.source='hover01', class.output='hover02'}
## Set the timezone but not change the datetime
Sys.setenv(TZ = 'Asia/Shanghai')
## Setting to omit all warnings
## https://stackoverflow.com/a/36846793/3806250
## Set width
## options(knitr.table.format = 'html') will set all kableExtra tables to be 'html', otherwise need to set the parameter on every single table.
options(warn = -1, width = 999, knitr.table.format = 'html')#, digits.secs = 6)
## https://stackoverflow.com/questions/39417003/long-vectors-not-supported-yet-abnor-in-rmd-but-not-in-r-script
## https://yihui.org/knitr/options
knitr::opts_chunk$set(
class.source = 'hover01', class.output = 'hover02', class.error = 'hover03',
message = FALSE, warning = FALSE, error = TRUE,
autodep = TRUE, aniopts = 'loop',
progress = TRUE, verbose = TRUE,
cache = FALSE, cache.lazy = FALSE, result = 'asis')
```
<br><br>
## 设置
```{r libs, eval=FALSE}
## Setup Options, Loading Required Libraries and Preparing Environment
## Loading the packages and setting adjustment
source('函数/libs.R')
```
读取程序包
```{r load-pkgs}
## Setup Options, Loading Required Libraries and Preparing Environment
## leiou123
## leiou123
## https://rstudio.cloud/project/1198888
## Loading the package 'BBmisc'
if(suppressMessages(!require('BBmisc'))){
install.packages('BBmisc', dependencies = TRUE, INSTALL_opts = '--no-lock')
suppressMessages(library('BBmisc'))
}
if (suppressMessages(!require('rmsfuns'))) {
install.packages('rmsfuns', dependencies = TRUE, INSTALL_opts = '--no-lock')
suppressMessages(library('rmsfuns'))
}
if(!require('REmap')) devtools::install_github('lchiffon/REmap')
## Loading multiple packages at once
#pkgs <- c('readr', 'plyr', 'dplyr', 'magrittr', 'tidyverse', 'devtools', 'zoo', 'lubridate', 'stringr', 'rvest', 'markdown', 'googleVis', 'knitr', 'rmarkdown', 'htmltools', 'knitr', 'kableExtra', 'formattable', 'echarts4r', 'radarchart', 'MASS', 'htmlwidgets', 'maps', 'REmap', 'ggmap', 'vembedr')
pkgs <- c('plyr', 'dplyr', 'magrittr', 'stringr', 'knitr', 'kableExtra', 'lubridate', 'broom', 'purrr', 'readxl', 'tibble', 'DT')
suppressAll(lib(pkgs))
load_pkg(pkgs)
rm(pkgs)
## Set the googleVis options first to change the behaviour of plot.gvis, so that
## only the chart component of the HTML file is written into the output file.
op <- options(gvis.plot.tag = 'chart')
## <audio src='music/bigmoney.mp3' autoplay controls loop></audio>
```
```{r set-prefer}
conflict_prefer('filter', 'dplyr')
conflict_prefer('select', 'dplyr')
conflict_prefer('mutate', 'dplyr')
conflict_prefer('rename', 'dplyr')
```
<br><br>
# 简介
[盈利模式 - 分析购彩助手数据](https://rpubs.com/englianhu/goucai)使用广义型线性模型`glm`推算出`大`与`单`的出现率较高,<span style='color:goldenrod'>*盈利模式 - 分析购彩助手数据*</span>
<br><br>
# 数据
## 样本数据
账号:`zxg00123`,以下是从我们平台购彩助手中的官方数据采集下来的数据,什么彩种都可以分析,就拿个主打**1分快3**为样本。
![](文艺坊图库/QQ图片20200627153341.png)
```{r read-data}
hml <- read.delim(file = '1分快3样本数据2.txt')
hml %<>%
unlist %>%
as.character
#时间 期数 号码 大小/单双 鱼虾蟹
#12:41 0761 dice1 dice1 dice57 小 单 鱼 鱼 蟹
smp <- c('12:41', '0761', 'dice1 dice1 dice5', '7 小 单', '鱼 鱼 蟹') %>%
matrix(ncol = 1, byrow = TRUE) %>%
t %>%
data.frame
nm <- c('时间', '期数', '号码', '大小/单双', '鱼虾蟹')
names(smp) <- nm
smp %<>%
as_tibble
smp %>%
kable(caption = '1分快3样本数据') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(1, color = '#FFFF00', background = '#657383')
```
以上是原始样本数据结构。
## 整理数据
```{r clean-data}
smpp <- hml %>%
llply(., function(x) {
x %>%
str_extract_all('([0-9]{2}:[0-9]{2})|([0-9]{1,2}%)|(\\w+)') %>%
unlist %>%
str_replace_all('2e1d3b04', '') %>%
str_replace_all('([0-9]+[a-zA-Z]+)|([a-zA-Z]+)|[0-9]{1,2}%', '') %>%
.[nchar(.)>0] %>%
t %>%
data.frame
}) %>%
bind_rows %>%
as_tibble
names(smpp) <- c('时间', '期数', '骰子1', '骰子2', '骰子3', '总值', '大小', '单双', '鱼虾蟹1', '鱼虾蟹2', '鱼虾蟹3')
smpp %<>% mutate(
`时间` = hm(`时间`), `期数` = factor(`期数`),
`骰子1` = as.numeric(`骰子1`), `骰子2` = as.numeric(`骰子2`),
`骰子3` = as.numeric(`骰子3`), `总值` = as.numeric(`总值`),
`大小` = factor(`大小`), `单双` = factor(`单双`),
`鱼虾蟹1` = factor(`鱼虾蟹1`), `鱼虾蟹2` = factor(`鱼虾蟹2`),
`鱼虾蟹3` = factor(`鱼虾蟹3`))
smppp <- smpp[c('总值', '大小', '单双')]
smpp %>%
datatable(
caption = "1分快3样本数据",
escape = FALSE, filter = 'top', rownames = FALSE,
extensions = list(
'ColReorder' = NULL, 'RowReorder' = NULL,
'Buttons' = NULL, 'Responsive' = NULL),
options = list(
dom = 'BRrltpi', autoWidth = TRUE, scrollX = TRUE,
lengthMenu = list(c(10, 50, 100, -1), c('10', '50', '100', 'All')),
ColReorder = TRUE, rowReorder = TRUE,
buttons = list('copy', 'print',
list(extend = 'collection',
buttons = c('csv', 'excel', 'pdf'),
text = 'Download'), I('colvis'))))
```
以上是整理过的样本数据。
<br><br>
# 统计模型
## 基本分析
```{r prob-overview}
smpp[-c(1:2)] %>%
llply(table)
```
```{r prob-tbl}
yy <- suppressMessages(
llply(3:18, function(i) {
dpois(i, smppp$总值) %>%
round(2)
}) %>%
bind_cols)
names(yy) <- paste0('X', 3:18)
yy <- data.frame(smppp, yy) %>%
as_tibble
yy %>%
kable(caption = '和值概率明细') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(seq(1, nrow(yy), by = 2), color = '#FFFF00', background = '#657383') %>%
row_spec(seq(2, nrow(yy), by = 2), color = '#FFFF00', background = '#C0C0C0') %>%
scroll_box(width = '100%', height = '400px')
```
以上图表显示骰子总值从`3`到`18`的概率明细。
```{r prob-dist}
table(smpp$`总值`)
prop.table(table(smpp$`总值`))
barplot(prop.table(table(smpp$`总值`)))
```
以上图表显示骰子总值从`3`到`18`的概率。
```{r}
table(smpp$`大小`)
prop.table(table(smpp$`大小`))
barplot(prop.table(table(smpp$`大小`)))
```
以上图表显示骰子总值开`大`或`小`的概率。
```{r}
table(smpp$`单双`)
prop.table(table(smpp$`单双`))
barplot(prop.table(table(smpp$`单双`)))
```
以上图表显示骰子总值开`单`或`双`的概率。
```{r}
table(smpp$`鱼虾蟹1`)
prop.table(table(smpp$`鱼虾蟹1`))
barplot(prop.table(table(smpp$`鱼虾蟹1`)))
```
以上图表显示骰子总值开`葫`、`虾`、`蟹`、`钱`、`鱼`或`鸡`的概率。
```{r}
table(smpp$`鱼虾蟹2`)
prop.table(table(smpp$`鱼虾蟹2`))
barplot(prop.table(table(smpp$`鱼虾蟹2`)))
```
以上图表显示骰子总值开`葫`、`虾`、`蟹`、`钱`、`鱼`或`鸡`的概率。
```{r}
table(smpp$`鱼虾蟹3`)
prop.table(table(smpp$`鱼虾蟹3`))
barplot(prop.table(table(smpp$`鱼虾蟹3`)))
```
以上图表显示骰子总值开`葫`、`虾`、`蟹`、`钱`、`鱼`或`鸡`的概率。
## 统计建模
### 广义泊松模型 (GLM)
以下是以广义泊松模型预测开奖率。
```{r}
### 计算总值概率
## https://stats.stackexchange.com/questions/272194/interpreting-poisson-output-in-r
md1a <- glm(`总值`~`骰子1`+`骰子2`+`骰子3`, data = smpp, family = poisson)
md1b <- glm(`总值`~`骰子1`+`骰子2`+`骰子3` - 1, data = smpp, family = poisson)
ldply(
list(md1a, md1b), AIC) %>%
data.frame(`模型` = c('截距', '没截距'), .) %>%
dplyr::rename(AIC = V1) %>%
dplyr::mutate(Rank = rank(AIC)) %>%
kable(caption = '统计模型') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(1, color = '#FFFF00', background = '#657383') %>%
row_spec(2, color = '#FFFF00', background = '#6D7B8D')
```
根据以上模型,`截距`模型比较精准。
```{r}
md1a.pp <- md1a %>%
coef %>%
exp %>%
llply(., function(x) {dpois(3:18, x)}) %>%
bind_cols %>%
data.frame(x = 3:18, .)
