We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('consciousAI/cai-stellaris-text-embeddings') embeddings = model.encode(sentences) print(embeddings) modules.json: 100% 349/349 [00:00<00:00, 3.19kB/s] config_sentence_transformers.json: 100% 116/116 [00:00<00:00, 633B/s] README.md: 100% 41.5k/41.5k [00:00<00:00, 182kB/s] sentence_bert_config.json: 100% 53.0/53.0 [00:00<00:00, 700B/s] config.json: 100% 660/660 [00:00<00:00, 7.02kB/s] pytorch_model.bin: 100% 211M/211M [00:06<00:00, 27.3MB/s] --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py](https://localhost:8080/#) in load_state_dict(checkpoint_file, is_quantized, map_location, weights_only) 534 weights_only_kwarg = {"weights_only": weights_only} if is_torch_greater_or_equal_than_1_13 else {} --> 535 return torch.load( 536 checkpoint_file, 11 frames [/usr/local/lib/python3.10/dist-packages/torch/serialization.py](https://localhost:8080/#) in load(f, map_location, pickle_module, weights_only, mmap, **pickle_load_args) 1325 overall_storage = None -> 1326 with _open_zipfile_reader(opened_file) as opened_zipfile: 1327 if _is_torchscript_zip(opened_zipfile): [/usr/local/lib/python3.10/dist-packages/torch/serialization.py](https://localhost:8080/#) in __init__(self, name_or_buffer) 670 def __init__(self, name_or_buffer) -> None: --> 671 super().__init__(torch._C.PyTorchFileReader(name_or_buffer)) 672 RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory During handling of the above exception, another exception occurred: UnicodeDecodeError Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py](https://localhost:8080/#) in load_state_dict(checkpoint_file, is_quantized, map_location, weights_only) 543 with open(checkpoint_file) as f: --> 544 if f.read(7) == "version": 545 raise OSError( [/usr/lib/python3.10/codecs.py](https://localhost:8080/#) in decode(self, input, final) 321 data = self.buffer + input --> 322 (result, consumed) = self._buffer_decode(data, self.errors, final) 323 # keep undecoded input until the next call UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 64: invalid start byte During handling of the above exception, another exception occurred: OSError Traceback (most recent call last) [<ipython-input-4-8d5bad5a9f0f>](https://localhost:8080/#) in <cell line: 4>() 2 sentences = ["This is an example sentence", "Each sentence is converted"] 3 ----> 4 model = SentenceTransformer('consciousAI/cai-stellaris-text-embeddings') 5 embeddings = model.encode(sentences) 6 print(embeddings) [/usr/local/lib/python3.10/dist-packages/sentence_transformers/SentenceTransformer.py](https://localhost:8080/#) in __init__(self, model_name_or_path, modules, device, prompts, default_prompt_name, similarity_fn_name, cache_folder, trust_remote_code, revision, local_files_only, token, use_auth_token, truncate_dim, model_kwargs, tokenizer_kwargs, config_kwargs, model_card_data, backend) 306 local_files_only=local_files_only, 307 ): --> 308 modules, self.module_kwargs = self._load_sbert_model( 309 model_name_or_path, 310 token=token, [/usr/local/lib/python3.10/dist-packages/sentence_transformers/SentenceTransformer.py](https://localhost:8080/#) in _load_sbert_model(self, model_name_or_path, token, cache_folder, revision, trust_remote_code, local_files_only, model_kwargs, tokenizer_kwargs, config_kwargs) 1726 # Otherwise we fall back to the load method 1727 try: -> 1728 module = module_class(model_name_or_path, cache_dir=cache_folder, backend=self.backend, **kwargs) 1729 except TypeError: 1730 module = module_class.load(model_name_or_path) [/usr/local/lib/python3.10/dist-packages/sentence_transformers/models/Transformer.py](https://localhost:8080/#) in __init__(self, model_name_or_path, max_seq_length, model_args, tokenizer_args, config_args, cache_dir, do_lower_case, tokenizer_name_or_path, backend) 76 77 config = self._load_config(model_name_or_path, cache_dir, backend, config_args) ---> 78 self._load_model(model_name_or_path, config, cache_dir, backend, **model_args) 79 80 if max_seq_length is not None and "model_max_length" not in tokenizer_args: [/usr/local/lib/python3.10/dist-packages/sentence_transformers/models/Transformer.py](https://localhost:8080/#) in _load_model(self, model_name_or_path, config, cache_dir, backend, **model_args) 136 self._load_mt5_model(model_name_or_path, config, cache_dir, **model_args) 137 else: --> 138 self.auto_model = AutoModel.from_pretrained( 139 model_name_or_path, config=config, cache_dir=cache_dir, **model_args 140 ) [/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py](https://localhost:8080/#) in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs) 562 elif type(config) in cls._model_mapping.keys(): 563 model_class = _get_model_class(config, cls._model_mapping) --> 564 return model_class.from_pretrained( 565 pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs 566 ) [/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py](https://localhost:8080/#) in from_pretrained(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, weights_only, *model_args, **kwargs) 4034 if not is_sharded and state_dict is None: 4035 # Time to load the checkpoint -> 4036 state_dict = load_state_dict(resolved_archive_file, weights_only=weights_only) 4037 4038 # set dtype to instantiate the model under: [/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py](https://localhost:8080/#) in load_state_dict(checkpoint_file, is_quantized, map_location, weights_only) 554 ) from e 555 except (UnicodeDecodeError, ValueError): --> 556 raise OSError( 557 f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' " 558 f"at '{checkpoint_file}'. " OSError: Unable to load weights from pytorch checkpoint file for '/root/.cache/huggingface/hub/models--consciousAI--cai-stellaris-text-embeddings/snapshots/c000ec4b29588daf0f4a0b2ad4e72ee807d8efc0/pytorch_model.bin' at '/root/.cache/huggingface/hub/models--consciousAI--cai-stellaris-text-embeddings/snapshots/c000ec4b29588daf0f4a0b2ad4e72ee807d8efc0/pytorch_model.bin'. If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.
The text was updated successfully, but these errors were encountered:
I'm able to reproduce this error, but it does not seem like the error is on our side. I started a discussion on the HF model page: https://huggingface.co/consciousAI/cai-stellaris-text-embeddings/discussions/1. In the meantime, should we comment this model out?
Sorry, something went wrong.
No branches or pull requests
The text was updated successfully, but these errors were encountered: