-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdis_utils.py
executable file
·192 lines (169 loc) · 7.37 KB
/
dis_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from __future__ import unicode_literals, print_function
from __future__ import absolute_import
from __future__ import division
from utils import ensure_exists
from os.path import join as join_path
import data
import tensorflow as tf
import numpy as np
import sys
# convolutional layer
def convolution2d(inputs,
kernel_size,
pool_size=None,
decay=0.999,
activation_fn=None,
reuse=None,
scope=None):
"""Adds a 2D convolution followed by a maxpool layer.
"""
with tf.variable_scope(scope, 'conv_inputs', [inputs], reuse=reuse):
dtype = inputs.dtype.base_dtype
num_filters_in = inputs.get_shape()[-1].value
num_outputs = num_filters_in
weights_shape = [1] + [kernel_size] + [num_filters_in, num_outputs]
# 1, 3, emb_dim, emb_dim
weights = tf.get_variable(name='weights',
shape=weights_shape,
dtype=dtype,
initializer=tf.contrib.layers.xavier_initializer(),
collections=[tf.GraphKeys.WEIGHTS],
trainable=True)
biases = tf.get_variable(name='biases',
shape=[num_outputs, ],
dtype=dtype,
initializer=tf.zeros_initializer(),
collections=[tf.GraphKeys.BIASES],
trainable=True)
outputs = tf.nn.conv2d(inputs, weights, [1, 1, 1, 1], padding='SAME')
outputs += biases
if pool_size:
pool_shape = [1, 1] + [pool_size] + [1]
outputs = tf.nn.max_pool(outputs, pool_shape, pool_shape, padding='SAME')
if activation_fn:
outputs = activation_fn(outputs)
return outputs
def convolution4con(inputs,
kernel_size,
pool_size=None,
decay=0.999,
activation_fn=None,
inner_conv_layers=2,
reuse=None,
scope=None):
"""Adds a 2D convolution followed by a maxpool layer.
"""
with tf.variable_scope(scope, 'conv_con', [inputs], reuse=reuse):
dtype = inputs.dtype.base_dtype
num_filters_in = inputs.get_shape()[-1].value
num_outputs = num_filters_in
for conv_i in range(inner_conv_layers):
weights_shape = [1] + [kernel_size * (conv_i+1)] + [num_filters_in, num_outputs]
# 1, 3, emb_dim, emb_dim
weights = tf.get_variable(name='weights%s' % conv_i,
shape=weights_shape,
dtype=dtype,
initializer=tf.contrib.layers.xavier_initializer(),
collections=[tf.GraphKeys.WEIGHTS],
trainable=True)
biases = tf.get_variable(name='biases%s' % conv_i,
shape=[num_outputs, ],
dtype=dtype,
initializer=tf.zeros_initializer(),
collections=[tf.GraphKeys.BIASES],
trainable=True)
outputs = tf.nn.conv2d(inputs, weights, [1, 1, 1, 1], padding='SAME')
outputs += biases
inputs = outputs
if pool_size:
pool_shape = [1, 1] + [pool_size] + [1]
outputs = tf.nn.max_pool(outputs, pool_shape, pool_shape, padding='SAME')
if activation_fn:
outputs = activation_fn(outputs)
return outputs
def params_decay(decay):
""" Add ops to decay weights and biases
"""
params = tf.get_collection_ref(tf.GraphKeys.WEIGHTS) + tf.get_collection_ref(tf.GraphKeys.BIASES)
while len(params) > 0:
p = params.pop()
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS,
p.assign(decay*p + (1-decay)*tf.truncated_normal(p.get_shape(), stddev=0.01)))
# ResCNN
def ResCNN(inputs, conv_layers, kernel_size, pool_size, pool_layers=1,
decay=0.99999, activation_fn=tf.nn.relu, reuse=None, scope=None):
""" a convolutaional neural net with conv2d and max_pool layers
"""
with tf.variable_scope(scope, "ResCNN", [inputs], reuse=reuse):
if not pool_size:
pool_layers = 0
outputs = inputs
# residual layers
for j in range(pool_layers+1):
if j > 0:
pool_shape = [1, 1] + [pool_size] + [1]
inputs = tf.nn.max_pool(outputs, pool_shape, pool_shape, padding='SAME')
outputs = inputs
# why not tf.identity()
with tf.variable_scope("layer{0}".format(j)):
for i in range(conv_layers):
outputs -= convolution2d(
activation_fn(outputs), kernel_size, decay=decay, activation_fn=activation_fn)
return outputs
def dump_chpt(eval_batcher, hps, model, sess, saver, eval_loss_best, early_stop=False):
dump_model = False
# Run evals on development set and print their perplexity.
previous_losses = [eval_loss_best]
eval_losses = []
eval_accuracies = []
stop_flag = False
while True:
batch = eval_batcher.next_batch()
if not batch[0]:
eval_batcher.reset()
break
eval_inputs, eval_conditions, eval_targets = \
data.prepare_dis_pretraining_batch(batch)
eval_inputs = np.split(eval_inputs, 2)[0]
eval_conditions = np.split(eval_conditions, 2)[0]
eval_targets = np.split(eval_targets, 2)[0]
eval_results = model.run_one_batch(
sess, eval_inputs, eval_conditions, eval_targets, update=False)
eval_losses.append(eval_results["loss"])
eval_accuracies.append(eval_results["accuracy"])
eval_loss = sum(eval_losses) / len(eval_losses)
eval_accuracy = sum(eval_accuracies) / len(eval_accuracies)
previous_losses.append(eval_loss)
sys.stdout.flush()
threshold = 10
if eval_loss > 0.99 * previous_losses[-2]:
sess.run(model.learning_rate.assign(
tf.maximum(hps.learning_rate_decay_factor*model.learning_rate, 1e-4)))
if len(previous_losses) > threshold and \
eval_loss > max(previous_losses[-threshold-1:-1]) and \
eval_loss_best < min(previous_losses[-threshold:]):
if early_stop:
stop_flag = True
else:
stop_flag = False
print("Proper time to stop...")
if eval_loss < eval_loss_best:
dump_model = True
eval_loss_best = eval_loss
# Save checkpoint and zero timer and loss.
if dump_model:
checkpoint_path = ensure_exists(join_path(hps.model_dir, "discriminator")) + "/model.ckpt"
saver.save(sess, checkpoint_path, global_step=model.global_step)
print("Saving the checkpoint to %s" % checkpoint_path)
return eval_accuracy, eval_loss, stop_flag, eval_loss_best
def print_dashboard(train_accuracies, eval_loss, eval_accuracy):
train_accuracy = sum(train_accuracies) / len(train_accuracies)
train_accuracies = []
print("Eval loss %.4f, train accuracy is %.4f and eval accuracy is %.4f" % (eval_loss, train_accuracy, eval_accuracy))
def eval_dis(batcher, decoder, discriminator):
while True:
batch = batcher.next_batch()
if not batch[0]:
eval_batcher.reset()
break
enc_states, n_samples, n_targets_padding_mask = decoder.mc_generate(batch, s_num=hps_gan.sample_num)