You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
also the not loaded weights part looks a scary - is this fine?
2025-01-01 03:02:31.039017: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2025-01-01 03:02:31.052914: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2025-01-01 03:02:31.057117: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
INFO:mteb.cli:Running with parameters: Namespace(model='infgrad/jasper_en_vision_language_v1', task_types=None, categories=None, tasks=['MassiveScenarioClassification'], languages=None, benchmarks=None, device=None, output_folder='/data/niklas/results/results', verbosity=2, co2_tracker=True, eval_splits=None, model_revision=None, batch_size=64, overwrite=False, save_predictions=False, func=<function run at 0x7f5cd8939630>)
Some weights of the model checkpoint at infgrad/jasper_en_vision_language_v1 were not used when initializing JasperVL: ['vision_model.vision_model.embeddings.patch_embedding.bias', 'vision_model.vision_model.embeddings.patch_embedding.weight', 'vision_model.vision_model.embeddings.position_embedding.weight', 'vision_model.vision_model.encoder.layers.0.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.0.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.0.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.0.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.0.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.0.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.0.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.0.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.0.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.0.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.0.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.0.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.0.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.0.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.0.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.0.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.1.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.1.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.1.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.1.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.1.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.1.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.1.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.1.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.1.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.1.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.1.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.1.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.1.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.1.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.1.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.1.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.10.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.10.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.10.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.10.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.10.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.10.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.10.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.10.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.10.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.10.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.10.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.10.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.10.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.10.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.10.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.10.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.11.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.11.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.11.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.11.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.11.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.11.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.11.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.11.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.11.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.11.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.11.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.11.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.11.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.11.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.11.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.11.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.12.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.12.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.12.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.12.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.12.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.12.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.12.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.12.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.12.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.12.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.12.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.12.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.12.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.12.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.12.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.12.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.13.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.13.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.13.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.13.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.13.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.13.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.13.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.13.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.13.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.13.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.13.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.13.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.13.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.13.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.13.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.13.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.14.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.14.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.14.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.14.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.14.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.14.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.14.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.14.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.14.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.14.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.14.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.14.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.14.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.14.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.14.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.14.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.15.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.15.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.15.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.15.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.15.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.15.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.15.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.15.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.15.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.15.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.15.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.15.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.15.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.15.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.15.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.15.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.16.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.16.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.16.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.16.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.16.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.16.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.16.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.16.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.16.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.16.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.16.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.16.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.16.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.16.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.16.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.16.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.17.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.17.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.17.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.17.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.17.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.17.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.17.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.17.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.17.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.17.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.17.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.17.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.17.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.17.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.17.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.17.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.18.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.18.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.18.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.18.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.18.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.18.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.18.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.18.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.18.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.18.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.18.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.18.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.18.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.18.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.18.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.18.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.19.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.19.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.19.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.19.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.19.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.19.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.19.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.19.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.19.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.19.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.19.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.19.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.19.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.19.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.19.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.19.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.2.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.2.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.2.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.2.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.2.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.2.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.2.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.2.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.2.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.2.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.2.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.2.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.2.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.2.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.2.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.2.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.20.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.20.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.20.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.20.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.20.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.20.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.20.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.20.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.20.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.20.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.20.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.20.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.20.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.20.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.20.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.20.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.21.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.21.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.21.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.21.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.21.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.21.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.21.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.21.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.21.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.21.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.21.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.21.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.21.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.21.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.21.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.21.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.22.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.22.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.22.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.22.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.22.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.22.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.22.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.22.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.22.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.22.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.22.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.22.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.22.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.22.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.22.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.22.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.23.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.23.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.23.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.23.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.23.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.23.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.23.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.23.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.23.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.23.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.23.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.23.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.23.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.23.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.23.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.23.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.24.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.24.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.24.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.24.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.24.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.24.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.24.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.24.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.24.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.24.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.24.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.24.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.24.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.24.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.24.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.24.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.25.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.25.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.25.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.25.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.25.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.25.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.25.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.25.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.25.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.25.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.25.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.25.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.25.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.25.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.25.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.25.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.26.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.26.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.26.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.26.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.26.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.26.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.26.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.26.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.26.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.26.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.26.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.26.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.26.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.26.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.26.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.26.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.3.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.3.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.3.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.3.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.3.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.3.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.3.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.3.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.3.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.3.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.3.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.3.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.3.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.3.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.3.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.3.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.4.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.4.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.4.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.4.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.4.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.4.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.4.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.4.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.4.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.4.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.4.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.4.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.4.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.4.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.4.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.4.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.5.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.5.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.5.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.5.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.5.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.5.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.5.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.5.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.5.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.5.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.5.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.5.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.5.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.5.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.5.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.5.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.6.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.6.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.6.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.6.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.6.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.6.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.6.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.6.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.6.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.6.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.6.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.6.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.6.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.6.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.6.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.6.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.7.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.7.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.7.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.7.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.7.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.7.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.7.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.7.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.7.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.7.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.7.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.7.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.7.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.7.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.7.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.7.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.8.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.8.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.8.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.8.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.8.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.8.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.8.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.8.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.8.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.8.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.8.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.8.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.8.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.8.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.8.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.8.self_attn.v_proj.weight', 'vision_model.vision_model.encoder.layers.9.layer_norm1.bias', 'vision_model.vision_model.encoder.layers.9.layer_norm1.weight', 'vision_model.vision_model.encoder.layers.9.layer_norm2.bias', 'vision_model.vision_model.encoder.layers.9.layer_norm2.weight', 'vision_model.vision_model.encoder.layers.9.mlp.fc1.bias', 'vision_model.vision_model.encoder.layers.9.mlp.fc1.weight', 'vision_model.vision_model.encoder.layers.9.mlp.fc2.bias', 'vision_model.vision_model.encoder.layers.9.mlp.fc2.weight', 'vision_model.vision_model.encoder.layers.9.self_attn.k_proj.bias', 'vision_model.vision_model.encoder.layers.9.self_attn.k_proj.weight', 'vision_model.vision_model.encoder.layers.9.self_attn.out_proj.bias', 'vision_model.vision_model.encoder.layers.9.self_attn.out_proj.weight', 'vision_model.vision_model.encoder.layers.9.self_attn.q_proj.bias', 'vision_model.vision_model.encoder.layers.9.self_attn.q_proj.weight', 'vision_model.vision_model.encoder.layers.9.self_attn.v_proj.bias', 'vision_model.vision_model.encoder.layers.9.self_attn.v_proj.weight', 'vision_model.vision_model.head.attention.in_proj_bias', 'vision_model.vision_model.head.attention.in_proj_weight', 'vision_model.vision_model.head.attention.out_proj.bias', 'vision_model.vision_model.head.attention.out_proj.weight', 'vision_model.vision_model.head.layernorm.bias', 'vision_model.vision_model.head.layernorm.weight', 'vision_model.vision_model.head.mlp.fc1.bias', 'vision_model.vision_model.head.mlp.fc1.weight', 'vision_model.vision_model.head.mlp.fc2.bias', 'vision_model.vision_model.head.mlp.fc2.weight', 'vision_model.vision_model.head.probe', 'vision_model.vision_model.post_layernorm.bias', 'vision_model.vision_model.post_layernorm.weight']
- This IS expected if you are initializing JasperVL from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing JasperVL from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
INFO:mteb.evaluation.MTEB:
## Evaluating 1 tasks:
─────────────────────────────── Selected tasks ────────────────────────────────
Classification
- MassiveScenarioClassification, s2s, multilingual 51 / 51 Subsets
INFO:mteb.evaluation.MTEB:
********************** Evaluating MassiveScenarioClassification **********************
Loading Dataset Infos from /env/lib/conda/gritkto/lib/python3.10/site-packages/datasets/packaged_modules/json
INFO:datasets.info:Loading Dataset Infos from /env/lib/conda/gritkto/lib/python3.10/site-packages/datasets/packaged_modules/json
Overwrite dataset info from restored data version if exists.
INFO:datasets.builder:Overwrite dataset info from restored data version if exists.
