-
Notifications
You must be signed in to change notification settings - Fork 1
/
preProcess.py
164 lines (153 loc) · 5.49 KB
/
preProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from numpy.core.numeric import cross
from classes import Image, Feature, Cell
import logging
import numpy as np
from numpy.linalg.linalg import inv, norm
import cv2 as cv
def run(imageFile, featureFile, beta, isDisplay) :
print("==========================================================", flush=True)
print(" PREPROCESSING ", flush=True)
print("==========================================================", flush=True)
images = loadImages(imageFile)
calibrateImages(images)
setCell(images, beta, isDisplay)
featureDetection(images, featureFile, beta, isDisplay)
return images
def loadImages(filename) :
images = []
file = open(filename, 'r')
id = 0
lines = file.readlines()
for line in lines :
words = line.split()
name = words[0]
ins = np.array([
[float(words[1]), float(words[2]), float(words[3])],
[float(words[4]), float(words[5]), float(words[6])],
[float(words[7]), float(words[8]), float(words[9])]
])
ex = np.array([
[float(words[10]), float(words[11]), float(words[12]), float(words[19])],
[float(words[13]), float(words[14]), float(words[15]), float(words[20])],
[float(words[16]), float(words[17]), float(words[18]), float(words[21])]
])
img = Image(name, ins, ex, id)
images.append(img)
id += 1
logging.info(f'Total Images : {len(images)}')
return images
def calibrateImages(images) :
for image in images :
logging.info(f'IMAGE {image.id:02d}:Calibrating images...')
ins = image.ins
ex = image.ex
pmat = ins @ ex
R = np.array([
[ex[0][0], ex[0][1], ex[0][2]],
[ex[1][0], ex[1][1], ex[1][2]],
[ex[2][0], ex[2][1], ex[2][2]]
])
t = np.array([
ex[0][3],
ex[1][3],
ex[2][3]
])
center = -inv(R) @ t
center = np.array([
center[0],
center[1],
center[2],
1
])
zaxis = np.array(pmat[2])
zaxis[3] = 0
ftmp = norm(zaxis)
zaxis /= ftmp
zaxis = np.array([zaxis[0], zaxis[1], zaxis[2]])
xaxis = np.array([pmat[0][0], pmat[0][1], pmat[0][2]])
yaxis = cross(zaxis, xaxis)
yaxis /= norm(yaxis)
xaxis = cross(yaxis, zaxis)
image.pmat = pmat
image.center = center
image.xaxis = xaxis
image.yaxis = yaxis
image.zaxis = zaxis
def featureDetection(images, filename, beta, isDisplay) :
file = open(filename, 'r')
lines = file.readlines()
for image in images :
logging.info(f'IMAGE {image.id:02d}:Detecting features...')
img = cv.imread(image.name)
if isDisplay :
x = beta
y = beta
width = img.shape[1]
height = img.shape[0]
while x < width :
cv.line(img, (x, 0), (x, height), (0, 255, 0), 1)
x += beta
while y < height :
cv.line(img, (0, y), (width, y), (0, 255, 0), 1)
y += beta
for line in lines :
words = line.split()
if image.name == words[0] :
feats = []
i = 0
while i < int(words[1]) * 2 :
feat = Feature(int(words[2+i]), int(words[3+i]), image)
if isDisplay :
cv.circle(img, (feat.x, feat.y), 4, (0, 0, 255), -1)
feats.append(feat)
a = -2
while a < 3 :
b = -2
while b < 3 :
image.cells[int(feat.y/beta+b)][int(feat.x/beta+a)].feats.append(feat)
if isDisplay :
coord = image.cells[int(feat.y/beta+b)][int(feat.x/beta+a)].center
cv.circle(img, (int(coord[0]), int(coord[1])), 2, (255, 0, 0), -1)
b += 1
a += 1
i += 2
image.feats = feats
if isDisplay :
cv.imshow(f'Image {image.id:02d}', img)
cv.waitKey(0)
cv.destroyAllWindows()
def setCell(images, beta, isDisplay) :
for image in images :
logging.info(f'IMAGE {image.id:02d}:Applying cells')
img = cv.imread(image.name)
width = img.shape[1]
height = img.shape[0]
cells = np.empty((int(height/beta), int(width/beta)), dtype=Cell)
y = 0
i = 0
while y < height :
x = 0
j = 0
while x < width :
center = np.array([x+beta/2, y+beta/2])
cell = Cell(center, image)
if isDisplay :
cv.circle(img, (int(center[0]), int(center[1])), 2, (0, 0, 255), -1)
cells[i][j] = cell
j += 1
x += beta
i += 1
y += beta
image.cells = cells
if isDisplay :
x = beta
y = beta
while x < width :
cv.line(img, (x, 0), (x, height), (0, 255, 0), 1)
x += beta
while y < height :
cv.line(img, (0, y), (width, y), (0, 255, 0), 1)
y += beta
cv.imshow(f'Image {image.id:02d}', img)
cv.waitKey(0)
cv.destroyAllWindows()