-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake3QubitHVADRLandPauli.m
162 lines (129 loc) · 3.83 KB
/
make3QubitHVADRLandPauli.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
%A is the matrix of Pauli measurements
%P is the corresponding count vector with noise that is simulated well.
%A full experiment is simulated here.
%Each joint projector is "measured" and noise is added to these. Then the
%Pauli outcomes are built. It was hard and painful. Do not try to reproduce
%this code. Just write it again from scratch if you need to.
function [AA P] = make3QubitHVADRLandPauli(rho)
d=2^3;
x = reshape(rho,[d^2 1]);
%%%%%%%%% PAULi %%%%%%%%%%%%%
s{1} = [1/sqrt(2) 1/sqrt(2);
1/sqrt(2) -1/sqrt(2)];
s{2} = [ 1/sqrt(2) 1i/sqrt(2);
1/sqrt(2) -1i/sqrt(2)];
s{3} = [1 0;
0 1];
p123 = zeros(3,3,3);
p1 = zeros(3,3,3);
p2=zeros(3,3,3);
p3=zeros(3,3,3);
p12=zeros(3,3,3);
p13=zeros(3,3,3);
p23=zeros(3,3,3);
p0 = zeros(3,3,3);
A=[];n=0;
itNumber= 0;
id = 0;
for i=1:3
mub1 = s{i};
for ii=1:3
mub2 = s{ii};
for iii=1:3
mub3 = s{iii};
for k=1:2
v1 = mub1(k,:);
for kk=1:2
v2 = mub2(kk,:);
for kkk=1:2
itNumber = itNumber + 1;
v3 = mub3(kkk,:);
v = kron(kron(v1,v2),v3);
vv = kron(v,conj(v));
p = abs(vv*x);
pExact(itNumber) = p;
pNoisy = poissrnd(p);
% pNoisy = p; %no noise
A = [A;v];
ka=k;
kka=kk;
kkka=kkk;
p123(i,ii,iii) = p123(i,ii,iii)+pNoisy*(ka-3/2)*2^3*(kka-3/2)*(kkka-3/2);
p12(i,ii,iii) = p12(i,ii,iii)+pNoisy*(ka-3/2)*2^2*(kka-3/2);
p13(i,ii,iii) = p13(i,ii,iii)+pNoisy*(ka-3/2)*2^2*(kkka-3/2);
p23(i,ii,iii) = p23(i,ii,iii)+pNoisy*(kka-3/2)*2^2*(kkka-3/2);
p1(i,ii,iii) = p1(i,ii,iii)+pNoisy*(ka-3/2)*2;
p2(i,ii,iii) = p2(i,ii,iii)+pNoisy*(kka-3/2)*2;
p3(i,ii,iii) = p3(i,ii,iii)+pNoisy*(kkka-3/2)*2;
p0(i,ii,iii) = p0(i,ii,iii) + pNoisy;
end
end
end
end
end
end
q0 = sum(sum(sum(p0)))/3^3;
q1 = sum(sum(p1,2),3)/3^2;
q2 = sum(sum(p2,1),3)/3^2;
q3 = sum(sum(p3,1),2)/3^2;
q1 = reshape(q1,[3 1 1]);
q2 = reshape(q2,[3 1 1]);
q3 = reshape(q3,[3 1 1]);
q12 = sum(p12,3)/3;
q13 = sum(p13,2)/3;
q23 = sum(p23,1)/3;
s= size(q12);
ell= prod(s);
q12 = reshape(q12,[ell 1 1]);
q13 = reshape(q13,[ell 1 1]);
q23 = reshape(q23,[ell 1 1]);
s= size(p123);
ell= prod(s);
p123 = permute(p123,[3 2 1]);
q123 = reshape(p123,[ell 1 1]);
sig{1} = eye(2);
sig{2} = [0 1; 1 0];
sig{3} = [0 1i; -1i 0];
sig{4} = [1 0; 0 -1];
P = [q0;-q3;-q2;-q1;q23;q13;q12;-q123];
a=0;
AA = reshape(eye(d),[1 d^2]);
for pos=3:-1:1
t = [1 1 1];
for i=1:3
t(pos) = i+1;
a=a+1;
Atemp = kron(kron(sig{t(1)},sig{t(2)}),sig{t(3)});
vvv = reshape(Atemp,[1 d^2]);
AA = [AA;vvv];
end
end
a=0;
pos = [3 2; 3 1; 2 1];
for po=1:3
t = [1 1 1];
for i=1:3
t(pos(po,1)) = t(pos(po,1))+1;
t(pos(po,2)) =1;
for ii=1:3
t(pos(po,2)) = t(pos(po,2))+1;
a=a+1;
Atemp = kron(kron(sig{t(1)},sig{t(2)}),sig{t(3)});
vvv = reshape(Atemp,[1 d^2]);
AA = [AA;vvv];
end
end
end
a=0;
for i=2:4
for ii=2:4
for iii=2:4
M = kron(kron(sig{i},sig{ii}),sig{iii});
vvv = reshape(M,[1 d^2]);
AA = [AA; vvv];
a=a+1;
% P(a) = p123(i-1,ii-1,iii-1);
end
end
end
Pkron = [ real(AA*x) P]