-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtest_sphere.m
executable file
·86 lines (75 loc) · 2.29 KB
/
test_sphere.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
%--------------------------------------------------------------------------
%
% Example script for sinf_1D.m and sinf_3D.m
%
% Author : dr.ir. Emanuel A.P. Habets
% Date : 17-12-2019
%
% Related paper : E.A.P. Habets and S. Gannot, 'Generating sensor signals
% in isotropic noise fields', Submitted to the Journal
% of the Acoustical Society of America, May, 2007.
%
% Comment :
%
%--------------------------------------------------------------------------
clear;
close all;
%% Initialization
fs = 8000; % Sample frequency
NFFT = 256; % Number of frequency bins (for analysis)
w = 2*pi*fs*(0:NFFT/2)/NFFT;
c = 340; % Speed of sound
L = 2^18; % Data length
[x1,y1,z1]=sph2cart(0,0,0.1); % Sensor position 1
[x2,y2,z2]=sph2cart(0,0,0.2); % Sensor position 2
P = [0 x1 x2; 0 y1 y2; 0 z1 z2]; % Construct position matrix
M = 3; % Number of sensors
% Calculate sensor distances w.r.t. sensor 1
d = zeros(1,M);
for m = 2:M
d(m) = norm(P(:,m)-P(:,1),2);
end
%% Generate sensor signals
params.c = c;
params.fs = fs;
% 1D example
params.N_phi = 64;
z = sinf_1D(d,L,params);
% 3D example
% params.N = 256;
% z = sinf_3D(P,L,params);
%% Calculate spatial coherences
sc_sim = zeros(M-1,NFFT/2+1);
sc_theory = zeros(M-1,NFFT/2+1);
for m = 1:M-1
[sc,F]=complex_cohere(z(1,:)',z(m+1,:)',NFFT,fs,hanning(NFFT),0.75*NFFT);
sc_sim(m,:) = real(sc');
sc_theory(m,:) = sinc(w*d(m+1)/c/pi); % Note that d(m+1) = norm(P(:,m+1)-P(:,1),2)
end
%% Plot results
% Sensor pair 1-2
figure(1);
m=1;
plot(F/1000,sc_sim(m,:),'k')
hold on;
plot(F/1000,sc_theory(m,:),'--k')
hold off;
xlabel('Frequency [kHz]');
ylabel('Spatial Coherence');
title(sprintf('Distance %1.2f m',d(m+1)));
set(gca,'DataAspectRatio',[1 0.75 1]);
legend('Simulation','Theory');
grid on;
% Sensor pair 1-3
figure(2);
m=2;
plot(F/1000,sc_sim(m,:),'k')
hold on;
plot(F/1000,sc_theory(m,:),'--k')
hold off;
xlabel('Frequency [kHz]');
ylabel('Spatial Coherence');
title(sprintf('Distance %1.2f m',d(m+1)));
set(gca,'DataAspectRatio',[1 0.75 1]);
legend('Simulation','Theory');
grid on;