<xarray.Dataset>\n", + "Dimensions: (latitude: 720, longitude: 1440, time: 84)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 2010-01-01 ... 2016-12-01\n", + " * longitude (longitude) float32 -179.9 -179.6 ... 179.6 179.9\n", + " * latitude (latitude) float32 -89.88 -89.62 ... 89.62 89.88\n", + "Data variables:\n", + " abg_avitabile_vod5th (time, latitude, longitude) float64 ...\n", + " abg_avitabile_vodmean (time, latitude, longitude) float64 ...\n", + " abg_avitabile_vod95th (time, latitude, longitude) float64 ...\n", + " abg_baccini_vod5th (time, latitude, longitude) float64 ...\n", + " abg_baccini_vodmean (time, latitude, longitude) float64 ...\n", + " abg_baccini_vod95th (time, latitude, longitude) float64 ...\n", + " abg_saatchi_vod5th (time, latitude, longitude) float64 ...\n", + " abg_saatchi_vodmean (time, latitude, longitude) float64 ...\n", + " abg_saatchi_vod95th (time, latitude, longitude) float64 ...
array(['2010-01-01T00:00:00.000000000', '2010-02-01T00:00:00.000000000',\n", + " '2010-03-01T00:00:00.000000000', '2010-04-01T00:00:00.000000000',\n", + " '2010-05-01T00:00:00.000000000', '2010-06-01T00:00:00.000000000',\n", + " '2010-07-01T00:00:00.000000000', '2010-08-01T00:00:00.000000000',\n", + " '2010-09-01T00:00:00.000000000', '2010-10-01T00:00:00.000000000',\n", + " '2010-11-01T00:00:00.000000000', '2010-12-01T00:00:00.000000000',\n", + " '2011-01-01T00:00:00.000000000', '2011-02-01T00:00:00.000000000',\n", + " '2011-03-01T00:00:00.000000000', '2011-04-01T00:00:00.000000000',\n", + " '2011-05-01T00:00:00.000000000', '2011-06-01T00:00:00.000000000',\n", + " '2011-07-01T00:00:00.000000000', '2011-08-01T00:00:00.000000000',\n", + " '2011-09-01T00:00:00.000000000', '2011-10-01T00:00:00.000000000',\n", + " '2011-11-01T00:00:00.000000000', '2011-12-01T00:00:00.000000000',\n", + " '2012-01-01T00:00:00.000000000', '2012-02-01T00:00:00.000000000',\n", + " '2012-03-01T00:00:00.000000000', '2012-04-01T00:00:00.000000000',\n", + " '2012-05-01T00:00:00.000000000', '2012-06-01T00:00:00.000000000',\n", + " '2012-07-01T00:00:00.000000000', '2012-08-01T00:00:00.000000000',\n", + " '2012-09-01T00:00:00.000000000', '2012-10-01T00:00:00.000000000',\n", + " '2012-11-01T00:00:00.000000000', '2012-12-01T00:00:00.000000000',\n", + " '2013-01-01T00:00:00.000000000', '2013-02-01T00:00:00.000000000',\n", + " '2013-03-01T00:00:00.000000000', '2013-04-01T00:00:00.000000000',\n", + " '2013-05-01T00:00:00.000000000', '2013-06-01T00:00:00.000000000',\n", + " '2013-07-01T00:00:00.000000000', '2013-08-01T00:00:00.000000000',\n", + " '2013-09-01T00:00:00.000000000', '2013-10-01T00:00:00.000000000',\n", + " '2013-11-01T00:00:00.000000000', '2013-12-01T00:00:00.000000000',\n", + " '2014-01-01T00:00:00.000000000', '2014-02-01T00:00:00.000000000',\n", + " '2014-03-01T00:00:00.000000000', '2014-04-01T00:00:00.000000000',\n", + " '2014-05-01T00:00:00.000000000', '2014-06-01T00:00:00.000000000',\n", + " '2014-07-01T00:00:00.000000000', '2014-08-01T00:00:00.000000000',\n", + " '2014-09-01T00:00:00.000000000', '2014-10-01T00:00:00.000000000',\n", + " '2014-11-01T00:00:00.000000000', '2014-12-01T00:00:00.000000000',\n", + " '2015-01-01T00:00:00.000000000', '2015-02-01T00:00:00.000000000',\n", + " '2015-03-01T00:00:00.000000