-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
427 lines (360 loc) · 13.8 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import os
import sys
import traceback
from collections import defaultdict
from concurrent.futures import Future, ThreadPoolExecutor
from datetime import date, timedelta
from threading import Lock
from typing import NamedTuple
import requests
import sentry_sdk
from minicli import cli, run, wrap
from sqlalchemy import and_, create_engine, inspect, select, text, update
from sqlalchemy.orm import scoped_session, sessionmaker
from alembic import command
from alembic.config import Config
from config import get_config_value
from metrics import compute_quality_score
from models import (
Base,
Bouquet,
Dataset,
DatasetBouquet,
DatasetComputedColumns,
EcospheresUniverseOrganization,
Metric,
Organization,
Resource,
Stats,
)
from utils import iter_rel, upsert
if sentry_dsn := os.getenv("SENTRY_DSN"):
sentry_sdk.init(dsn=sentry_dsn)
class Task(NamedTuple):
future: Future
dataset: dict
class App:
session: scoped_session
org_lock: Lock
def __init__(self):
self.org_lock = Lock()
app = App()
def load_es_universe_organizations(env: str) -> list[EcospheresUniverseOrganization]:
r = requests.get(get_config_value(env, "org_api"))
r.raise_for_status()
return [EcospheresUniverseOrganization.from_payload(o) for o in r.json()]
def load_organization(env: str, organization_id: str, refresh: bool = False) -> Organization | None:
prefix = get_config_value(env, "prefix")
url = f"https://{prefix}.data.gouv.fr/api/1/organizations/{organization_id}/"
with app.org_lock:
organization = (
app.session.query(Organization).filter_by(organization_id=organization_id).first()
)
if not organization or refresh:
r = requests.get(url)
if not r.ok:
if r.status_code == 410 or r.status_code == 404:
# TODO: delete from db?
print(f"Warning: organization {organization_id} has been deleted")
return
else:
r.raise_for_status()
org_db = Organization.from_payload(r.json())
organization = upsert(app.session, org_db, organization)
return organization
@cli
def update_organizations(env: str = "demo"):
"""Refresh and complement organizations"""
print("Updating organizations...")
organizations = app.session.query(Organization).all()
custom_organizations = load_es_universe_organizations(env)
for organization in organizations:
fresh_organization = load_organization(env, organization.organization_id, refresh=True)
if not fresh_organization:
continue
custom_organization = next(
(o for o in custom_organizations if o.id == fresh_organization.organization_id), None
)
if custom_organization:
fresh_organization.type = custom_organization.type
app.session.add(fresh_organization)
else:
print("Skipping organization", fresh_organization.organization_id)
app.session.commit()
@cli
def load_bouquets(env: str = "demo", include_private: bool = False):
prefix = get_config_value(env, "prefix")
app.session.execute(text("DELETE FROM datasets_bouquets"))
app.session.commit()
# pre-set deleted, will be overwritten by actual upsert
stmt = update(Bouquet).values(deleted=True)
app.session.execute(stmt)
app.session.commit()
universe_name = get_config_value(env, "universe_name")
url = f"https://{prefix}.data.gouv.fr/api/2/topics/?tag={universe_name}"
if include_private:
url = f"{url}&include_private=yes"
for bouquet in iter_rel(
{
"href": url,
}
):
existing = app.session.query(Bouquet).filter_by(bouquet_id=bouquet["id"]).first()
bouquet_obj = Bouquet.from_payload(bouquet)
bouquet_obj = upsert(app.session, bouquet_obj, existing)
for dataset in iter_rel(bouquet["datasets"], quiet=True):
dataset_obj = app.session.query(Dataset).filter_by(dataset_id=dataset["id"]).first()
if dataset_obj:
bouquet_obj.datasets.append(dataset_obj)
app.session.commit()
def process_dataset(env: str, d: dict, licenses: list, skip_related: bool) -> None:
"""Process a single dataset and its resources"""
prefix = get_config_value(env, "prefix")
if organization_id := (d.get("organization") or {}).get("id"):
load_organization(env, organization_id)
dataset_obj = Dataset.from_payload(d, prefix, licenses)
existing = app.session.query(Dataset).filter_by(dataset_id=dataset_obj.dataset_id).first()
upsert(app.session, dataset_obj, existing)
if not skip_related:
for r in iter_rel(d["resources"], quiet=True):
resource_obj = Resource.from_payload(r, dataset_obj.dataset_id)
app.session.add(resource_obj)
app.session.commit()
@cli
def load(
env: str = "demo",
skip_related: bool = False,
skip_metrics: bool = False,
skip_stats: bool = False,
max_workers: int = 4,
):
"""
Load objects from our universe into the database:
- datasets
- organizations
- resources (related)
- bouquets (related)
- organizations (related)
Also compute associated metrics and load stats from Matomo.
"""
prefix = get_config_value(env, "prefix")
topic_slug = get_config_value(env, "topic_slug")
request_topic = requests.get(f"https://{prefix}.data.gouv.fr/api/2/topics/{topic_slug}/")
request_topic.raise_for_status()
topic = request_topic.json()
request_licenses = requests.get(f"https://{prefix}.data.gouv.fr/api/1/datasets/licenses/")
request_licenses.raise_for_status()
licenses = request_licenses.json()
# pre-set deleted, will be overwritten by actual upsert
stmt = update(Dataset).values(deleted=True)
app.session.execute(stmt)
app.session.commit()
if not skip_related:
app.session.execute(text("DELETE FROM resources"))
app.session.commit()
# Create a thread pool for parallel processing
with ThreadPoolExecutor(max_workers=max_workers) as executor:
tasks = []
for dataset in iter_rel(topic["datasets"], page_size=200):
future = executor.submit(
process_dataset,
env,
dataset,
licenses,
skip_related=skip_related,
)
tasks.append(Task(future, dataset))
for task in tasks:
try:
task.future.result()
except Exception as e:
print(f"Failed to process dataset {task.dataset['id']}: {str(e)}", file=sys.stderr)
traceback.print_exc(file=sys.stderr)
if not skip_related:
update_organizations(env=env)
load_bouquets(env=env, include_private=True)
if not skip_metrics:
compute_metrics(env=env)
if not skip_stats:
load_stats(env=env)
@cli
def compute_metrics(env: str = "demo"):
"""
Fill the time-series metrics table with today's data
"""
print("Computing metrics...")
at = date.today()
def add_metric(
measurement: str,
value: float | None,
organization: str | None = None,
):
metric_obj = Metric(
date=at, measurement=measurement, value=value, organization=organization
)
existing = (
app.session.query(Metric)
.filter_by(date=at, measurement=measurement, organization=organization)
.first()
)
upsert(app.session, metric_obj, existing)
query = (
select(Dataset.organization)
.distinct()
.where(and_(~Dataset.deleted, Dataset.organization.is_not(None)))
)
org_ids = app.session.execute(query).scalars().all()
add_metric("nb_organizations", len(org_ids))
agg = defaultdict(int)
for org_id in org_ids:
nb_datasets = (
app.session.query(Dataset).filter_by(organization=org_id, deleted=False).count()
)
add_metric("nb_datasets", nb_datasets, organization=org_id)
agg["nb_datasets"] += nb_datasets
# average quality score per organization
add_metric(
"avg_quality__score", compute_quality_score(app.session, org_id), organization=org_id
)
for indicator in DatasetComputedColumns.indicators:
field = indicator["field"]
query = {
"deleted": False,
f"has_{field}": True,
"organization": org_id,
}
measurement = f"nb_{field}"
value = app.session.query(Dataset).filter_by(**query).count()
add_metric(measurement, value, organization=org_id)
agg[measurement] += value
for agg_key, agg_value in agg.items():
add_metric(agg_key, agg_value)
# global average quality score
add_metric("avg_quality__score", compute_quality_score(app.session))
# nb of associations bouquet <-> dataset from universe
nb_datasets_bouquets = app.session.query(DatasetBouquet).count()
add_metric("nb_datasets_from_universe_in_bouquets", nb_datasets_bouquets)
bouquets = app.session.query(Bouquet)
add_metric("nb_bouquets", bouquets.filter_by(deleted=False).count())
add_metric("nb_bouquets_public", bouquets.filter_by(deleted=False, private=False).count())
# nb_datasets_in_bouquets
add_metric(
"nb_datasets_in_bouquets",
sum(b.nb_datasets for b in bouquets.filter_by(deleted=False)),
)
add_metric(
"nb_datasets_in_bouquets_public",
sum(b.nb_datasets for b in bouquets.filter_by(deleted=False, private=False)),
)
# nb_datasets_external_in_bouquets
add_metric(
"nb_datasets_external_in_bouquets",
sum(b.nb_datasets_external for b in bouquets.filter_by(deleted=False)),
)
add_metric(
"nb_datasets_external_in_bouquets_public",
sum(b.nb_datasets_external for b in bouquets.filter_by(deleted=False, private=False)),
)
# nb_factors_in_bouquets
add_metric(
"nb_factors_in_bouquets",
sum(b.nb_factors for b in bouquets.filter_by(deleted=False)),
)
add_metric(
"nb_factors_in_bouquets_public",
sum(b.nb_factors for b in bouquets.filter_by(deleted=False, private=False)),
)
# nb_factors_missing_in_bouquets
add_metric(
"nb_factors_missing_in_bouquets",
sum(b.nb_factors_missing for b in bouquets.filter_by(deleted=False)),
)
add_metric(
"nb_factors_missing_in_bouquets_public",
sum(b.nb_factors_missing for b in bouquets.filter_by(deleted=False, private=False)),
)
# nb_factors_not_available_in_bouquets
add_metric(
"nb_factors_not_available_in_bouquets",
sum(b.nb_factors_not_available for b in bouquets.filter_by(deleted=False)),
)
add_metric(
"nb_factors_not_available_in_bouquets_public",
sum(b.nb_factors_not_available for b in bouquets.filter_by(deleted=False, private=False)),
)
@cli
def load_stats_history(env: str = "demo", since: str = "2024-04-02"):
parsed_since = date.fromisoformat(since)
print(f"Loading stats history since {since}...")
today = date.today()
for d in range((today - parsed_since).days):
current_date = parsed_since + timedelta(d)
load_stats(env=env, day=current_date.isoformat())
@cli
def load_stats(env: str = "demo", day: str | None = None):
"""
Upsert the stats table from Matomo
"""
# defaults to yesterday
parsed_day = date.fromisoformat(day) if day else date.today() - timedelta(days=1)
print(f"Loading stats for {parsed_day.isoformat()}...")
stats_url = get_config_value(env, "stats_url")
stats_site_id = get_config_value(env, "stats_site_id")
stats_token = get_config_value(env, "stats_token")
if not stats_url or not stats_site_id or not stats_token:
print("Skipping stats loading: missing config value(s)")
return
common_args = {
"module": "API",
"idSite": stats_site_id,
"token_auth": stats_token,
"period": "day",
"date": parsed_day.isoformat(),
"format": "JSON",
}
def fetch(method: str) -> dict:
r = requests.post(
stats_url,
data={
**common_args,
"method": method,
},
)
r.raise_for_status()
return r.json()
data = {}
methods = ["VisitsSummary.get", "Actions.get", "VisitFrequency.get"]
for method in methods:
data |= fetch(method)
columns = [column.key for column in inspect(Stats).attrs if column.key != "id"]
db_data = {k: v for k, v in data.items() if k in columns}
db_data["date"] = parsed_day
if "bounce_rate" in db_data:
# 39% -> 0.39
db_data["bounce_rate"] = float(db_data["bounce_rate"].rstrip("%")) / 100
existing = app.session.query(Stats).filter_by(date=parsed_day).first()
upsert(app.session, Stats(**db_data), existing)
@cli
def init_db(env: str = "demo"):
"""Create the tables in the env database from current schema"""
engine = app.session.get_bind()
Base.metadata.create_all(engine)
# mark current schema as up-to-date re alembic
os.environ["ALEMBIC_ENV"] = env
alembic_cfg = Config("alembic.ini")
command.stamp(alembic_cfg, "head")
@wrap
def connect(env: str):
"""Create a wrapped session for cli commands in App.session"""
print(f"Working on env {env!r}")
dsn = get_config_value(env, "dsn")
engine = create_engine(dsn)
connection = engine.connect()
app.session = scoped_session(sessionmaker(autoflush=True, bind=engine))
yield
app.session.close()
connection.close()
if __name__ == "__main__":
# env is a global parameter that can be overloaded via --env
# every cli command has access to it, but does not _need_ to declare it
run(env="demo")