-
Notifications
You must be signed in to change notification settings - Fork 12
/
fileops.c
623 lines (494 loc) · 15.6 KB
/
fileops.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
* Komposter
*
* Copyright (c) 2010 Noora Halme et al. (see AUTHORS)
*
* This code is licensed under the GNU General Public
* License version 2. See LICENSE for full text.
*
* File operations for IFF formats
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "constants.h"
#include "fileops.h"
#include "modules.h"
#include "patch.h"
/*
The loaders don't look too closely at the data, so a chunk that
is corrupted but with a proper header will most certainly crash
the program.
*/
// from synthesizer.c
extern synthmodule mod[MAX_SYNTH][MAX_MODULES];
extern char synthname[MAX_SYNTH][128];
extern int signalfifo[MAX_SYNTH][MAX_MODULES];
// from patch.c
extern char patchname[MAX_SYNTH][MAX_PATCHES][128];
extern float modvalue[MAX_SYNTH][MAX_PATCHES][MAX_MODULES];
extern int modquantifier[MAX_SYNTH][MAX_PATCHES][MAX_MODULES];
// from pattern.c
extern u32 pattdata[MAX_PATTERN][MAX_PATTLENGTH];
extern u32 pattlen[MAX_PATTERN];
// fron sequencer.c
extern int seqch;
extern int seqsonglen;
extern int bpm;
extern int seq_synth[MAX_CHANNELS]; // which synth assigned to each channel
extern int seq_restart[MAX_CHANNELS]; // restart flags
extern int seq_pattern[MAX_CHANNELS][MAX_SONGLEN];
extern int seq_repeat[MAX_CHANNELS][MAX_SONGLEN];
extern int seq_transpose[MAX_CHANNELS][MAX_SONGLEN];
extern int seq_patch[MAX_CHANNELS][MAX_SONGLEN];
//
// song load and save functions
//
int load_ksong(char *filename)
{
FILE *f;
int chunklen, flen;
char chunktype[4];
int i, r, cpat, csyn;
// clean up after the old song first
f=fopen(filename, "rb");
if (!f) {
return FILE_ERROR_FOPEN;
}
chunklen=probe_chunk(f, chunktype);
if (memcmp(chunktype, "KSNG", 4)) {
return FILE_ERROR_CORRUPT;
}
fseek(f, 0, SEEK_END);
flen=ftell(f);
fseek(f, 0, SEEK_SET);
if (flen != (chunklen+8)) {
printf("err flen %d chunklen %d\n",flen,chunklen);
return FILE_ERROR_CORRUPT;
}
fseek(f, 8, SEEK_SET);
// ok, load the ksng chunk counts
r=fread(&cpat, sizeof(int), 1, f);
if (cpat<0 || cpat>MAX_PATTERN) {
printf("cpat does not make sense %d\n", cpat);
return FILE_ERROR_CORRUPT;
}
r=fread(&csyn, sizeof(int), 1, f);
if (csyn<0 || cpat>MAX_SYNTH) {
printf("csyn does not make sense %d\n", csyn);
return FILE_ERROR_CORRUPT;
}
// load chunks
r=load_chunk_kseq(f);
for(i=0;i<cpat;i++) {
r=load_chunk_kpat(i, f);
}
for(i=0;i<csyn;i++) {
r=load_chunk_ksyn(i, f);
r=load_chunk_kbnk(i, f);
}
// done
return 0;
}
int save_ksong(char *filename)
{
u32 crc;
int datasize, t;
int c_kpat, c_ksyn;
FILE *f;
int r, i, nm, n, m, mm;
// calc number of patterns to save
c_kpat=MAX_PATTERN;
do {
c_kpat--;
for(n=0,i=0;i<pattlen[c_kpat]*16;i++) {
if ((pattdata[c_kpat][i]&0xff)>0) n++;
}
// printf("pattern %d has %d note events\n", c_kpat, n);
if (n) { c_kpat++; break; }
} while (c_kpat>0);
// printf("saving %d patterns\n", c_kpat);
// calc number of synths to save
c_ksyn=MAX_SYNTH;
do {
c_ksyn--;
n=0;
for(i=0;i<MAX_MODULES;i++) {
if (mod[c_ksyn][i].type>=0) n++;
}
// printf("synth %d has %d modules\n", c_ksyn, n);
if (n>3) { c_ksyn++; break; }
} while (c_ksyn>0);
// printf("saving %d synths+banks\n", c_ksyn);
// calc chunk datasize
datasize=8; // ksng data
t=8 + 12 + 4*seqch + 4*seqch*seqsonglen*4;
// printf("kseq %d (0x%x)\n", t,t);
datasize+=t;
for(i=0;i<c_kpat;i++) {
t=8+4+pattlen[i]*16*4; // kpat chunks
// printf("kpat %d (0x%x)\n", t,t);
datasize+=t;
}
for(i=0;i<c_ksyn;i++) { // ksyn and kbnk chunks
nm=0;
for(m=0;m<MAX_MODULES;m++) if (mod[i][m].type>=0) nm=m;
nm++;
t=8 + 8+128+nm*128; // ksyn
// printf("ksyn %d (0x%x)\n", t,t);
datasize+=t;
m=0; mm=0;
while(signalfifo[i][m]>=0) { if (signalfifo[i][m]>mm) mm=signalfifo[i][m]; m++; }
mm++;
t=8 + 8 + MAX_PATCHES * (128 + 3*mm*4); // kbnk
// printf("kbnk %d (0x%x)\n", t,t);
datasize+=t;
}
datasize+=4; // checksum
f=fopen(filename, "wb");
if (!f) return FILE_ERROR_FOPEN;
r=fwrite("KSNG", sizeof(char), 4, f);
r=fwrite(&datasize, sizeof(int), 1, f);
r=fwrite(&c_kpat, sizeof(int), 1, f);
r=fwrite(&c_ksyn, sizeof(int), 1, f);
// save one kseq
save_chunk_kseq(f);
// save patterns
for(i=0;i<c_kpat;i++) {
save_chunk_kpat(i, f);
}
// save synths and patch banks
for(i=0;i<c_ksyn;i++) {
save_chunk_ksyn(i, f);
save_chunk_kbnk(i, f);
}
// checksum
crc=0; // TODO
fwrite(&crc, sizeof(u32), 1, f);
fclose(f);
return 0;
}
//
// chunk load functions
//
int load_chunk_ksyn(int syn, FILE *f)
{
unsigned char *chunkdata;
int m, nm;
// load chunk to ram
chunkdata=load_chunk(f, "KSYN");
if (!chunkdata) { return FILE_ERROR_CHUNKTYPE; }
// looks ok, copy data from buffer
memcpy(&nm, &chunkdata[0], sizeof(int));
if (nm<0 || nm>MAX_MODULES) { free(chunkdata); return FILE_ERROR_CORRUPT; }
memcpy(&synthname[syn], &chunkdata[8], 128);
for(m=0;m<MAX_MODULES;m++) mod[syn][m].type=-1;
memcpy(&mod[syn], &chunkdata[8+128], nm*128);
synth_stackify(syn);
free(chunkdata);
return 0;
}
int load_chunk_kbnk(int syn, FILE *f)
{
int p;
long fpos;
u32 np, sl;
unsigned int sstk[MAX_MODULES];
unsigned char *chunkdata;
// load chunk to ram
chunkdata=load_chunk(f, "KBNK");
if (!chunkdata) { return FILE_ERROR_CHUNKTYPE; }
// patch and module counts
memcpy(&np, &chunkdata[0], sizeof(u32));
memcpy(&sl, &chunkdata[4], sizeof(u32)); //stacklen
// loop through patches
for(p=0;p<np;p++) {
fpos=8 + p * (128 + 3*sl*4);
strncpy((char*)&patchname[syn][p], (char*)&chunkdata[fpos], 128); // patch name
memcpy(&sstk, &chunkdata[fpos + 128], sl*4); // module indexes
memcpy(&modvalue[syn][p], &chunkdata[fpos+128+sl*4], sl*4);
memcpy(&modquantifier[syn][p], &chunkdata[fpos+128+sl*8], sl*4);
}
free(chunkdata);
return 0;
}
int load_chunk_kpat(int patt, FILE *f)
{
unsigned char *chunkdata;
// load chunk to ram
chunkdata=load_chunk(f, "KPAT");
if (!chunkdata) { return FILE_ERROR_CHUNKTYPE; }
memcpy(&pattlen[patt], &chunkdata[0], sizeof(unsigned int));
memcpy(&pattdata[patt][0], &chunkdata[4], pattlen[patt]*16*4);
free(chunkdata);
return 0;
}
int load_chunk_kseq(FILE *f)
{
int i;
unsigned char *chunkdata;
unsigned long filepos;
// load chunk to ram
chunkdata=load_chunk(f, "KSEQ");
if (!chunkdata) { return FILE_ERROR_CHUNKTYPE; }
memcpy(&seqch, &chunkdata[0], sizeof(int));
memcpy(&seqsonglen, &chunkdata[4], sizeof(int));
memcpy(&bpm, &chunkdata[8], sizeof(int));
memcpy(seq_synth, &chunkdata[12], 4*seqch);
for(i=0;i<seqch;i++) {
seq_restart[i]=seq_synth[i]>>16;
seq_synth[i]&=0xff;
} // clean the flags out after memcpy
filepos=12 + 4*seqch;
for(i=0;i<seqch;i++) memcpy(seq_pattern[i], &chunkdata[filepos+i*seqsonglen*4], seqch*seqsonglen*4);
filepos+=seqch*seqsonglen*4;
for(i=0;i<seqch;i++) memcpy(seq_repeat[i], &chunkdata[filepos+i*seqsonglen*4], seqch*seqsonglen*4);
filepos+=seqch*seqsonglen*4;
for(i=0;i<seqch;i++) memcpy(seq_transpose[i], &chunkdata[filepos+i*seqsonglen*4], seqch*seqsonglen*4);
filepos+=seqch*seqsonglen*4;
for(i=0;i<seqch;i++) memcpy(seq_patch[i], &chunkdata[filepos+i*seqsonglen*4], seqch*seqsonglen*4);
free(chunkdata);
return 0;
}
//
// chunk save functions
//
int save_chunk_ksyn(int syn, FILE *f)
{
unsigned char *filedata;
unsigned int m, nm, dsize, pad;
// what's the largest module number in use?
nm=0;
for(m=0;m<MAX_MODULES;m++) if (mod[syn][m].type>=0) nm=m;
nm++;
dsize=nm*sizeof(synthmodule) + 128 + 8;
// build the file image in memory
pad=0;
filedata=calloc(dsize+8, sizeof(char));
if (!filedata) { return 0; }
memcpy(filedata, "KSYN", 4);
memcpy(&filedata[4], &dsize, 4);
memcpy(&filedata[8], &nm, 4);
memcpy(&filedata[12], &pad, 4);
memcpy(&filedata[16], &synthname[syn], 128);
for(m=0;m<nm;m++)
// memcpy(&filedata[136+m*sizeof(synthmodule)], &mod[syn][m], sizeof(synthmodule));
memcpy(&filedata[144+m*sizeof(synthmodule)], &mod[syn][m], sizeof(synthmodule));
// save to disk
errno=0;
m=fwrite(filedata, sizeof(char), dsize+8, f);
if (m!=(dsize+8)) { free(filedata); return FILE_ERROR_FWRITE; }
free(filedata);
// done
return 0;
}
int save_chunk_kbnk(int syn, FILE *f)
{
unsigned char *filedata;
//char tmps[255];
unsigned int p, m, mm, dsize, tmp;
unsigned long fpos, stacklen;
// what is the largest module id used in the signal stack?
m=0; mm=0;
while(signalfifo[syn][m]>=0) { if (signalfifo[syn][m]>mm) mm=signalfifo[syn][m]; m++; }
stacklen=mm+1;
// build the bank chunk image in memory
dsize=8 + MAX_PATCHES * (128 + 3*stacklen*4);
filedata=calloc(dsize+8, sizeof(char));
if (!filedata) { return 0; }
memcpy(filedata, "KBNK", 4);
memcpy(&filedata[4], &dsize, 4);
tmp=MAX_PATCHES;
memcpy(&filedata[8], &tmp, 4);
memcpy(&filedata[12], &stacklen, 4);
fpos=16;
for(p=0;p<MAX_PATCHES;p++) { // TODO: only save the patches actually used
memcpy(&filedata[fpos], &patchname[syn][p], 128);
memcpy(&filedata[fpos+128], &signalfifo[syn], stacklen*4);
memcpy(&filedata[fpos+128+stacklen*4], &modvalue[syn][p], stacklen*4);
memcpy(&filedata[fpos+128+stacklen*8], &modquantifier[syn][p], stacklen*4);
fpos+=128+stacklen*12;
}
// done, save chunk to file
m=fwrite(filedata, sizeof(char), dsize+8, f);
free(filedata);
if (m!=fpos) { return FILE_ERROR_FWRITE; }
return 0;
}
int save_chunk_kpat(int patt, FILE *f)
{
int r;
unsigned int chunklen;
chunklen=4+pattlen[patt]*16*4;
r=fwrite("KPAT", sizeof(char), 4, f);
if (!r) { return FILE_ERROR_FWRITE; }
r=fwrite(&chunklen, sizeof(unsigned int), 1, f);
if (!r) { return FILE_ERROR_FWRITE; }
r=fwrite(&pattlen[patt], sizeof(unsigned int), 1, f);
if (!r) return FILE_ERROR_FWRITE;
r=fwrite(&pattdata[patt], sizeof(unsigned int), pattlen[patt]*16, f);
if (!r) { return FILE_ERROR_FWRITE; }
return 0;
}
int save_chunk_kseq(FILE *f)
{
// TODO: some checking on r - now any fwrite can fail and fuck things up nicely
int r, i;
unsigned int chunklen;
chunklen=12 + 4*seqch + 4*seqch*seqsonglen*4;
r=fwrite("KSEQ", sizeof(char), 4, f);
r=fwrite(&chunklen, sizeof(unsigned int), 1, f);
r=fwrite(&seqch, sizeof(unsigned int), 1, f);
r=fwrite(&seqsonglen, sizeof(unsigned int), 1, f);
r=fwrite(&bpm, sizeof(unsigned int), 1, f);
for(i=0;i<seqch;i++) seq_synth[i]|=(seq_restart[i]&0xffff)<<16; // put restart flags to msw of synth number
r=fwrite(seq_synth, sizeof(unsigned int), seqch, f);
for(i=0;i<seqch;i++) seq_synth[i]&=0xff; // clean the flags out after fwrite
for(i=0;i<seqch;i++) r=fwrite(seq_pattern[i], sizeof(unsigned int), seqsonglen, f);
for(i=0;i<seqch;i++) r=fwrite(seq_repeat[i], sizeof(unsigned int), seqsonglen, f);
for(i=0;i<seqch;i++) r=fwrite(seq_transpose[i], sizeof(unsigned int), seqsonglen, f);
for(i=0;i<seqch;i++) r=fwrite(seq_patch[i], sizeof(unsigned int), seqsonglen, f);
return 0;
}
//
// utility functions
//
// loads a chunk of the given type from the file handle. returns
// a buffer with the content of the chunk. it is the duty of the
// caller to release the buffer once no longer needed.
void* load_chunk(FILE *f, char *chunktype)
{
long filepos;
int r;
unsigned char fchunktype[4];
u32 fchunklen;
unsigned char *cbuffer;
// check chunk type
filepos=ftell(f);
r=fread(fchunktype, sizeof(char), 4, f);
if (!r) return NULL;
r=fread(&fchunklen, sizeof(u32), 1, f);
if (memcmp(fchunktype, chunktype, 4)) {
fseek(f, filepos, SEEK_SET);
return NULL;
}
cbuffer=malloc(fchunklen);
r=fread(cbuffer, sizeof(char), fchunklen, f);
if (!r) {
fseek(f, filepos, SEEK_SET);
free(cbuffer);
return NULL;
}
return cbuffer;
}
// checks the chunktype currently at the file pointer and
// stores it to the buffer pointed by chunktype
long probe_chunk(FILE *f, char *chunktype)
{
long filepos;
int r;
u32 fchunklen;
filepos=ftell(f);
r=fread(chunktype, sizeof(char), 4, f);
if (!r) { fseek(f, filepos, SEEK_SET); return 0; }
r=fread(&fchunklen, sizeof(u32), 1, f);
fseek(f, filepos, SEEK_SET);
if (!r) { return 0; }
return fchunklen;
}
//
// signal path following functions
//
void synth_stackify(int syn)
{
int m, top;
top=0;
// clear fifo
for(m=0;m<MAX_MODULES;m++) signalfifo[syn][m]=-1;
// clear all tags first
for(m=0;m<MAX_MODULES;m++) mod[syn][m].tag=0;
// find the output module and start working backwards from it
for(m=0;m<MAX_MODULES;m++)
if (mod[syn][m].type==MOD_OUTPUT) { top=synth_trace(syn, m, top); break; }
// set colors with a similar recursion
synth_colorize(syn);
// done - isn't recursion fun! :D
/*
m=0;
while(signalfifo[syn][m]>=0) {
printf("%2d : %02d:%s\n",m,signalfifo[syn][m],
modTypeNames[ mod[syn][ signalfifo[syn][m] ].type ]);
m++;
}
*/
}
int synth_trace(int syn, int pm, int top)
{
int n;
// if this module is deleted or already tagged, return back
if (pm<0) return top;
if (mod[syn][pm].tag) return top;
// tag this module and follow all patches which bring signals in
mod[syn][pm].tag=1;
for(n=0;n<modInputCount[mod[syn][pm].type];n++)
top=synth_trace(syn, mod[syn][pm].input[n], top);
// push this module to the fifo and return
signalfifo[syn][top++]=pm;
return top;
}
void synth_colorize(int syn) {
// recurse through the synth modules, "flow" the signal colors
// downstream and set the effective output color for each module
int m;
// clear all tags first
for(m=0;m<MAX_MODULES;m++) mod[syn][m].tag=0;
// find a color for each module
for(m=0;m<MAX_MODULES;m++) mod[syn][m].effective_color=synth_find_color(syn, m);
}
int synth_find_color(int syn, int pm) {
int i, c, n;
if (pm<0) return 0; // no color for invalid module index
if (mod[syn][pm].tag) return mod[syn][pm].effective_color; // already visited, effective color should be set
// find the color for this synth by finding the color of the upstream module
mod[syn][pm].tag=1;
if (mod[syn][pm].color==255) { // strip color if set to 255 on this node
mod[syn][pm].effective_color=0; return 0;
}
if (mod[syn][pm].color || modInputCount[mod[syn][pm].type]==0) { // use the color of this node
mod[syn][pm].effective_color=mod[syn][pm].color; return mod[syn][pm].effective_color;
}
// otherwise inherit color from upstream nodes
c=0;
for (i=0;i<modInputCount[mod[syn][pm].type];i++) {
n=synth_find_color(syn, mod[syn][pm].input[i]);
if (n && !c) { mod[syn][pm].effective_color=n; c=1; }
}
if (!c) mod[syn][pm].effective_color=0;
return mod[syn][pm].effective_color;
}
void synth_update_bpm(int newbpm) {
// check all synths and look for modules that have type MOD_KNOB or MOD_ATTENUATOR
// if the parameter scale is SCALE_FREQUENCY_TEMPO or SCALE_DURATION_TEMPO, readjust
// the effective value in all patches to match song bpm
int s, m, p;
float val;
for(s=0;s<MAX_SYNTH;s++) {
for(m=0;m<MAX_MODULES;m++) {
if ((mod[s][m].type == MOD_KNOB || mod[s][m].type==MOD_ATTENUATOR) &&
(mod[s][m].scale==SCALE_FREQUENCY_TEMPO || mod[s][m].scale==SCALE_DURATION_TEMPO)) {
for(p=0;p<MAX_PATCHES;p++) {
val=knob_scale2float(mod[s][m].scale, modvalue[s][p][m]); // un-scale raw float
if (mod[s][m].scale==SCALE_FREQUENCY_TEMPO) {
modvalue[s][p][m]=(val*60*OUTPUTFREQ)/newbpm; // re-scale frequency to raw with new bpm
} else {
modvalue[s][p][m]=(OUTPUTFREQ*60)/(val*newbpm); // ditto with tempo
}
}
}
}
}
// done, activate new bpm
bpm=newbpm;
}