000', '2015-04-01T00:00:00.000000000',\n", + " '2015-05-01T00:00:00.000000000', '2015-06-01T00:00:00.000000000',\n", + " '2015-07-01T00:00:00.000000000', '2015-08-01T00:00:00.000000000',\n", + " '2015-09-01T00:00:00.000000000', '2015-10-01T00:00:00.000000000',\n", + " '2015-11-01T00:00:00.000000000', '2015-12-01T00:00:00.000000000',\n", + " '2016-01-01T00:00:00.000000000', '2016-02-01T00:00:00.000000000',\n", + " '2016-03-01T00:00:00.000000000', '2016-04-01T00:00:00.000000000',\n", + " '2016-05-01T00:00:00.000000000', '2016-06-01T00:00:00.000000000',\n", + " '2016-07-01T00:00:00.000000000', '2016-08-01T00:00:00.000000000',\n", + " '2016-09-01T00:00:00.000000000', '2016-10-01T00:00:00.000000000',\n", + " '2016-11-01T00:00:00.000000000', '2016-12-01T00:00:00.000000000'],\n", + " dtype='datetime64[ns]')
array([-179.875, -179.625, -179.375, ..., 179.375, 179.625, 179.875],\n", + " dtype=float32)
array([-89.875, -89.625, -89.375, ..., 89.375, 89.625, 89.875],\n", + " dtype=float32)
[87091200 values with dtype=float64]
[87091200 values with dtype=float64]
[87091200 values with dtype=float64]
[87091200 values with dtype=float64]
[87091200 values with dtype=float64]
[87091200 values with dtype=float64]
[87091200 values with dtype=float64]
[87091200 values with dtype=float64]
[87091200 values with dtype=float64]
<xarray.DataArray 'abg_avitabile_vodmean' (time: 84, latitude: 720, longitude: 1440)>\n", + "[87091200 values with dtype=float64]\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 2010-01-01 2010-02-01 ... 2016-12-01\n", + " * longitude (longitude) float32 -179.9 -179.6 -179.4 ... 179.4 179.6 179.9\n", + " * latitude (latitude) float32 -89.88 -89.62 -89.38 ... 89.38 89.62 89.88\n", + "Attributes:\n", + " long_name: AGB estimation using a relation Avitabile et al. as a fct of ...\n", + " units: Mg/h
[87091200 values with dtype=float64]
array(['2010-01-01T00:00:00.000000000', '2010-02-01T00:00:00.000000000',\n", + " '2010-03-01T00:00:00.000000000', '2010-04-01T00:00:00.000000000',\n", + " '2010-05-01T00:00:00.000000000', '2010-06-01T00:00:00.000000000',\n", + " '2010-07-01T00:00:00.000000000', '2010-08-01T00:00:00.000000000',\n", + " '2010-09-01T00:00:00.000000000', '2010-10-01T00:00:00.000000000',\n", + " '2010-11-01T00:00:00.000000000', '2010-12-01T00:00:00.000000000',\n", + " '2011-01-01T00:00:00.000000000', '2011-02-01T00:00:00.000000000',\n", + " '2011-03-01T00:00:00.000000000', '2011-04-01T00:00:00.000000000',\n", + " '2011-05-01T00:00:00.000000000', '2011-06-01T00:00:00.000000000',\n", + " '2011-07-01T00:00:00.000000000', '2011-08-01T00:00:00.000000000',\n", + " '2011-09-01T00:00:00.000000000', '2011-10-01T00:00:00.000000000',\n", + " '2011-11-01T00:00:00.000000000', '2011-12-01T00:00:00.000000000',\n", + " '2012-01-01T00:00:00.000000000', '2012-02-01T00:00:00.000000000',\n", + " '2012-03-01T00:00:00.000000000', '2012-04-01T00:00:00.000000000',\n", + " '2012-05-01T00:00:00.000000000', '2012-06-01T00:00:00.000000000',\n", + " '2012-07-01T00:00:00.000000000', '2012-08-01T00:00:00.000000000',\n", + " '2012-09-01T00:00:00.000000000', '2012-10-01T00:00:00.000000000',\n", + " '2012-11-01T00:00:00.000000000', '2012-12-01T00:00:00.000000000',\n", + " '2013-01-01T00:00:00.000000000', '2013-02-01T00:00:00.000000000',\n", + " '2013-03-01T00:00:00.000000000', '2013-04-01T00:00:00.000000000',\n", + " '2013-05-01T00:00:00.000000000', '2013-06-01T00:00:00.000000000',\n", + " '2013-07-01T00:00:00.000000000', '2013-08-01T00:00:00.000000000',\n", + " '2013-09-01T00:00:00.000000000', '2013-10-01T00:00:00.000000000',\n", + " '2013-11-01T00:00:00.000000000', '2013-12-01T00:00:00.000000000',\n", + " '2014-01-01T00:00:00.000000000', '2014-02-01T00:00:00.000000000',\n", + " '2014-03-01T00:00:00.000000000', '2014-04-01T00:00:00.000000000',\n", + " '2014-05-01T00:00:00.000000000', '2014-06-01T00:00:00.000000000',\n", + " '2014-07-01T00:00:00.000000000', '2014-08-01T00:00:00.000000000',\n", + " '2014-09-01T00:00:00.000000000', '2014-10-01T00:00:00.000000000',\n", + " '2014-11-01T00:00:00.000000000', '2014-12-01T00:00:00.000000000',\n", + " '2015-01-01T00:00:00.000000000', '2015-02-01T00:00:00.000000000',\n", + " '2015-03-01T00:00:00.000000000', '2015-04-01T00:00:00.000000000',\n", + " '2015-05-01T00:00:00.000000000', '2015-06-01T00:00:00.000000000',\n", + " '2015-07-01T00:00:00.000000000', '2015-08-01T00:00:00.000000000',\n", + " '2015-09-01T00:00:00.000000000', '2015-10-01T00:00:00.000000000',\n", + " '2015-11-01T00:00:00.000000000', '2015-12-01T00:00:00.000000000',\n", + " '2016-01-01T00:00:00.000000000', '2016-02-01T00:00:00.000000000',\n", + " '2016-03-01T00:00:00.000000000', '2016-04-01T00:00:00.000000000',\n", + " '2016-05-01T00:00:00.000000000', '2016-06-01T00:00:00.000000000',\n", + " '2016-07-01T00:00:00.000000000', '2016-08-01T00:00:00.000000000',\n", + " '2016-09-01T00:00:00.000000000', '2016-10-01T00:00:00.000000000',\n", + " '2016-11-01T00:00:00.000000000', '2016-12-01T00:00:00.000000000'],\n", + " dtype='datetime64[ns]')
array([-179.875, -179.625, -179.375, ..., 179.375, 179.625, 179.875],\n", + " dtype=float32)
array([-89.875, -89.625, -89.375, ..., 89.375, 89.625, 89.875],\n", + " dtype=float32)
<xarray.DataArray (time: 81, latitude: 720, longitude: 1440)>\n", + "dask.array<truediv, shape=(81, 720, 1440), dtype=float64, chunksize=(1, 720, 1440), chunktype=numpy.ndarray>\n", + "Coordinates:\n", + " * latitude (latitude) float64 -89.88 -89.62 -89.38 ... 89.38 89.62 89.88\n", + " * time (time) datetime64[ns] 2010-04-01 2010-05-01 ... 2016-12-01\n", + " * longitude (longitude) float32 -179.9 -179.6 -179.4 ... 179.4 179.6 179.9
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
array([-89.875, -89.625, -89.375, ..., 89.375, 89.625, 89.875])
array(['2010-04-01T00:00:00.000000000', '2010-05-01T00:00:00.000000000',\n", + " '2010-06-01T00:00:00.000000000', '2010-07-01T00:00:00.000000000',\n", + " '2010-08-01T00:00:00.000000000', '2010-09-01T00:00:00.000000000',\n", + " '2010-10-01T00:00:00.000000000', '2010-11-01T00:00:00.000000000',\n", + " '2010-12-01T00:00:00.000000000', '2011-01-01T00:00:00.000000000',\n", + " '2011-02-01T00:00:00.000000000', '2011-03-01T00:00:00.000000000',\n", + " '2011-04-01T00:00:00.000000000', '2011-05-01T00:00:00.000000000',\n", + " '2011-06-01T00:00:00.000000000', '2011-07-01T00:00:00.000000000',\n", + " '2011-08-01T00:00:00.000000000', '2011-09-01T00:00:00.000000000',\n", + " '2011-10-01T00:00:00.000000000', '2011-11-01T00:00:00.000000000',\n", + " '2011-12-01T00:00:00.000000000', '2012-01-01T00:00:00.000000000',\n", + " '2012-02-01T00:00:00.000000000', '2012-03-01T00:00:00.000000000',\n", + " '2012-04-01T00:00:00.000000000', '2012-05-01T00:00:00.000000000',\n", + " '2012-06-01T00:00:00.000000000', '2012-07-01T00:00:00.000000000',\n", + " '2012-08-01T00:00:00.000000000', '2012-09-01T00:00:00.000000000',\n", + " '2012-10-01T00:00:00.000000000', '2012-11-01T00:00:00.000000000',\n", + " '2012-12-01T00:00:00.000000000', '2013-01-01T00:00:00.000000000',\n", + " '2013-02-01T00:00:00.000000000', '2013-03-01T00:00:00.000000000',\n", + " '2013-04-01T00:00:00.000000000', '2013-05-01T00:00:00.000000000',\n", + " '2013-06-01T00:00:00.000000000', '2013-07-01T00:00:00.000000000',\n", + " '2013-08-01T00:00:00.000000000', '2013-09-01T00:00:00.000000000',\n", + " '2013-10-01T00:00:00.000000000', '2013-11-01T00:00:00.000000000',\n", + " '2013-12-01T00:00:00.000000000', '2014-01-01T00:00:00.000000000',\n", + " '2014-02-01T00:00:00.000000000', '2014-03-01T00:00:00.000000000',\n", + " '2014-04-01T00:00:00.000000000', '2014-05-01T00:00:00.000000000',\n", + " '2014-06-01T00:00:00.000000000', '2014-07-01T00:00:00.000000000',\n", + " '2014-08-01T00:00:00.000000000', '2014-09-01T00:00:00.000000000',\n", + " '2014-10-01T00:00:00.000000000', '2014-11-01T00:00:00.000000000',\n", + " '2014-12-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000',\n", + " '2015-02-01T00:00:00.000000000', '2015-03-01T00:00:00.000000000',\n", + " '2015-04-01T00:00:00.000000000', '2015-05-01T00:00:00.000000000',\n", + " '2015-06-01T00:00:00.000000000', '2015-07-01T00:00:00.000000000',\n", + " '2015-08-01T00:00:00.000000000', '2015-09-01T00:00:00.000000000',\n", + " '2015-10-01T00:00:00.000000000', '2015-11-01T00:00:00.000000000',\n", + " '2015-12-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000',\n", + " '2016-02-01T00:00:00.000000000', '2016-03-01T00:00:00.000000000',\n", + " '2016-04-01T00:00:00.000000000', '2016-05-01T00:00:00.000000000',\n", + " '2016-06-01T00:00:00.000000000', '2016-07-01T00:00:00.000000000',\n", + " '2016-08-01T00:00:00.000000000', '2016-09-01T00:00:00.000000000',\n", + " '2016-10-01T00:00:00.000000000', '2016-11-01T00:00:00.000000000',\n", + " '2016-12-01T00:00:00.000000000'], dtype='datetime64[ns]')
array([-179.875, -179.625, -179.375, ..., 179.375, 179.625, 179.875],\n", + " dtype=float32)
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "
---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "
720467 rows × 4 columns
\n", + "<xarray.DataArray 'climatic_region' (latitude: 601, longitude: 1200)>\n", + "[721200 values with dtype=float32]\n", + "Coordinates:\n", + " * latitude (latitude) float64 90.0 89.7 89.4 89.1 ... -89.4 -89.7 -90.0\n", + " * longitude (longitude) float64 -180.0 -179.7 -179.4 ... 179.1 179.4 179.7\n", + "Attributes: (12/28)\n", + " GRIB_paramId: 212028\n", + " GRIB_shortName: ~\n", + " GRIB_units: ~\n", + " GRIB_name: Experimental product\n", + " GRIB_cfVarName: p28.212\n", + " GRIB_dataType: af\n", + " ... ...\n", + " GRIB_jScansPositively: 0\n", + " GRIB_latitudeOfFirstGridPointInDegrees: 90.0\n", + " GRIB_latitudeOfLastGridPointInDegrees: -90.0\n", + " long_name: Experimental product\n", + " units: ~\n", + " coordinates: time step heightAboveGround lat...
