-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpointer_generator.py
519 lines (426 loc) · 22.9 KB
/
pointer_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file contains code to build and run the tensorflow graph for the
sequence-to-sequence model"""
from __future__ import unicode_literals, print_function
from __future__ import absolute_import
from __future__ import division
import time
import tensorflow as tf
# import math
from termcolor import colored
from attention_decoder import conv_attention_decoder
from utils import conv_encoder
from utils import linear_mapping_weightnorm
from codecs import open
import data
FLAGS = tf.app.flags.FLAGS
class PointerGenerator(object):
"""A class to represent a sequence-to-sequence model for text summarization.
Supports both baseline mode, pointer-generator mode, and coverage"""
def __init__(self, hps, enc_vocab, dec_vocab):
self.hps = hps
self._enc_vocab = enc_vocab
self._dec_vocab = dec_vocab
self._log_writer = open("./pg_log", "a", "utf-8")
vocab_ = tf.convert_to_tensor(self._dec_vocab.id_keys)
self._unk_mask = tf.where(
tf.equal(vocab_, self._dec_vocab.word2id(data.UNKNOWN_TOKEN)),
tf.zeros_like(vocab_, tf.float32), tf.ones_like(vocab_, tf.float32)
)
def _add_placeholders(self):
"""Add placeholders to the graph. These are entry points for any input
data."""
hps = self.hps
batch_size = None
if hps.mode in ["decode", "train_gan"]:
max_dec_steps = None
else:
max_dec_steps = hps.max_dec_steps
self.enc_batch = tf.placeholder(tf.int32, [batch_size, None], name='enc_batch')
self.enc_temp_batch = tf.placeholder(tf.int32, [batch_size, None], name='temp_batch_for_enc_embedding')
self.dec_temp_batch = tf.placeholder(tf.int32, [batch_size, None], name='temp_batch_for_dec_embedding')
self.enc_lens = tf.placeholder(tf.int32, [batch_size], name='enc_lens')
self.enc_padding_mask = tf.placeholder(tf.float32, [batch_size, None], name='enc_padding_mask')
self._dec_batch = tf.placeholder(tf.int32, [batch_size, max_dec_steps], name='dec_batch')
self.target_batch = tf.placeholder(tf.int32, [batch_size, hps.max_dec_steps], name='target_batch')
self.dec_padding_mask = tf.placeholder(tf.float32, [batch_size, hps.max_dec_steps], name='decoder_padding_mask')
self.cell_c = tf.placeholder(
tf.float32, shape=[batch_size, self.hps.hidden_dim])
self.cell_h = tf.placeholder(
tf.float32, shape=[batch_size, self.hps.hidden_dim])
self.k_sample_targets = tf.placeholder(tf.int32, [FLAGS.sample_num, batch_size, hps.max_dec_steps], name='k_sample_targets')
self.k_sample_targets_mask = tf.placeholder(tf.float32, [FLAGS.sample_num, batch_size, hps.max_dec_steps], name='k_padding_mask_of_the_sample_targets')
self.k_samples = tf.placeholder(tf.int32, [FLAGS.sample_num, batch_size, hps.max_dec_steps], name='k_samples')
self.k_rewards = tf.placeholder(tf.float32, shape=[FLAGS.sample_num, batch_size, hps.max_dec_steps], name="k_rewards")
self._eval_dec_batch = tf.placeholder(tf.int32, [batch_size, hps.max_dec_steps], name='eval_dec_batch')
if hps.mode in ["decode", 'train_gan'] and hps.coverage:
self.prev_coverage = tf.placeholder(tf.float32, [None, None], name='prev_coverage')
def _make_feed_dict(self, batch, just_enc=False, gan_eval=False, gan=False):
"""Make a feed dictionary mapping parts of the batch to the appropriate
placeholders.
Args:
batch: Batch object
just_enc: Boolean. If True, only feed the parts needed for the
encoder.
update: only for the evaluation and training of the generator in gan training
"""
if gan_eval:
gan = True
feed_dict = {}
feed_dict[self.enc_batch] = batch.enc_batch
feed_dict[self.enc_lens] = batch.enc_lens
feed_dict[self.enc_padding_mask] = batch.enc_padding_mask
if not just_enc:
feed_dict[self.target_batch] = batch.target_batch
feed_dict[self.dec_padding_mask] = batch.dec_padding_mask
if gan_eval:
feed_dict[self._eval_dec_batch] = batch.dec_batch
elif not gan:
feed_dict[self._dec_batch] = batch.dec_batch
return feed_dict
def _add_seq2seq(self):
"""Add the whole sequence-to-sequence model to the graph."""
hps = self.hps
with tf.name_scope('seq2seq'):
self.rand_unif_init = tf.random_uniform_initializer(
-hps.rand_unif_init_mag, hps.rand_unif_init_mag, seed=123)
self.trunc_norm_init = tf.truncated_normal_initializer(stddev=hps.trunc_norm_init_std)
k_samples_ls = tf.unstack(self.k_samples, axis=0)
k_sample_targets_ls = tf.unstack(self.k_sample_targets, axis=0)
k_sample_targets_mask_ls = tf.unstack(self.k_sample_targets_mask, axis=0)
k_rewards_ls = tf.unstack(self.k_rewards, axis=0)
with tf.variable_scope('embeddings'):
self.enc_embeddings = tf.get_variable(
'enc_embeddings', [self._enc_vocab.size(), hps.word_emb_dim], dtype=tf.float32, initializer=self.trunc_norm_init)
self.dec_embeddings = tf.get_variable(
'dec_embeddings', [self._dec_vocab.size(), hps.char_emb_dim], dtype=tf.float32, initializer=self.trunc_norm_init)
self.enc_emb_saver = tf.train.Saver({"enc_embeddings": self.enc_embeddings})
self.dec_emb_saver = tf.train.Saver({"dec_embeddings": self.dec_embeddings})
self.emb_enc_inputs = tf.nn.embedding_lookup(self.enc_embeddings, self.enc_batch)
self.enc_temp_embedded = tf.nn.embedding_lookup(self.enc_embeddings, self.enc_temp_batch)
self.dec_temp_embedded = tf.nn.embedding_lookup(self.dec_embeddings, self.dec_temp_batch)
emb_dec_inputs = tf.nn.embedding_lookup(self.dec_embeddings, self._dec_batch)
emb_eval_dec_inputs = tf.nn.embedding_lookup(self.dec_embeddings, self._eval_dec_batch)
k_emb_samples_ls = [
tf.nn.embedding_lookup(self.dec_embeddings, samples)
for samples in k_samples_ls
]
attention_keys, dec_in_state = conv_encoder(
self.emb_enc_inputs,
self.enc_lens, hps.mode in ["pretrain_gen", "train_gan"])
self.attention_keys = attention_keys
self.attention_values = (
linear_mapping_weightnorm(
self.attention_keys, self.emb_enc_inputs.get_shape()[-1].value, var_scope_name="attention_key2value"
) + self.emb_enc_inputs) * tf.sqrt(0.5)
with tf.variable_scope('decoder') as decoder_scope:
is_training = False if self.hps.mode in ["train_gan", 'decode'] else True
final_dists = self._conv_decoder(emb_dec_inputs, is_training=is_training)
decoder_scope.reuse_variables()
self.final_dists = final_dists
self.topk_log_probs, self.indices = tf.nn.top_k(tf.log(self.final_dists[0]), self.hps.beam_size * 2)
self._ran_id = tf.multinomial(tf.log(self.final_dists[0]), 1)
eval_final_dists = self._conv_decoder(emb_eval_dec_inputs, is_training=True)
k_sample_final_dists_ls = []
for emb_samples in k_emb_samples_ls:
sample_final_dists = self._conv_decoder(emb_samples, is_training=True)
k_sample_final_dists_ls.append(sample_final_dists)
def get_loss(final_dists, target_batch, padding_mask, rewards=None):
batch_nums = tf.range(0, limit=tf.shape(target_batch)[0])
loss_per_step = []
log_gold_prob = []
for dec_step, dist in enumerate(final_dists):
targets = target_batch[:, dec_step]
indices = tf.stack((batch_nums, targets), axis=1)
gold_probs = tf.gather_nd(dist, indices)
losses = -tf.log(gold_probs) * padding_mask[:, dec_step]
log_gold_prob.append(-losses)
loss_per_step.append(losses * rewards[:, dec_step] if rewards is not None else losses)
return loss_per_step, log_gold_prob
with tf.variable_scope('generator_loss'):
tf.Print(self.final_dists, self.final_dists, "final list")
loss_per_step, _ = get_loss(self.final_dists, self.target_batch, self.dec_padding_mask)
eval_loss_per_step, log_gold_probs = get_loss(eval_final_dists, self.target_batch, self.dec_padding_mask)
self.log_gold_probs = _avg(log_gold_probs, self.dec_padding_mask, False)
self._loss = _avg(loss_per_step, self.dec_padding_mask)
self._eval_loss = _avg(eval_loss_per_step, self.dec_padding_mask)
if hps.coverage:
with tf.variable_scope('coverage_loss'):
self._coverage_loss = _coverage_loss(
self.attn_dists, self.dec_padding_mask)
self._total_loss = \
self._loss + hps.cov_loss_wt * self._coverage_loss
with tf.variable_scope('gan_loss'):
if hps.mode == "train_gan":
k_gan_losses = []
for k in range(len(k_sample_targets_ls)):
gan_loss_per_step = get_loss(
k_sample_final_dists_ls[k], k_sample_targets_ls[k],
k_sample_targets_mask_ls[k], k_rewards_ls[k])
masked_average = _avg(gan_loss_per_step, k_sample_targets_mask_ls[k])
k_gan_losses.append(masked_average)
self.gan_loss = tf.reduce_mean(tf.stack(k_gan_losses))
loss_to_minimize = self._total_loss if self.hps.coverage else self._loss
trainable_variables = tf.trainable_variables()
gradients = tf.gradients(
loss_to_minimize, trainable_variables,
aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE)
with tf.device("/gpu:0"):
grads, global_norm = tf.clip_by_global_norm(
gradients, self.hps.gen_max_gradient)
self.learning_rate = tf.train.exponential_decay(
self.hps.gen_lr, # Base learning rate.
self.global_step * self.hps.batch_size, # Current index into the dataset.
1000000, # Decay step.
0.95, # Decay rate.
staircase=True)
optimizer = tf.train.AdamOptimizer(self.learning_rate)
with tf.device("/gpu:0"):
self._train_op = optimizer.apply_gradients(
zip(grads, trainable_variables),
global_step=self.global_step)
if hps.mode == "train_gan":
g_opt = self.g_optimizer(FLAGS.gan_lr)
trainable_variables = tf.trainable_variables()
gradients = tf.gradients(self.gan_loss, trainable_variables,
aggregation_method=tf.AggregationMethod.EXPERIMENTAL_TREE)
self.g_grad, _ = tf.clip_by_global_norm(gradients, self.hps.gen_max_gradient)
with tf.device("/gpu:0"):
self.g_updates = g_opt.apply_gradients(zip(self.g_grad, trainable_variables), global_step=self.global_step)
return decoder_scope
def get_cur_lr(self, sess):
return sess.run(self.learning_rate)
def beam_search(self):
beam_size = self.hps.beam_size
batch_size = self.hps.batch_size
vocab_size = self._dec_vocab.size()
num_steps = self.hps.max_dec_steps
log_beam_probs, beam_symbols = [], []
output_projection = None
_attention_keys = tf.tile(tf.expand_dims(self.attention_keys, axis=1), [1, beam_size, 1, 1])
_attention_keys = tf.reshape(_attention_keys, [batch_size*beam_size, tf.shape(self.attention_keys)[1], self.attention_keys.get_shape().as_list()[-1]])
_attention_values = tf.tile(tf.expand_dims(self.attention_values, axis=1), [1, beam_size, 1, 1])
_attention_values = tf.reshape(_attention_values, [batch_size*beam_size, tf.shape(self.attention_values)[1], self.attention_values.get_shape().as_list()[-1]])
_enc_padding_mask = tf.tile(tf.expand_dims(self.enc_padding_mask, axis=1), [1, beam_size, 1])
_enc_padding_mask = tf.reshape(_enc_padding_mask, [batch_size*beam_size, tf.shape(self.enc_padding_mask)[1]])
def beam_search(prev, i, log_fn):
if output_projection is not None:
prev = tf.nn.xw_plus_b(prev, output_projection[0], output_projection[1])
log_probs = log_fn(prev)
if i > 1:
log_probs = tf.reshape(tf.expand_dims(tf.reduce_sum(tf.stack(log_beam_probs, axis=1), axis=1), axis=1) + log_probs,
[-1, beam_size * vocab_size])
best_probs, indices = tf.nn.top_k(log_probs, beam_size)
indices = tf.squeeze(tf.reshape(indices, [-1, 1]))
best_probs = tf.reshape(best_probs, [batch_size*beam_size])
symbols = indices % vocab_size # which word in vocabulary
beam_parent = indices // vocab_size # which hypothesis it came from
beam_symbols.append(symbols)
index_base = tf.reshape(
tf.tile(tf.expand_dims(tf.range(batch_size) * beam_size, axis=1), [1, beam_size]), [-1])
real_path = beam_parent + index_base
if i > 1:
pre_sum = tf.reduce_sum(tf.stack(log_beam_probs, axis=1), axis=1)
pre_sum = tf.gather(pre_sum, real_path)
else:
pre_sum = 0
log_beam_probs.append(best_probs-pre_sum)
if i > 1:
for j in range(i)[:0:-1]:
beam_symbols[j-1] = tf.gather(beam_symbols[j-1], real_path)
log_beam_probs[j-1] = tf.gather(log_beam_probs[j-1], real_path)
start_token = tf.fill([batch_size, 1], self._dec_vocab.word2id(data.START_DECODING))
start_token = tf.nn.embedding_lookup(self.dec_embeddings, start_token)
dec_input = start_token
start_token = tf.tile(start_token, [beam_size, 1, 1])
for i in range(num_steps):
if i == 0:
attention_keys = self.attention_keys
attention_values = self.attention_values
enc_padding_mask = self.enc_padding_mask
else:
attention_keys = _attention_keys
attention_values = _attention_values
enc_padding_mask = _enc_padding_mask
vocab_dists = self._conv_decoder(dec_input, attention_keys, attention_values, enc_padding_mask, is_training=False)
beam_search(vocab_dists[0], i+1, tf.log)
dec_input = tf.nn.embedding_lookup(self.dec_embeddings, tf.stack(values=beam_symbols, axis=1))
dec_input = tf.concat([start_token, dec_input], axis=1)
dec_input = tf.reshape(dec_input, [batch_size*beam_size, len(beam_symbols)+1, self.hps.char_emb_dim])
best_seq = tf.stack(values=beam_symbols, axis=1)
self.best_seq = tf.reshape(best_seq, [batch_size, beam_size, num_steps])
def run_beam_search(self, sess, batch):
feed_dict = self._make_feed_dict(batch, just_enc=True)
best_seq = sess.run(self.best_seq, feed_dict) # run the encoder
return best_seq
def _conv_decoder(self, emb_dec_inputs,
attention_keys=None, attention_values=None, enc_padding_mask=None, is_training=True, mask=True):
if attention_keys is None:
enc_padding_mask = self.enc_padding_mask
attention_keys = self.attention_keys
attention_values = self.attention_values
vsize = self.hps.dec_vocab_size
logits = conv_attention_decoder(
emb_dec_inputs, enc_padding_mask, attention_keys, attention_values, vsize, is_training)
if is_training:
vocab_dists = tf.unstack(tf.nn.softmax(logits), axis=1)
elif mask is True:
vocab_dists = [tf.nn.softmax(logits) * self._unk_mask]
else:
vocab_dists = [tf.nn.softmax(logits)]
return vocab_dists
def build_graph(self):
"""Add the placeholders, model, global step, train_op and summaries to
the graph"""
t0 = time.time()
self._add_placeholders()
self.global_step = tf.Variable(0, name='global_step', trainable=False)
with tf.device("/gpu:0"):
decoder_scope = self._add_seq2seq()
self.least_val_loss = tf.Variable(1000.0, name='least_val_loss', trainable=False)
t1 = time.time()
print(colored('Time to build graph: %s seconds' % (t1 - t0), "yellow"))
return decoder_scope
def run_one_batch(self, sess, batch, update=True, gan_eval=False):
"""Runs one training iteration. Returns a dictionary containing train
op, summaries, loss, global_step and (optionally) coverage loss."""
if gan_eval:
update = False
feed_dict = self._make_feed_dict(batch, gan_eval=gan_eval)
to_return = {
'global_step': self.global_step,
}
if gan_eval:
to_return['loss'] = self._eval_loss
to_return['log_gold_probs'] = self.log_gold_probs
else:
to_return['loss'] = self._loss
if update:
to_return['train_op'] = self._train_op
if self.hps.coverage:
to_return['coverage_loss'] = self._coverage_loss
rsts = sess.run(to_return, feed_dict)
return rsts
def run_gan_batch(self, sess, batch, samples, sample_targets,
sample_padding_mask, rewards, update=True, gan_eval=False
):
feed_dict = self._make_feed_dict(batch, gan_eval=gan_eval, gan=True)
feed_dict.update({
self.k_samples: samples,
self.k_sample_targets: sample_targets,
self.k_sample_targets_mask: sample_padding_mask,
self.k_rewards: rewards,
})
to_return = {
'global_step': self.global_step,
'loss': self.gan_loss,
}
if update:
to_return['updates'] = self.g_updates
results = sess.run(to_return, feed_dict)
return results
def run_encoder(self, sess, batch):
feed_dict = self._make_feed_dict(batch, just_enc=True)
to_return = {
"attention_values": self.attention_values,
"attention_keys": self.attention_keys,
}
results = sess.run(to_return, feed_dict)
return results['attention_keys'], results['attention_values']
def decode_onestep(self, emb_dec_inputs):
"""
function: decode onestep for rollout
inputs:
the embedded input
"""
final_dists = self._conv_decoder(emb_dec_inputs, is_training=False, mask=False)
final_dists = final_dists[0]
output_id = tf.squeeze(tf.cast(tf.reshape(tf.multinomial(tf.log(final_dists), 1), [self.hps.batch_size]), tf.int32))
return output_id
def run_decode_onestep(self, sess, dec_inputs, attention_keys, attention_values, enc_padding_mask):
feed = {
self._dec_batch: dec_inputs,
self.attention_keys: attention_keys,
self.attention_values: attention_values,
self.enc_padding_mask: enc_padding_mask,
}
to_return = {
"topk_log_probs": self.topk_log_probs,
"indices": self.indices,
"ran_id": self._ran_id,
}
results = sess.run(to_return, feed_dict=feed)
return results['topk_log_probs'], results['indices'], results['ran_id']
def g_optimizer(self, *args, **kwargs):
return tf.train.AdamOptimizer(*args, **kwargs)
def _mask_and_avg(values, padding_mask):
"""Applies mask to values then returns overall average (a scalar)
Args:
values: a list length max_dec_steps containing arrays shape (batch_size).
padding_mask: tensor shape (batch_size, max_dec_steps) containing 1s and
0s.
Returns:
a scalar
"""
dec_lens = tf.reduce_sum(padding_mask, axis=1) # shape batch_size. float32
values_per_step = [v * padding_mask[:, dec_step] for dec_step, v in enumerate(values)]
values_per_ex = tf.reduce_sum(tf.stack(values_per_step, 1), 1)/dec_lens
return tf.reduce_mean(values_per_ex) # overall average
def _avg(values, padding_mask, overall=True):
"""Applies mask to values then returns overall average (a scalar)
Args:
values: a list length max_dec_steps containing arrays shape (batch_size).
padding_mask: tensor shape (batch_size, max_dec_steps) containing 1s and
0s.
Returns:
a scalar
"""
dec_lens = tf.reduce_sum(padding_mask, axis=1) # shape batch_size. float32
values_per_ex = tf.reduce_sum(tf.stack(values, 1), 1)/dec_lens
if overall:
return tf.reduce_mean(values_per_ex) # overall average
return values_per_ex
def _mask(values, padding_mask):
"""Applies mask to values then returns overall average (a scalar)
Args:
values: a list length max_dec_steps containing arrays shape (batch_size).
padding_mask: tensor shape (batch_size, max_dec_steps) containing 1s and
0s.
Returns:
a scalar
"""
values_per_step = [v * padding_mask[:, dec_step] for dec_step, v in enumerate(values)]
values_per_ex = sum(values_per_step)
return tf.reduce_sum(values_per_ex) # overall loss
def _coverage_loss(attn_dists, padding_mask):
"""Calculates the coverage loss from the attention distributions.
Args:
attn_dists: The attention distributions for each decoder timestep. A list
length max_dec_steps containing shape (batch_size, attn_length)
padding_mask: shape (batch_size, max_dec_steps).
Returns:
coverage_loss: scalar
"""
coverage = tf.zeros_like(
attn_dists[0])
covlosses = []
for a in attn_dists:
covloss = tf.reduce_sum(tf.minimum(a, coverage), [1])
covlosses.append(covloss)
coverage += a # update the coverage vector
coverage_loss = _mask_and_avg(covlosses, padding_mask)
return coverage_loss