forked from PINTO0309/DeepLearningMugenKnock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_keras.py
168 lines (128 loc) · 4.09 KB
/
lstm_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import keras
import cv2
import numpy as np
import argparse
from glob import glob
# GPU config
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
from keras import backend as K
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list="0"
sess = tf.Session(config=config)
K.set_session(sess)
# network
from keras.models import Sequential, Model
from keras.layers import Dense, Input, SimpleRNN, LSTM
n_gram = 10
_chars = "あいうおえかきくけこさしすせそたちつてとなにぬねのはひふへほまみむめもやゆよらりるれろわをんがぎぐげござじずぜぞだぢづでどばびぶべぼぱぴぷぺぽぁぃぅぇぉゃゅょっー1234567890!?、。@#"
chars = [c for c in _chars]
num_classes = len(chars)
def Mynet():
inputs = Input([n_gram, num_classes])
x = LSTM(128, return_sequences=False)(inputs)
x = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=inputs, outputs=x, name='model')
return model
def data_load():
fname = 'sandwitchman.txt'
xs = []
ts = []
txt = ''
for _ in range(n_gram):
txt += '@'
onehots = []
with open(fname, 'r') as f:
for l in f.readlines():
txt += l.strip() + '#'
txt = txt[:-1] + '@'
for c in txt:
onehot = [0 for _ in range(num_classes)]
onehot[chars.index(c)] = 1
onehots.append(onehot)
for i in range(len(txt) - n_gram - 1):
xs.append(onehots[i:i+n_gram])
ts.append(onehots[i+n_gram])
xs = np.array(xs)
ts = np.array(ts)
return xs, ts
# train
def train():
# model
model = Mynet()
for layer in model.layers:
layer.trainable = True
model.compile(
loss='categorical_crossentropy',
optimizer=keras.optimizers.Adam(lr=0.001),
metrics=['accuracy'])
xs, ts = data_load()
# training
mb = 128
mbi = 0
train_ind = np.arange(len(xs))
np.random.seed(0)
np.random.shuffle(train_ind)
for i in range(1500):
if mbi + mb > len(xs):
mb_ind = train_ind[mbi:]
np.random.shuffle(train_ind)
mb_ind = np.hstack((mb_ind, train_ind[:(mb-(len(xs)-mbi))]))
else:
mb_ind = train_ind[mbi: mbi+mb]
mbi += mb
x = xs[mb_ind]
t = ts[mb_ind]
loss, acc = model.train_on_batch(x=x, y=t)
print("iter >>", i+1, ",loss >>", loss, ',accuracy >>', acc)
model.save('model.h5')
# test
def test():
# load trained model
model = Mynet()
model.load_weights('model.h5')
def decode(x):
return chars[x.argmax()]
gens = ''
for _ in range(n_gram):
gens += '@'
pred = 0
count = 0
while pred != '@' and count < 1000:
in_txt = gens[-n_gram:]
x = []
for _in in in_txt:
_x = [0 for _ in range(num_classes)]
_x[chars.index(_in)] = 1
x.append(_x)
x = np.expand_dims(np.array(x), axis=0)
pred = model.predict_on_batch(x)[0]
# sample random from probability distribution
ind = np.random.choice(num_classes, 1, p=pred)
pred = chars[ind[0]]
gens += pred
count += 1
# pose process
gens = gens.replace('#', os.linesep).replace('@', '')
print('--\ngenerated')
print(gens)
def arg_parse():
parser = argparse.ArgumentParser(description='CNN implemented with Keras')
parser.add_argument('--train', dest='train', action='store_true')
parser.add_argument('--test', dest='test', action='store_true')
args = parser.parse_args()
return args
# main
if __name__ == '__main__':
args = arg_parse()
if args.train:
train()
if args.test:
test()
if not (args.train or args.test):
print("please select train or test flag")
print("train: python main.py --train")
print("test: python main.py --test")
print("both: python main.py --train --test")