forked from PINTO0309/DeepLearningMugenKnock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuralnet_classification.py
194 lines (144 loc) · 4.97 KB
/
neuralnet_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
from glob import glob
import cv2
import matplotlib.pyplot as plt
np.random.seed(0)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
class FullyConnectedLayer():
def __init__(self, in_n, out_n, use_bias=True, activation=None):
self.w = np.random.normal(0, 1, [in_n, out_n])
if use_bias:
self.b = np.random.normal(0, 1, [out_n])
else:
self.b = None
if activation is not None:
self.activation = activation
else:
self.activation = None
def set_lr(self, lr=0.1):
self.lr = lr
def forward(self, feature_in):
self.x_in = feature_in
x = np.dot(feature_in, self.w)
if self.b is not None:
x += self.b
if self.activation is not None:
x = self.activation(x)
self.x_out = x
return x
def backward(self, w_pro, grad_pro):
grad = np.dot(grad_pro, w_pro.T)
if self.activation is sigmoid:
grad *= (self.x_out * (1 - self.x_out))
grad_w = np.dot(self.x_in.T, grad)
self.w -= self.lr * grad_w
if self.b is not None:
grad_b = np.dot(np.ones([grad.shape[0]]), grad)
self.b -= self.lr * grad_b
return grad
class Model():
def __init__(self, *args, lr=0.1):
self.layers = args
for l in self.layers:
l.set_lr(lr=lr)
def forward(self, x):
for layer in self.layers:
x = layer.forward(x)
self.output = x
return x
def backward(self, t):
En = (self.output - t) * self.output * (1 - self.output)
grad_pro = En
w_pro = np.eye(En.shape[-1])
for i, layer in enumerate(self.layers[::-1]):
grad_pro = layer.backward(w_pro=w_pro, grad_pro=grad_pro)
w_pro = layer.w
num_classes = 2
img_height, img_width = 64, 64
CLS = ['akahara', 'madara']
# get train data
def data_load(path, hf=False, vf=False, rot=None):
xs = []
ts = []
paths = []
for dir_path in glob(path + '/*'):
for path in glob(dir_path + '/*'):
x = cv2.imread(path)
x = cv2.resize(x, (img_width, img_height)).astype(np.float32)
x /= 255.
x = x[..., ::-1]
xs.append(x)
for i, cls in enumerate(CLS):
if cls in path:
t = i
ts.append(t)
paths.append(path)
if hf:
xs.append(x[:, ::-1])
ts.append(t)
paths.append(path)
if vf:
xs.append(x[::-1])
ts.append(t)
paths.append(path)
if hf and vf:
xs.append(x[::-1, ::-1])
ts.append(t)
paths.append(path)
if rot is not None:
angle = rot
scale = 1
# show
a_num = 360 // rot
w_num = np.ceil(np.sqrt(a_num))
h_num = np.ceil(a_num / w_num)
count = 1
while angle < 360:
_h, _w, _c = x.shape
max_side = max(_h, _w)
tmp = np.zeros((max_side, max_side, _c))
tx = int((max_side - _w) / 2)
ty = int((max_side - _h) / 2)
tmp[ty: ty+_h, tx: tx+_w] = x.copy()
M = cv2.getRotationMatrix2D((max_side/2, max_side/2), angle, scale)
_x = cv2.warpAffine(tmp, M, (max_side, max_side))
_x = _x[tx:tx+_w, ty:ty+_h]
xs.append(x)
ts.append(t)
paths.append(path)
angle += rot
ts = [[t] for t in ts]
xs = np.array(xs, dtype=np.float32)
ts = np.array(ts, dtype=np.int)
xs = xs.transpose(0,3,1,2)
return xs, ts, paths
model = Model(FullyConnectedLayer(in_n=img_height * img_width * 3, out_n=64, activation=sigmoid),
FullyConnectedLayer(in_n=64, out_n=32, activation=sigmoid),
FullyConnectedLayer(in_n=32, out_n=1, activation=sigmoid), lr=0.1)
xs, ts, paths = data_load("../Dataset/train/images/", hf=True, vf=True, rot=1)
mb = 64
mbi = 0
train_ind = np.arange(len(xs))
np.random.shuffle(train_ind)
for ite in range(1000):
if mbi + mb > len(xs):
mb_ind = train_ind[mbi:]
np.random.shuffle(train_ind)
mb_ind = np.hstack((mb_ind, train_ind[:(mb-(len(xs)-mbi))]))
mbi = mb - (len(xs) - mbi)
else:
mb_ind = train_ind[mbi: mbi+mb]
mbi += mb
x = xs[mb_ind]
t = ts[mb_ind]
x = x.reshape(mb, -1)
model.forward(x)
model.backward(t)
# test
xs, ts, paths = data_load("../Dataset/test/images/")
for i in range(len(xs)):
x = xs[i]
x = x.reshape(1, -1)
out = model.forward(x)
print("in >>", paths[i], ", out >>", out)