forked from mbandrews/MLAnalyzer
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvert_Tree2Dask_EBv4.py
153 lines (135 loc) · 6.43 KB
/
convert_Tree2Dask_EBv4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import ROOT
from root_numpy import tree2array
from dask.delayed import delayed
import dask.array as da
#eosDir='/eos/uscms/store/user/mba2012/IMGs/HighLumi_ROOTv2'
eosDir='/eos/uscms/store/user/mba2012/IMGs'
#decays = ["H125GGgluonfusion_Pt25_Eta23_13TeV_TuneCUETP8M1_HighLumiPileUpv3", "PromptDiPhoton_MGG80toInf_Pt25_Eta23_13TeV_TuneCUETP8M1_HighLumiPileUp"]
#decays = ["H125GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3", "PromptDiPhotonAll_MGG80toInf_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUp"]
#decays = ["H125GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3", "PromptDiPhotonAll_PtHat45_MGG80toInf_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUp"]
#decays = ['H125GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3']
#decays = ['H100GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3']
#decays = ['H112GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3']
#decays = ['H137GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3']
#decays = ['H150GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3']
#decays = ['H175GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3']
#decays = ['H162GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3']
#decays = ['H087GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3']
#decays = ["PromptDiPhotonAll_MGG80toInf_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUp", "H125GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3"]
#decays = ["PromptDiPhotonAll_MGG80toInf_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpV2", "H125GGgluonfusion_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUpv3"]
decays = ['PromptDiPhotonAll_MGG80toInf_Pt25_Eta14_13TeV_TuneCUETP8M1_HighLumiPileUp_HighStats']
chunk_size = 250
scale = 100.
@delayed
def load_X(tree, start_, stop_, branches_, readouts, scale):
X = tree2array(tree, start=start_, stop=stop_, branches=branches_)
# Convert the object array X to a multidim array:
# 1: for each event x in X, concatenate the object columns (branches) into a flat array of shape (readouts*branches)
# 2: reshape the flat array into a stacked array: (branches, readouts)
# 3: embed each stacked array as a single row entry in a list via list comprehension
# 4: convert this list into an array with shape (events, branches, readouts)
X = np.array([np.concatenate(x).reshape(len(branches_),readouts[0]*readouts[1]) for x in X])
#print "X.shape:",X.shape
X = X.reshape((-1,len(branches_),readouts[0],readouts[1]))
X = np.transpose(X, [0,2,3,1])
# Rescale
X /= scale
return X
@delayed
def load_single(tree, start_, stop_, branches_):
X = tree2array(tree, start=start_, stop=stop_, branches=branches_)
X = np.array([x[0] for x in X])
return X
def get_likelihood(m, lhood, binsLow):
l = 1.
if m < binsLow[0]:
l = lhood[0]
elif m > binsLow[-1]:
l = lhood[-1]
else:
l = lhood[m >= binsLow][-1]
return np.float32(l)
for j,decay in enumerate(decays):
if j == 0:
pass
#continue
tfile_str = '%s/%s_FEVTDEBUG_IMG.root'%(eosDir,decay)
#tfile_str = '%s/%s_FEVTDEBUG_nXXX_IMG.root'%(eosDir,decay)
tfile = ROOT.TFile(tfile_str)
tree = tfile.Get('fevt/RHTree')
nevts = tree.GetEntries()
neff = (nevts//1000)*1000
#neff = 256000
#neff = 250
print " >> Doing decay:", decay
print " >> Input file:", tfile_str
print " >> Total events:", nevts
print " >> Effective events:", neff
# EB
readouts = [170,360]
branches = ["EB_energy"]
X = da.concatenate([\
da.from_delayed(\
load_X(tree,i,i+chunk_size, branches, readouts, scale),\
shape=(chunk_size, readouts[0], readouts[1], len(branches)),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", X.shape
# eventId
branches = ["eventId"]
eventId = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.int32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", eventId.shape
# m0
branches = ["m0"]
m0 = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", m0.shape
# EB rescaled by m0
m0_reshape = da.reshape(m0, [-1,1,1,1])
X_m0 = scale*X/m0_reshape
print " >> Expected shape:", X_m0.shape
# Likelihood weights
if j == 0:
#h, bins = da.histogram(m0, bins=31, range=[80., 390.])
h, bins = da.histogram(m0, bins=152, range=[82., 386.])
else:
#h, bins = da.histogram(m0, bins=8, range=[70., 150.])
h, bins = da.histogram(m0, bins=38, range=[74., 150.])
h = h.compute()
h = h*np.float32(neff)/np.float32(h.sum())
binsLow = bins[:-1]
lhood = 1./h
lhood = lhood/lhood.sum()
wgt = da.from_array(np.array([get_likelihood(m, lhood, binsLow) for m in m0.compute()]), chunks=(chunk_size,))
# If you don't want to change the bkg:
if j == 0:
pass
#wgt = da.from_array(np.float32(np.ones(len(wgt))), chunks=(chunk_size,))
# Class label
label = j
#label = 1
print " >> Class label:",label
y = da.from_array(\
np.full(X.shape[0], label, dtype=np.float32),\
chunks=(chunk_size,))
file_out_str = "%s/%s_IMG_RHm0_n%dk_label%d.hdf5"%(eosDir,decay,neff//1000.,label)
#file_out_str = "%s/%s_IMG_RH%d_n%dk_label%d_wgt10GeV.hdf5"%(eosDir,decay,int(scale),neff//1000.,label)
#file_out_str = "%s/%s_IMG_RH%d-%d_n%dk.hdf5"%(eosDir,decay,int(scale[0]),int(scale[1]),neff//1000.)
#file_out_str = "test.hdf5"
print " >> Writing to:", file_out_str
da.to_hdf5(file_out_str, {'/X': X, 'X_m0': X_m0, '/y': y, 'eventId': eventId, 'm0': m0, 'wgt': wgt}, compression='lzf')
#da.to_hdf5(file_out_str, {'/X': X, 'X_m0': X_m0, '/y': y, 'eventId': eventId, 'm0': m0}, compression='lzf')
#da.to_hdf5(file_out_str, {'/X': X, '/y': y, 'eventId': eventId, 'm0': m0, 'wgt': wgt}, compression='lzf')
#da.to_hdf5(file_out_str, {'/X': X, '/y': y, 'eventId': eventId, 'm0': m0}, compression='lzf')
#da.to_hdf5(file_out_str, {'/y': y, 'eventId': eventId, 'm0': m0}, compression='lzf')
print " >> Done.\n"