names(md1a.pp) <- c('x', '截距', '骰子1', '骰子2', '骰子3')
md1a.pp %>%
kable(caption = '统计模型') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(seq(1, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#657383') %>%
row_spec(seq(2, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#C0C0C0') %>%
scroll_box(width = '100%', height = '400px')
```
### 计算大小概率
```{r}
md2a <- glm(as.numeric(`大小`)~`骰子1`+`骰子2`+`骰子3`, data = smpp, family = poisson)
md2b <- glm(as.numeric(`大小`)~`骰子1`+`骰子2`+`骰子3` - 1, data = smpp, family = poisson)
ldply(list(md2a, md2b), AIC) %>%
data.frame(`模型` = c('截距', '没截距'), .) %>%
dplyr::rename(AIC = V1) %>%
dplyr::mutate(Rank = rank(AIC)) %>%
kable(caption = '统计模型') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(1, color = '#FFFF00', background = '#657383') %>%
row_spec(2, color = '#FFFF00', background = '#6D7B8D')
```
根据以上模型,`截距`模型比较精准。
```{r}
md2a.pp <- md2a %>%
coef %>%
exp %>%
llply(., function(x) {dpois(1:18, x)}) %>%
bind_cols %>%
data.frame(x = 1:18, .)
names(md1a.pp) <- c('x', '截距', '骰子1', '骰子2', '骰子3')
md1a.pp %>%
kable(caption = '统计模型') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(seq(1, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#657383') %>%
row_spec(seq(2, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#C0C0C0') %>%
scroll_box(width = '100%', height = '400px')
```
### 计算单双概率
```{r}
md3a <- glm(as.numeric(`单双`)~`骰子1`+`骰子2`+`骰子3`, data = smpp, family = poisson)
md3b <- glm(as.numeric(`单双`)~`骰子1`+`骰子2`+`骰子3` - 1, data = smpp, family = poisson)
ldply(list(md3a, md3b), AIC) %>%
data.frame(`模型` = c('截距', '没截距'), .) %>%
dplyr::rename(AIC = V1) %>%
dplyr::mutate(Rank = rank(AIC)) %>%
kable(caption = '统计模型') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(1, color = '#FFFF00', background = '#657383') %>%
row_spec(2, color = '#FFFF00', background = '#6D7B8D')
```
根据以上模型,`截距`模型比较精准。
```{r}
md3a.pp <- md3a %>%
coef %>%
exp %>%
llply(., function(x) {dpois(1:6, x)}) %>%
bind_cols %>%
data.frame(x = 1:6, .)
names(md1a.pp) <- c('x', '截距', '骰子1', '骰子2', '骰子3')
md1a.pp %>%
kable(caption = '统计模型') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(seq(1, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#657383') %>%
row_spec(seq(2, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#C0C0C0') %>%
scroll_box(width = '100%', height = '400px')
```
```{r}
## load function files
pth <- paste0('函数/bivpois/R/', list.files(path = '函数/bivpois/R/'))
l_ply(pth, source)
attr(smpp$单双,'contrasts') <- stats::contrasts(stats::C(factor(smpp$单双), sum))
attr(smpp$大小,'contrasts') <- stats::contrasts(stats::C(factor(smpp$大小), sum))
attr(smpp$单双,'levels') <- levels(factor(smpp$单双))
attr(smpp$大小,'levels') <- levels(factor(smpp$大小))
## formula for modeling of lambda1 and lambda2
#form1 <- ~c(team1,team2)+c(team2,team1)
## Model 1: Double Poisson
#ex4.m1<-lm.bp( g1~1, g2~1, l1l2=form1, zeroL3=TRUE, data=ex4.ita91)
## Models 2-5: bivariate Poisson models
#ex4.m2<-lm.bp(g1~1,g2~1, l1l2=form1, data=ex4.ita91, maxit=2)
#ex4.m3<-lm.bp(g1~1,g2~1, l1l2=form1, l3=~team1, data=ex4.ita91, maxit=2)
#ex4.m4<-lm.bp(g1~1,g2~1, l1l2=form1, l3=~team2, data=ex4.ita91, maxit=2)
#ex4.m5<-lm.bp(g1~1,g2~1, l1l2=form1, l3=~team1+team2, data=ex4.ita91, maxit=2)
form1 <- ~c('大小', '单双') + c('单双', '大小')
l1 = 总值~1; l2 = 总值~2; l1l2 = NULL; l3 = ~1; data = smppp; common.intercept = FALSE; zeroL3 = FALSE; maxit = 100; pres = 1e-8; verbose = getOption('verbose')
lm.bp(大小 ~ 1, 单双 ~ 2, l1l2 = form1, zeroL3 = TRUE, data = smpp)
lm.bp(大小 ~ 1, 单双 ~ 2, l1l2 = form1, data = smpp, maxit = 2)
lm.bp(大小 ~ 1, 单双 ~ 2, l1l2 = form1, l3 = ~单双, data = smpp, maxit = 2)
lm.bp(大小 ~ 1, 单双 ~ 2, l1l2 = form1, l3 = ~大小+单双, data = smpp, maxit = 2)
```
### 计算大小单双概率
#### 760期
```{r}
dx = glm(as.numeric(大小)~总值-1, family=poisson, data=smppp) %>%
coef %>%
exp
dx <- dx/sum(1 + dx)
ds = glm(as.numeric(单双)~总值-1, family=poisson, data=smppp) %>%
coef %>%
exp
ds <- ds/sum(1 + ds)
n760 <- data.frame(dx, ds) %>%
dplyr::rename(`开大` = dx, `开单` = ds) %>%
dplyr::mutate(`开小` = 1- `开大`, `开双` = 1- `开单`) %>%
dplyr::select('开大', '开小', '开单', '开双')
n760[c('开大', '开小', '开单', '开双')] %>%
colMeans %>% t %>%
kable(caption = '760期为标准') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(1, color = '#FFFF00', background = '#657383')
```
#### 20期
```{r}
##20期为标准
n20 <- llply(21:nrow(smppp), function(i) {
ii <- i - 20
dx = glm(as.numeric(大小)~总值-1, family=poisson, data=smppp[c(ii:i),]) %>%
coef %>%
exp
dx <- dx/sum(1 + dx)
ds = glm(as.numeric(单双)~总值-1, family=poisson, data=smppp[c(ii:i),]) %>%
coef %>%
exp
ds <- ds/sum(1 + ds)
data.frame(dx, ds) %>%
dplyr::rename(`开大` = dx, `开单` = ds) %>%
dplyr::mutate(`开小` = 1- `开大`, `开双` = 1- `开单`) %>%
dplyr::select('开大', '开小', '开单', '开双') %>%
data.frame(smppp[i,], .)
}) %>%
bind_rows %>%
as_tibble
n20 %>%
kable(caption = '20期为标准') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(seq(1, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#657383') %>%
row_spec(seq(2, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#C0C0C0') %>%
scroll_box(width = '100%', height = '400px')
```
以上的数据以`20`期移动数据为标准,然后预测第`21`期移动数据的开奖率。
```{r}
n20[c('开大', '开小', '开单', '开双')] %>%
colMeans %>% t %>%
kable(caption = '20期为标准') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive'))
```
以上乃`20`期总体开奖该率。
#### 30期
```{r}
##30期为标准
n30 <- llply(31:nrow(smppp), function(i) {
ii <- i - 30
dx = glm(as.numeric(大小)~总值-1, family=poisson, data=smppp[c(ii:i),]) %>%
coef %>% exp
dx <- dx/sum(1 + dx)
ds = glm(as.numeric(单双)~总值-1, family=poisson, data=smppp[c(ii:i),]) %>%
coef %>% exp
ds <- ds/sum(1 + ds)
data.frame(dx, ds) %>%
rename(`开大` = dx, `开单` = ds) %>%
mutate(`开小` = 1- `开大`, `开双` = 1- `开单`) %>%
select('开大', '开小', '开单', '开双') %>%
data.frame(smppp[i,], .)
}) %>% bind_rows %>% as_tibble
n30 %>%
kable(caption = '20期为标准') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(seq(1, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#657383') %>%
row_spec(seq(2, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#C0C0C0') %>%
scroll_box(width = '100%', height = '400px')
```
以上的数据以`30`期移动数据为标准,然后预测第`31`期移动数据的开奖率。
```{r}
n30[c('开大', '开小', '开单', '开双')] %>%
colMeans %>% t %>%
kable(caption = '30期为标准') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive'))
```
以上乃`30`期总体开奖该率。
#### 40期
```{r}
##40期为标准
n40 <- llply(41:nrow(smppp), function(i) {
ii <- i - 40
dx = glm(as.numeric(大小)~总值-1, family=poisson, data=smppp[c(ii:i),]) %>%
coef %>% exp
dx <- dx/sum(1 + dx)
ds = glm(as.numeric(单双)~总值-1, family=poisson, data=smppp[c(ii:i),]) %>%
coef %>% exp
ds <- ds/sum(1 + ds)
data.frame(dx, ds) %>%
rename(`开大` = dx, `开单` = ds) %>%
mutate(`开小` = 1- `开大`, `开双` = 1- `开单`) %>%
select('开大', '开小', '开单', '开双') %>%
data.frame(smppp[i,], .)
}) %>% bind_rows %>% as_tibble
n40 %>%
kable(caption = '40期为标准') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(seq(1, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#657383') %>%
row_spec(seq(2, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#C0C0C0') %>%
scroll_box(width = '100%', height = '400px')
```
以上的数据以`40`期移动数据为标准,然后预测第`41`期移动数据的开奖率。
```{r}
n40[c('开大', '开小', '开单', '开双')] %>%
colMeans %>% t %>%
kable(caption = '40期为标准') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive'))
```
以上乃`40`期总体开奖该率。
#### 50期
```{r}
##50期为标准
n50 <- llply(51:nrow(smppp), function(i) {
ii <- i - 50
dx = glm(as.numeric(大小)~总值-1, family=poisson, data=smppp[c(ii:i),]) %>%
coef %>% exp
dx <- dx/sum(1 + dx)
ds = glm(as.numeric(单双)~总值-1, family=poisson, data=smppp[c(ii:i),]) %>%
coef %>% exp
ds <- ds/sum(1 + ds)
data.frame(dx, ds) %>%
rename(`开大` = dx, `开单` = ds) %>%
mutate(`开小` = 1- `开大`, `开双` = 1- `开单`) %>%
select('开大', '开小', '开单', '开双') %>%
data.frame(smppp[i,], .)
}) %>% bind_rows %>% as_tibble
n50 %>%
kable(caption = '50期为标准') %>%
kable_styling(
bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, bold = TRUE, color = '#FDD017', background = '#3A3B3C') %>%
row_spec(seq(1, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#657383') %>%
row_spec(seq(2, nrow(md1a.pp), by = 2), color = '#FFFF00', background = '#C0C0C0') %>%
scroll_box(width = '100%', height = '400px')
```
以上的数以`50`期移动数据为标准,然后预测第`51`期移动数据的开奖率。
```{r}
n50[c('开大', '开小', '开单', '开双')] %>%
colMeans %>% t %>%
kable(caption = '50期为标准') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive'))
```
以上乃`50`期总体开奖该率。
### 广义相加泊松模型 (GAM)
### 贝叶斯 (βayesian)
### 隐马尔科夫链 (HMM)
### 长短记忆模型 (LSTM)
### 模型比较
```{r}
md <- list(n760 = n760,
n20 = n20[c('开大', '开小', '开单', '开双')] %>% colMeans,
n30 = n30[c('开大', '开小', '开单', '开双')] %>% colMeans,
n40 = n40[c('开大', '开小', '开单', '开双')] %>% colMeans,
n50 = n50[c('开大', '开小', '开单', '开双')] %>% colMeans) %>% bind_rows
md <- data.frame(.id = c('n760', 'n20', 'n30', 'n40', 'n50'), md) %>% as_tibble
md %>%
kable(caption = '模型比较') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive'))
```
以上的样本数据显示,`20`期、`30`期、`40`期和`50`期为一个移动数据预测下一期开奖率,结果都是相差不大。
## 盈利模式
<br><br>
# 结论
## 总结
以上总结,会员可以到我们平台通过不同盈利模式挣钱的呢。
```{r eval=FALSE}
## 改进
## https://stackoverflow.com/a/45344291
lib(c('RSelenium', 'rvest', 'wdman', 'webshot', 'decryptr'))
## 网址
## 登录网址
lnk <- 'https://m.a80802.com:8760/login'
## 彩种一栏
lnkcz <- 'https://m.cjezllpcecbm.com/allLottery/?source=lottery'
## 1分快三
lnk1k3 <- 'https://m.cjezllpcecbm.com/history/K3/OG1K3/?source=lottery'
## 3分快三
lnk3k3 <- 'https://m.cjezllpcecbm.com/history/K3/OG3K3/?source=lottery'
#lnk1k3 %>%
# read_html %>%
# html_nodes(xpath = '//*[@id="scrollContainer"]/div[2]') %>%
# html_table()
## 打开隐藏浏览器
pDrv <- phantomjs(port = 4567L, verbose = FALSE)
remDr <- remoteDriver(browserName = 'phantomjs', port = 4567L)
remDr$open(silent = TRUE)
## 浏览网站
remDr$navigate(lnk1k3)
## 输入账号
webElem <- remDr$findElement(using = 'xpath', value = '//*[@id="app"]/div/div[1]/div[3]/div/table/tbody/tr[1]/td[2]/input')
webElem$clickElement()
webElem$sendKeysToElement(list('leiou004', key = 'enter'))
## 输入密码
webElem <- remDr$findElement(using = 'xpath', value = '//*[@id="app"]/div/div[1]/div[3]/div/table/tbody/tr[2]/td[2]/input')
webElem$clickElement()
webElem$sendKeysToElement(list('leiou123', key = 'enter'))
## 验证码
## https://github.com/decryptr/decryptr
## https://rpubs.com/johndharrison/14707
webElem <- remDr$findElement(using = 'xpath', value = '//*[@id="geetest"]/div/div[2]/div[1]/div[3]')
webElem$clickElement()
webElem$sendKeysToElement(list(key = 'enter'))
#webElem$switchToFrame('div.geetest_popup_box')
#if (!require(devtools)) install.packages('devtools')
#devtools::install_github('decryptr/decryptr')
## 开奖记录
webElem <- remDr$findElement(using = 'xpath', value = '//*[@id="lotteryNavBar"]')
webElem$clickElement()
webElem$sendKeysToElement(list('leiou004', key = 'enter'))
##样本数据只是减低投资风险,采集实时数据才能证实有效性。
```
<br><br>
# 附录
## 文书明细
以下乃此文书的文件信息。
- 文集建立日:2022-05-31
- 文集最新更新日:`r today('Asia/Shanghai')`
- `r R.version.string`
- [**rmarkdown**](https://github.com/rstudio/rmarkdown) 程序包版本:`r packageVersion('rmarkdown')`
- 文集版本:0.2.1
- 文集作者:[®γσ, ξηg Lιαη Ημ](https://rpubs.com/englianhu/ryo-cn)
- 猫舍:[源代码](https://github.com/englianhu/report)
- 追加附属信息
```{r info}
#suppressMessages(require('formattable', quietly = TRUE))
#suppressMessages(require('knitr', quietly = TRUE))
#suppressMessages(require('kableExtra', quietly = TRUE))
#suppressMessages(require('magittr', quietly = TRUE))
#suppressMessages(require('devtools', quietly = TRUE))
sys1 <- session_info()$platform |>
unlist() |>
{\(.) data.frame(row.names = 1:length(.),
Category = names(.), session_info = .)}()
sys2 <- data.frame(Sys.info()) |>
{\(.) data.frame(Category = row.names(.), Sys.info = .[,1])}()
#remarks, dim(sys1), dim(sys2)
if (nrow(sys1) == 11 && nrow(sys2) == 8) {
sys2 <- sys2 |>
{\(.) rbind(., data.frame(
Category = c('rmarkdown', 'rsconnect', 'Current time'),
Sys.info = c(as.character(getwd()),
as.character(packageVersion('rsconnect')),
paste(as.character(lubridate::now('Asia/Shanghai')), 'CST 🗺'))))}()
} else if (nrow(sys1) == 10 && nrow(sys2) == 8) {
sys1 <- rbind(sys1, data.frame(Category = '', session_info = ''))
sys2 <- sys2 |>
{\(.) rbind(., data.frame(
Category = c('rmarkdown', 'rsconnect', 'Current time'),
Sys.info = c(as.character(getwd()),
as.character(packageVersion('rsconnect')),
paste(as.character(lubridate::now('Asia/Shanghai')), 'CST 🗺'))))}()
}
sys <- cbind(sys1, sys2) |>
{\(.)
kbl(., caption = 'Additional session information:')}() |>
{\(.)
kable_styling(., bootstrap_options = c('striped', 'hover', 'condensed', 'responsive'))}() |>
{\(.)
row_spec(., 0, background = 'DimGrey', color = 'yellow')}() |>
{\(.)
column_spec(., 1, background = 'CornflowerBlue', color = 'red')}() |>
{\(.)
column_spec(., 2, background = 'grey', color = 'black')}() |>
{\(.)
column_spec(., 3, background = 'CornflowerBlue', color = 'blue')}() |>
{\(.)
column_spec(., 4, background = 'grey', color = 'white')}() |>
{\(.)
row_spec(., 11, bold = TRUE, color = 'yellow', background = '#D7261E')}()
rm(sys1, sys2)
sys
```
## 参考文献
1) [心理学书籍[第三辑]PDF电子书百度云网盘打包下载](https://www.bluestep.cc/%E5%BF%83%E7%90%86%E5%AD%A6%E4%B9%A6%E7%B1%8D%E7%AC%AC%E4%B8%89%E8%BE%91pdf%E7%94%B5%E5%AD%90%E4%B9%A6%E7%99%BE%E5%BA%A6%E4%BA%91%E7%BD%91%E7%9B%98%E6%89%93%E5%8C%85%E4%B8%8B%E8%BD%BD)
2) [GitHub : Statistical Rethinking (2022 Edition)](https://github.com/englianhu/stat_rethinking_2022)
3) [GitHub : `rethinking` package](https://github.com/englianhu/rethinking) McElreath 2020. Statistical Rethinking, 2nd edition
4) [GitHub : Stan](https://github.com/stan-dev)
5) [GitHub : Repository for distributing (some) stan-dev R packages](https://github.com/stan-dev/r-packages)
6) [书栈网](https://www.bookstack.cn/user/englianhu)
7) [机器学习,关联规则与购物篮分析实战](https://zhuanlan.zhihu.com/p/386763670)
8) [数据挖掘之概率统计(一)](https://zhuanlan.zhihu.com/p/149937711)
9) [数据挖掘算法之-关联规则挖掘(Association Rule)(购物篮分析)](https://blog.csdn.net/goodhuajun/article/details/39893953)
10) [R语言用KERAS长短期记忆LSTM神经网络分类分析问答文本数据](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e7%94%a8keras%e9%95%bf%e7%9f%ad%e6%9c%9f%e8%ae%b0%e5%bf%86lstm%e7%a5%9e%e7%bb%8f%e7%bd%91%e7%bb%9c%e5%88%86%e7%b1%bb%e5%88%86%e6%9e%90%e9%97%ae%e7%ad%94%e6%96%87%e6%9c%ac%e6%95%b0)
11) [数据分享|R语言用Keras长短期记忆LSTM神经网络分类分析问答文本数据](https://mp.weixin.qq.com/s?__biz=MzU4NTA1MDk4MA==&mid=2247515373&idx=1&sn=9e3f528f55990f09dd60e1173acdd87a&chksm=fd9282e6cae50bf04f16d8bc65c5b271fd4018ba0ae911b507131bc560adcb078883f6e52148&token=996621185&lang=zh_CN#rd)
12) [用于NLP的PYTHON:使用KERAS的多标签文本LSTM神经网络分类](http://tecdat.cn/%e7%94%a8%e4%ba%8enlp%e7%9a%84python%ef%bc%9a%e4%bd%bf%e7%94%a8keras%e7%9a%84%e5%a4%9a%e6%a0%87%e7%ad%be%e6%96%87%e6%9c%aclstm%e7%a5%9e%e7%bb%8f%e7%bd%91%e7%bb%9c%e5%88%86%e7%b1%bb)
13) [618网购数据盘点——剁手族在关注什么?](http://tecdat.cn/618%e7%bd%91%e8%b4%ad%e6%95%b0%e6%8d%ae%e7%9b%98%e7%82%b9-%e5%89%81%e6%89%8b%e6%97%8f%e5%9c%a8%e5%85%b3%e6%b3%a8%e4%bb%80%e4%b9%88%ef%bc%9f)
14) [PYTHON中利用长短期记忆模型LSTM进行时间序列预测分析 – 预测电力负荷数据](http://tecdat.cn/python%e4%b8%ad%e5%88%a9%e7%94%a8%e9%95%bf%e7%9f%ad%e6%9c%9f%e8%ae%b0%e5%bf%86%e6%a8%a1%e5%9e%8blstm%e8%bf%9b%e8%a1%8c%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e9%a2%84%e6%b5%8b%e5%88%86%e6%9e%90)
15) [PYTHON在KERAS中使用LSTM解决序列问题](http://tecdat.cn/python%e5%9c%a8keras%e4%b8%ad%e4%bd%bf%e7%94%a8lstm%e8%a7%a3%e5%86%b3%e5%ba%8f%e5%88%97%e9%97%ae%e9%a2%98)
16) [PYTHON中用PYTORCH机器学习神经网络分类预测银行客户流失模型](http://tecdat.cn/python%e4%b8%ad%e7%94%a8pytorch%e6%9c%ba%e5%99%a8%e5%ad%a6%e4%b9%a0%e5%88%86%e7%b1%bb%e9%a2%84%e6%b5%8b%e9%93%b6%e8%a1%8c%e5%ae%a2%e6%88%b7%e6%b5%81%e5%a4%b1%e6%a8%a1%e5%9e%8b)
17) [用R语言实现神经网络预测股票实例](http://tecdat.cn/%e7%94%a8r%e8%af%ad%e8%a8%80%e5%ae%9e%e7%8e%b0%e7%a5%9e%e7%bb%8f%e7%bd%91%e7%bb%9c%e9%a2%84%e6%b5%8b%e8%82%a1%e7%a5%a8%e5%ae%9e%e4%be%8b)
18) [MATLAB使用贝叶斯优化的深度学习:卷积神经网络CNN](http://tecdat.cn/matlab%e4%bd%bf%e7%94%a8%e8%b4%9d%e5%8f%b6%e6%96%af%e4%bc%98%e5%8c%96%e7%9a%84%e6%b7%b1%e5%ba%a6%e5%ad%a6%e4%b9%a0)
19) [R语言多元COPULA GARCH 模型时间序列预测](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e5%a4%9a%e5%85%83copula-garch-%e6%a8%a1%e5%9e%8b%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e9%a2%84%e6%b5%8b)
20) [【稀土掘金】R语言用Keras长短期记忆LSTM神经网络分类分析问答文本数据](https://juejin.cn/post/7100020082050498597)
21) [在R语言中使用GAM(广义相加模型)进行电力负荷时间序列分析](http://tecdat.cn/%e5%9c%a8r%e8%af%ad%e8%a8%80%e4%b8%ad%e4%bd%bf%e7%94%a8gam%ef%bc%88%e5%b9%bf%e4%b9%89%e7%9b%b8%e5%8a%a0%e6%a8%a1%e5%9e%8b%ef%bc%89%e8%bf%9b%e8%a1%8c%e7%94%b5%e5%8a%9b%e8%b4%9f%e8%8d%b7%e6%97%b6)
22) [R语言中ARMA,ARIMA(BOX-JENKINS),SARIMA和ARIMAX模型用于预测时间序列数据](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e4%b8%adarma%ef%bc%8carima%ef%bc%88box-jenkins%ef%bc%89%ef%bc%8csarima%e5%92%8carimax%e6%a8%a1%e5%9e%8b%e7%94%a8%e4%ba%8e%e9%a2%84%e6%b5%8b%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97)
23) [R语言估计时变VAR模型时间序列的实证研究分析案例](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e4%bc%b0%e8%ae%a1%e6%97%b6%e5%8f%98var%e6%a8%a1%e5%9e%8b%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e7%9a%84%e5%ae%9e%e8%af%81%e7%a0%94%e7%a9%b6%e5%88%86%e6%9e%90%e6%a1%88%e4%be%8b)
24) [R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e9%9a%90%e9%a9%ac%e5%b0%94%e5%8f%af%e5%a4%ab%e6%a8%a1%e5%9e%8bhmm%e8%bf%9e%e7%bb%ad%e5%ba%8f%e5%88%97%e9%87%8d%e8%a6%81%e6%80%a7%e9%87%8d%e6%8a%bd%e6%a0%b7csir%e4%bc%b0%e8%ae%a1)
25) [R语言中的STAN概率编程MCMC采样的贝叶斯模型](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e4%b8%ad%e7%9a%84stan%e6%a6%82%e7%8e%87%e7%bc%96%e7%a8%8bmcmc%e9%87%87%e6%a0%b7%e7%9a%84%e8%b4%9d%e5%8f%b6%e6%96%af%e6%a8%a1%e5%9e%8b)
26) [R语言使用贝叶斯层次模型进行空间数据分析](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e4%bd%bf%e7%94%a8%e8%b4%9d%e5%8f%b6%e6%96%af%e5%b1%82%e6%ac%a1%e6%a8%a1%e5%9e%8b%e8%bf%9b%e8%a1%8c%e7%a9%ba%e9%97%b4%e6%95%b0%e6%8d%ae%e5%88%86%e6%9e%90)
27) [R语言实现向量自回归VAR模型](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e5%ae%9e%e7%8e%b0%e5%90%91%e9%87%8f%e8%87%aa%e5%8a%a8%e5%9b%9e%e5%bd%92var%e6%a8%a1%e5%9e%8b)
28) [一文搞懂HMM(隐马尔可夫模型)](https://www.cnblogs.com/skyme/p/4651331.html)
29) [马尔可夫链观点下的电商网站](http://meroa.com/markov-chain-shopping-guide)
30) [R语言多元LOGISTIC逻辑回归 应用案例](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e5%a4%9a%e5%85%83logistic%e9%80%bb%e8%be%91%e5%9b%9e%e5%bd%92-%e5%ba%94%e7%94%a8%e6%a1%88%e4%be%8b)
31) [不同用户生命周期的运营策略](https://www.jianshu.com/p/c03b6f8aeee9)
32) []()
33) []()
34) []()
35) []()
36) []()
37) []()
38) []()
39) []()
40) []()
---
[<img src="文艺坊图库/Scibrokes.png" height="14"/> Sςιβrοκεrs Trαdιηg®](http://www.scibrokes.com)<br>
<span style='color:RoyalBlue'>**[<img src="文艺坊图库/Scibrokes.png" height="14"/> 世博量化®](http://www.scibrokes.com)企业知识产权及版权所有,盗版必究。**</span>