Loading Dataset info from /data/huggingface/datasets/mteb___amazon_massive_scenario/default/0.0.0/fad2c6e8459f9e1c45d9315f4953d921437d70f8
INFO:datasets.info:Loading Dataset info from /data/huggingface/datasets/mteb___amazon_massive_scenario/default/0.0.0/fad2c6e8459f9e1c45d9315f4953d921437d70f8
Found cached dataset amazon_massive_scenario (/data/huggingface/datasets/mteb___amazon_massive_scenario/default/0.0.0/fad2c6e8459f9e1c45d9315f4953d921437d70f8)
INFO:datasets.builder:Found cached dataset amazon_massive_scenario (/data/huggingface/datasets/mteb___amazon_massive_scenario/default/0.0.0/fad2c6e8459f9e1c45d9315f4953d921437d70f8)
Loading Dataset info from /data/huggingface/datasets/mteb___amazon_massive_scenario/default/0.0.0/fad2c6e8459f9e1c45d9315f4953d921437d70f8
INFO:datasets.info:Loading Dataset info from /data/huggingface/datasets/mteb___amazon_massive_scenario/default/0.0.0/fad2c6e8459f9e1c45d9315f4953d921437d70f8
INFO:mteb.abstasks.AbsTaskClassification:
Task: MassiveScenarioClassification, split: validation, subset: sq. Running...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 1/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 2/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 3/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 4/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 5/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 6/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 7/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 8/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 9/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 10/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:
Task: MassiveScenarioClassification, split: validation, subset: pt. Running...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 1/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 2/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 3/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 4/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 5/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 6/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 7/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 8/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 9/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 10/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
INFO:mteb.abstasks.AbsTaskClassification:
Task: MassiveScenarioClassification, split: validation, subset: ro. Running...
INFO:mteb.abstasks.AbsTaskClassification:========== Experiment 1/10 ==========
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Fitting logistic regression classifier...
INFO:mteb.evaluation.evaluators.ClassificationEvaluator:Evaluating...
ERROR:mteb.evaluation.MTEB:Error while evaluating MassiveScenarioClassification: Input X contains NaN.
LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
Traceback (most recent call last):
File "/env/lib/conda/gritkto/bin/mteb", line 8, in <module>
sys.exit(main())
File "/data/niklas/mteb/mteb/cli.py", line 387, in main
args.func(args)
File "/data/niklas/mteb/mteb/cli.py", line 145, in run
eval.run(
File "/data/niklas/mteb/mteb/evaluation/MTEB.py", line 623, in run
raise e
File "/data/niklas/mteb/mteb/evaluation/MTEB.py", line 562, in run
results, tick, tock = self._run_eval(
File "/data/niklas/mteb/mteb/evaluation/MTEB.py", line 304, in _run_eval
results = task.evaluate(
File "/data/niklas/mteb/mteb/abstasks/AbsTaskClassification.py", line 120, in evaluate
scores[hf_subset] = self._evaluate_subset(
File "/data/niklas/mteb/mteb/abstasks/AbsTaskClassification.py", line 196, in _evaluate_subset
scores_exp, test_cache = evaluator(model, test_cache=test_cache)
File "/data/niklas/mteb/mteb/evaluation/evaluators/ClassificationEvaluator.py", line 308, in __call__
y_pred = clf.predict(X_test)
File "/env/lib/conda/gritkto/lib/python3.10/site-packages/sklearn/linear_model/_base.py", line 351, in predict
scores = self.decision_function(X)
File "/env/lib/conda/gritkto/lib/python3.10/site-packages/sklearn/linear_model/_base.py", line 332, in decision_function
X = self._validate_data(X, accept_sparse="csr", reset=False)
File "/env/lib/conda/gritkto/lib/python3.10/site-packages/sklearn/base.py", line 633, in _validate_data
out = check_array(X, input_name="X", **check_params)
File "/env/lib/conda/gritkto/lib/python3.10/site-packages/sklearn/utils/validation.py", line 1049, in check_array
_assert_all_finite(
File "/env/lib/conda/gritkto/lib/python3.10/site-packages/sklearn/utils/validation.py", line 126, in _assert_all_finite
_assert_all_finite_element_wise(
File "/env/lib/conda/gritkto/lib/python3.10/site-packages/sklearn/utils/validation.py", line 175, in _assert_all_finite_element_wise
raise ValueError(msg_err)
ValueError: Input X contains NaN.
LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
/var/spool/slurmd/job810588/slurm_script: line 9: /data/niklas/mteb/failures/infgrad/jasper_en_vision_language_v1_MassiveScenarioClassification.txt: No such file or directory
The text was updated successfully, but these errors were encountered:
also the not loaded weights part looks a scary - is this fine?
The text was updated successfully, but these errors were encountered: