forked from fpcsong/emotionflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·508 lines (475 loc) · 19.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
from config import *
from model import CRFModel
speaker_vocab_dict_path = 'vocabs/speaker_vocab.pkl'
emotion_vocab_dict_path = 'vocabs/emotion_vocab.pkl'
sentiment_vocab_dict_path = 'vocabs/sentiment_vocab.pkl'
def pad_to_len(list_data, max_len, pad_value):
list_data = list_data[-max_len:]
len_to_pad = max_len-len(list_data)
pads = [pad_value] * len_to_pad
list_data.extend(pads)
return list_data
def get_vocabs(file_paths, addi_file_path):
speaker_vocab = vocab.UnkVocab()
emotion_vocab = vocab.Vocab()
sentiment_vocab = vocab.Vocab()
# 保证neutral 在第0类
emotion_vocab.word2index('neutral', train=True)
# global speaker_vocab, emotion_vocab
for file_path in file_paths:
data = pd.read_csv(file_path)
for row in tqdm(data.iterrows(), desc='get vocab from {}'.format(file_path)):
meta = row[1]
emotion = meta['Emotion'].lower()
emotion_vocab.word2index(emotion, train=True)
additional_data = json.load(open(addi_file_path, 'r'))
for episode_id in additional_data:
for scene in additional_data.get(episode_id):
for utterance in scene['utterances']:
speaker = utterance['speakers'][0].lower()
speaker_vocab.word2index(speaker, train=True)
speaker_vocab = speaker_vocab.prune_by_count(1000)
speakers = list(speaker_vocab.counts.keys())
speaker_vocab = vocab.UnkVocab()
for speaker in speakers:
speaker_vocab.word2index(speaker, train=True)
logging.info('total {} speakers'.format(len(speaker_vocab.counts.keys())))
torch.save(emotion_vocab.to_dict(), emotion_vocab_dict_path)
torch.save(speaker_vocab.to_dict(), speaker_vocab_dict_path)
torch.save(sentiment_vocab.to_dict(), sentiment_vocab_dict_path)
def load_emorynlp_and_builddataset(file_path, train=False):
speaker_vocab = vocab.UnkVocab.from_dict(torch.load(
speaker_vocab_dict_path
))
emotion_vocab = vocab.Vocab.from_dict(torch.load(
emotion_vocab_dict_path
))
data = pd.read_csv(file_path)
ret_utterances = []
ret_speaker_ids = []
ret_emotion_idxs = []
utterances = []
full_contexts = []
speaker_ids = []
emotion_idxs = []
sentiment_idxs = []
pre_dial_id = -1
max_turns = 0
for row in tqdm(data.iterrows(), desc='processing file {}'.format(file_path)):
meta = row[1]
utterance = meta['Utterance'].lower().replace(
'’', '\'').replace("\"", '')
speaker = meta['Speaker'].lower()
utterance = speaker + ' says:, ' + utterance
emotion = meta['Emotion'].lower()
dialogue_id = meta['Scene_ID']
utterance_id = meta['Utterance_ID']
if pre_dial_id == -1:
pre_dial_id = dialogue_id
if dialogue_id != pre_dial_id:
ret_utterances.append(full_contexts)
ret_speaker_ids.append(speaker_ids)
ret_emotion_idxs.append(emotion_idxs)
max_turns = max(max_turns, len(utterances))
utterances = []
full_contexts = []
speaker_ids = []
emotion_idxs = []
pre_dial_id = dialogue_id
speaker_id = speaker_vocab.word2index(speaker)
emotion_idx = emotion_vocab.word2index(emotion)
token_ids = tokenizer(utterance, add_special_tokens=False)[
'input_ids'] + [CONFIG['SEP']]
full_context = []
if len(utterances) > 0:
context = utterances[-3:]
for pre_uttr in context:
full_context += pre_uttr
full_context += token_ids
# query
query = speaker + ' feels <mask>'
query_ids = [CONFIG['SEP']] + tokenizer(query, add_special_tokens=False)['input_ids'] + [CONFIG['SEP']]
full_context += query_ids
full_context = pad_to_len(
full_context, CONFIG['max_len'], CONFIG['pad_value'])
# + CONFIG['shift']
utterances.append(token_ids)
full_contexts.append(full_context)
speaker_ids.append(speaker_id)
emotion_idxs.append(emotion_idx)
pad_utterance = [CONFIG['SEP']] + tokenizer(
"1",
add_special_tokens=False
)['input_ids'] + [CONFIG['SEP']]
pad_utterance = pad_to_len(
pad_utterance, CONFIG['max_len'], CONFIG['pad_value'])
# for CRF
ret_mask = []
ret_last_turns = []
for dial_id, utterances in tqdm(enumerate(ret_utterances), desc='build dataset'):
mask = [1] * len(utterances)
while len(utterances) < max_turns:
utterances.append(pad_utterance)
ret_emotion_idxs[dial_id].append(-1)
ret_speaker_ids[dial_id].append(0)
mask.append(0)
ret_mask.append(mask)
ret_utterances[dial_id] = utterances
last_turns = [-1] * max_turns
for turn_id in range(max_turns):
curr_spk = ret_speaker_ids[dial_id][turn_id]
if curr_spk == 0:
break
for idx in range(0, turn_id):
if curr_spk == ret_speaker_ids[dial_id][idx]:
last_turns[turn_id] = idx
ret_last_turns.append(last_turns)
dataset = TensorDataset(
torch.LongTensor(ret_utterances),
torch.LongTensor(ret_speaker_ids),
torch.LongTensor(ret_emotion_idxs),
torch.ByteTensor(ret_mask),
torch.LongTensor(ret_last_turns)
)
return dataset
def load_meld_and_builddataset(file_path, train=False):
speaker_vocab = vocab.UnkVocab.from_dict(torch.load(
speaker_vocab_dict_path
))
emotion_vocab = vocab.Vocab.from_dict(torch.load(
emotion_vocab_dict_path
))
data = pd.read_csv(file_path)
ret_utterances = []
ret_speaker_ids = []
ret_emotion_idxs = []
utterances = []
full_contexts = []
speaker_ids = []
emotion_idxs = []
pre_dial_id = -1
max_turns = 0
for row in tqdm(data.iterrows(), desc='processing file {}'.format(file_path)):
meta = row[1]
utterance = meta['Utterance'].replace(
'’', '\'').replace("\"", '')
speaker = meta['Speaker']
utterance = speaker + ' says:, ' + utterance
emotion = meta['Emotion'].lower()
dialogue_id = meta['Dialogue_ID']
utterance_id = meta['Utterance_ID']
if pre_dial_id == -1:
pre_dial_id = dialogue_id
if dialogue_id != pre_dial_id:
ret_utterances.append(full_contexts)
ret_speaker_ids.append(speaker_ids)
ret_emotion_idxs.append(emotion_idxs)
max_turns = max(max_turns, len(utterances))
utterances = []
full_contexts = []
speaker_ids = []
emotion_idxs = []
pre_dial_id = dialogue_id
speaker_id = speaker_vocab.word2index(speaker)
emotion_idx = emotion_vocab.word2index(emotion)
token_ids = tokenizer(utterance, add_special_tokens=False)[
'input_ids'] + [CONFIG['SEP']]
full_context = []
if len(utterances) > 0:
context = utterances[-3:]
for pre_uttr in context:
full_context += pre_uttr
full_context += token_ids
# query
query = 'Now ' + speaker + ' feels <mask>'
query_ids = tokenizer(query, add_special_tokens=False)['input_ids'] + [CONFIG['SEP']]
full_context += query_ids
full_context = pad_to_len(
full_context, CONFIG['max_len'], CONFIG['pad_value'])
# + CONFIG['shift']
utterances.append(token_ids)
full_contexts.append(full_context)
speaker_ids.append(speaker_id)
emotion_idxs.append(emotion_idx)
pad_utterance = [CONFIG['SEP']] + tokenizer(
"1",
add_special_tokens=False
)['input_ids'] + [CONFIG['SEP']]
pad_utterance = pad_to_len(
pad_utterance, CONFIG['max_len'], CONFIG['pad_value'])
# for CRF
ret_mask = []
ret_last_turns = []
for dial_id, utterances in tqdm(enumerate(ret_utterances), desc='build dataset'):
mask = [1] * len(utterances)
while len(utterances) < max_turns:
utterances.append(pad_utterance)
ret_emotion_idxs[dial_id].append(-1)
ret_speaker_ids[dial_id].append(0)
mask.append(0)
ret_mask.append(mask)
ret_utterances[dial_id] = utterances
last_turns = [-1] * max_turns
for turn_id in range(max_turns):
curr_spk = ret_speaker_ids[dial_id][turn_id]
if curr_spk == 0:
break
for idx in range(0, turn_id):
if curr_spk == ret_speaker_ids[dial_id][idx]:
last_turns[turn_id] = idx
ret_last_turns.append(last_turns)
dataset = TensorDataset(
torch.LongTensor(ret_utterances),
torch.LongTensor(ret_speaker_ids),
torch.LongTensor(ret_emotion_idxs),
torch.ByteTensor(ret_mask),
torch.LongTensor(ret_last_turns)
)
return dataset
def get_paramsgroup(model, warmup=False):
no_decay = ['bias', 'LayerNorm.weight']
pre_train_lr = CONFIG['ptmlr']
'''
frozen_params = []
frozen_layers = [3,4,5,6,7,8]
for layer_idx in frozen_layers:
frozen_params.extend(
list(map(id, model.context_encoder.encoder.layer[layer_idx].parameters()))
)
'''
bert_params = list(map(id, model.context_encoder.parameters()))
crf_params = list(map(id, model.crf_layer.parameters()))
params = []
warmup_params = []
for name, param in model.named_parameters():
# if id(param) in frozen_params:
# continue
lr = CONFIG['lr']
weight_decay = 0
if id(param) in bert_params:
lr = pre_train_lr
if id(param) in crf_params:
lr = CONFIG['lr'] * 10
if not any(nd in name for nd in no_decay):
weight_decay = 0
params.append(
{
'params': param,
'lr': lr,
'weight_decay': weight_decay
}
)
# warmup的时候不考虑bert
warmup_params.append(
{
'params': param,
'lr': 0 if id(param) in bert_params else lr,
'weight_decay': weight_decay
}
)
if warmup:
return warmup_params
params = sorted(params, key=lambda x: x['lr'], reverse=True)
return params
def train_epoch(model, optimizer, data, epoch_num=0, max_step=-1):
loss_func = torch.nn.CrossEntropyLoss(ignore_index=-1)
sampler = RandomSampler(data)
dataloader = DataLoader(
data,
batch_size=CONFIG['batch_size'],
sampler=sampler,
num_workers=0 # multiprocessing.cpu_count()
)
tq_train = tqdm(total=len(dataloader), position=1)
accumulation_steps = CONFIG['accumulation_steps']
for batch_id, batch_data in enumerate(dataloader):
batch_data = [x.to(model.device()) for x in batch_data]
sentences = batch_data[0]
speaker_ids = batch_data[1]
emotion_idxs = batch_data[2]
mask = batch_data[3]
last_turns = batch_data[4]
outputs = model(sentences, mask, speaker_ids, last_turns, emotion_idxs)
loss = outputs
# loss += loss_func(outputs[3], sentiment_idxs)
tq_train.set_description('loss is {:.2f}'.format(loss.item()))
tq_train.update()
loss = loss / accumulation_steps
loss.backward()
if batch_id % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
# torch.cuda.empty_cache()
tq_train.close()
def test(model, data):
pred_list = []
hidden_pred_list = []
selection_list = []
y_true_list = []
model.eval()
sampler = SequentialSampler(data)
dataloader = DataLoader(
data,
batch_size=CONFIG['batch_size'],
sampler=sampler,
num_workers=0, # multiprocessing.cpu_count()
)
tq_test = tqdm(total=len(dataloader), desc="testing", position=2)
for batch_id, batch_data in enumerate(dataloader):
batch_data = [x.to(model.device()) for x in batch_data]
sentences = batch_data[0]
speaker_ids = batch_data[1]
emotion_idxs = batch_data[2].cpu().numpy().tolist()
mask = batch_data[3]
last_turns = batch_data[4]
outputs = model(sentences, mask, speaker_ids, last_turns)
for batch_idx in range(mask.shape[0]):
for seq_idx in range(mask.shape[1]):
if mask[batch_idx][seq_idx]:
pred_list.append(outputs[batch_idx][seq_idx])
y_true_list.append(emotion_idxs[batch_idx][seq_idx])
tq_test.update()
F1 = f1_score(y_true=y_true_list, y_pred=pred_list, average='weighted')
model.train()
return F1
def train(model, train_data_path, dev_data_path, test_data_path):
if CONFIG['task_name'] == 'meld':
devset = load_meld_and_builddataset(dev_data_path)
testset = load_meld_and_builddataset(test_data_path)
trainset = load_meld_and_builddataset(train_data_path)
else:
devset = load_emorynlp_and_builddataset(dev_data_path)
testset = load_emorynlp_and_builddataset(test_data_path)
trainset = load_emorynlp_and_builddataset(train_data_path)
# warmup
optimizer = torch.optim.AdamW(get_paramsgroup(model, warmup=True))
for epoch in range(CONFIG['wp']):
train_epoch(model, optimizer, trainset, epoch_num=epoch)
torch.cuda.empty_cache()
f1 = test(model, devset)
torch.cuda.empty_cache()
print('f1 on dev @ warmup epoch {} is {:.4f}'.format(
epoch, f1), flush=True)
# train
optimizer = torch.optim.AdamW(get_paramsgroup(model))
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=1, gamma=0.9)
best_f1 = -1
tq_epoch = tqdm(total=CONFIG['epochs'], position=0)
for epoch in range(CONFIG['epochs']):
tq_epoch.set_description('training on epoch {}'.format(epoch))
tq_epoch.update()
train_epoch(model, optimizer, trainset, epoch_num=epoch)
torch.cuda.empty_cache()
f1 = test(model, devset)
torch.cuda.empty_cache()
print('f1 on dev @ epoch {} is {:.4f}'.format(epoch, f1), flush=True)
# '''
if f1 > best_f1:
best_f1 = f1
torch.save(model,
'models/f1_{:.4f}_@epoch{}.pkl'
.format(best_f1, epoch))
if lr_scheduler.get_last_lr()[0] > 1e-5:
lr_scheduler.step()
f1 = test(model, testset)
print('f1 on test @ epoch {} is {:.4f}'.format(epoch, f1), flush=True)
# f1 = test(model, test_on_trainset)
# print('f1 on train @ epoch {} is {:.4f}'.format(epoch, f1), flush=True)
# '''
tq_epoch.close()
lst = os.listdir('./models')
lst = list(filter(lambda item: item.endswith('.pkl'), lst))
lst.sort(key=lambda x: os.path.getmtime(os.path.join('models', x)))
model = torch.load(os.path.join('models', lst[-1]))
f1 = test(model, testset)
print('best f1 on test is {:.4f}'.format(f1), flush=True)
if __name__ == '__main__':
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('-te', '--test', action='store_true',
help='run test', default=False)
parser.add_argument('-tr', '--train', action='store_true',
help='run train', default=False)
parser.add_argument('-ft', '--finetune', action='store_true',
help='fine tune base the best model', default=False)
parser.add_argument('-pr', '--print_error', action='store_true',
help='print error case', default=False)
parser.add_argument('-bsz', '--batch', help='Batch_size',
required=False, default=CONFIG['batch_size'], type=int)
parser.add_argument('-epochs', '--epochs', help='epochs',
required=False, default=CONFIG['epochs'], type=int)
parser.add_argument('-lr', '--lr', help='learning rate',
required=False, default=CONFIG['lr'], type=float)
parser.add_argument('-p_unk', '--p_unk', help='prob to generate unk speaker',
required=False, default=CONFIG['p_unk'], type=float)
parser.add_argument('-ptmlr', '--ptm_lr', help='ptm learning rate',
required=False, default=CONFIG['ptmlr'], type=float)
parser.add_argument('-tsk', '--task_name', default='meld', type=str)
parser.add_argument('-fp16', '--fp_16', action='store_true',
help='use fp 16', default=False)
parser.add_argument('-wp', '--warm_up', default=CONFIG['wp'],
type=int, required=False)
parser.add_argument('-dpt', '--dropout', default=CONFIG['dropout'],
type=float, required=False)
parser.add_argument('-e_stop', '--eval_stop',
default=500, type=int, required=False)
parser.add_argument('-bert_path', '--bert_path',
default=CONFIG['bert_path'], type=str, required=False)
parser.add_argument('-data_path', '--data_path',
default=CONFIG['data_path'], type=str, required=False)
parser.add_argument('-acc_step', '--accumulation_steps',
default=CONFIG['accumulation_steps'], type=int, required=False)
args = parser.parse_args()
CONFIG['data_path'] = args.data_path
CONFIG['lr'] = args.lr
CONFIG['ptmlr'] = args.ptm_lr
CONFIG['epochs'] = args.epochs
CONFIG['bert_path'] = args.bert_path
CONFIG['batch_size'] = args.batch
CONFIG['dropout'] = args.dropout
CONFIG['wp'] = args.warm_up
CONFIG['p_unk'] = args.p_unk
CONFIG['accumulation_steps'] = args.accumulation_steps
CONFIG['task_name'] = args.task_name
train_data_path = os.path.join(CONFIG['data_path'], 'train_sent_emo.csv')
test_data_path = os.path.join(CONFIG['data_path'], 'test_sent_emo.csv')
dev_data_path = os.path.join(CONFIG['data_path'], 'dev_sent_emo.csv')
if args.task_name =='emorynlp':
train_data_path = os.path.join(CONFIG['data_path'], 'emorynlp_train_final.csv')
test_data_path = os.path.join(CONFIG['data_path'], 'emorynlp_test_final.csv')
dev_data_path = os.path.join(CONFIG['data_path'], 'emorynlp_dev_final.csv')
os.makedirs('vocabs', exist_ok=True)
os.makedirs('models', exist_ok=True)
seed = 1024
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = True
# torch.autograd.set_detect_anomaly(True)
get_vocabs([train_data_path, dev_data_path, test_data_path],
'friends_transcript.json')
# model = PortraitModel(CONFIG)
model = CRFModel(CONFIG)
device = CONFIG['device']
model.to(device)
print('---config---')
for k, v in CONFIG.items():
print(k, '\t\t\t', v, flush=True)
if args.finetune:
lst = os.listdir('./models')
lst = list(filter(lambda item: item.endswith('.pkl'), lst))
lst.sort(key=lambda x: os.path.getmtime(os.path.join('models', x)))
model = torch.load(os.path.join('models', lst[-1]))
print('checkpoint {} is loaded'.format(
os.path.join('models', lst[-1])), flush=True)
if args.train:
train(model, train_data_path, dev_data_path, test_data_path)
if args.test:
# testset = load_meld_and_builddataset(dev_data_path)
if args.task_name =='emorynlp':
testset = load_emorynlp_and_builddataset(test_data_path)
if args.task_name == 'meld':
testset = load_meld_and_builddataset(test_data_path)
best_f1 = test(model, testset)
print(best_f1)
# python train.py -tr -wp 0 -bsz 1 -acc_step 8 -lr 1e-4 -ptmlr 1e-5 -dpt 0.3 >> output.log 0.6505