[721200 values with dtype=float32]
array([ 90. , 89.7, 89.4, ..., -89.4, -89.7, -90. ])
array([-180. , -179.7, -179.4, ..., 179.1, 179.4, 179.7])
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "
---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "
720467 rows × 5 columns
\n", + "<xarray.DataArray 'STRF' (latitude: 720, longitude: 1440)>\n", + "[1036800 values with dtype=float64]\n", + "Coordinates:\n", + " * longitude (longitude) float32 -179.9 -179.6 -179.4 ... 179.4 179.6 179.9\n", + " * latitude (latitude) float32 -89.88 -89.62 -89.38 ... 89.38 89.62 89.88\n", + " time datetime64[ns] 2000-01-01\n", + "Attributes:\n", + " long_name: Stream function\n", + " units: m**2 s**-1\n", + " code: 1\n", + " table: 255
[1036800 values with dtype=float64]
array([-179.875, -179.625, -179.375, ..., 179.375, 179.625, 179.875],\n", + " dtype=float32)
array([-89.875, -89.625, -89.375, ..., 89.375, 89.625, 89.875],\n", + " dtype=float32)
array('2000-01-01T00:00:00.000000000', dtype='datetime64[ns]')
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "
---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "7.0 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "1.0 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "1.0 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "
720467 rows × 6 columns
\n", + "<xarray.DataArray 'layer' (latitude: 720, longitude: 1440)>\n", + "dask.array<open_dataset-25361df0b18e7609ff770980d8a035bblayer, shape=(720, 1440), dtype=float32, chunksize=(720, 1440), chunktype=numpy.ndarray>\n", + "Coordinates:\n", + " * longitude (longitude) float64 -179.9 -179.6 -179.4 ... 179.4 179.6 179.9\n", + " * latitude (latitude) float64 89.88 89.62 89.38 ... -89.38 -89.62 -89.88\n", + "Attributes:\n", + " grid_mapping: crs\n", + " proj4: +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=...\n", + " min: 1.0\n", + " max: 14.0
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
array([-179.875, -179.625, -179.375, ..., 179.375, 179.625, 179.875])
array([ 89.875, 89.625, 89.375, ..., -89.375, -89.625, -89.875])
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "
---|---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "5.0 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "7.0 | \n", + "5.0 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "14.0 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "2.0 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "1.0 | \n", + "
720467 rows × 7 columns
\n", + "<xarray.DataArray 'slor' (latitude: 601, longitude: 1200)>\n", + "dask.array<getitem, shape=(601, 1200), dtype=float32, chunksize=(601, 1200), chunktype=numpy.ndarray>\n", + "Coordinates:\n", + " * latitude (latitude) float64 90.0 89.7 89.4 89.1 ... -89.4 -89.7 -90.0\n", + " * longitude (longitude) float64 -180.0 -179.7 -179.4 ... 179.1 179.4 179.7\n", + "Attributes: (12/28)\n", + " GRIB_paramId: 163\n", + " GRIB_shortName: slor\n", + " GRIB_units: ~\n", + " GRIB_name: Slope of sub-gridscale orography\n", + " GRIB_cfVarName: slor\n", + " GRIB_dataType: an\n", + " ... ...\n", + " GRIB_jScansPositively: 0\n", + " GRIB_latitudeOfFirstGridPointInDegrees: 90.0\n", + " GRIB_latitudeOfLastGridPointInDegrees: -90.0\n", + " long_name: Slope of sub-gridscale orography\n", + " units: ~\n", + " coordinates: time step surface latitude long...
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
array([ 90. , 89.7, 89.4, ..., -89.4, -89.7, -90. ])
array([-180. , -179.7, -179.4, ..., 179.1, 179.4, 179.7])
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "
---|---|---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.003584 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "7.0 | \n", + "5.0 | \n", + "0.013915 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "14.0 | \n", + "0.014664 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.016293 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.033126 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.020528 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "2.0 | \n", + "0.054576 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005878 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005559 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "1.0 | \n", + "0.037897 | \n", + "
720467 rows × 8 columns
\n", + "<xarray.DataArray 'SM_IDW' (time: 81, latitude: 450, longitude: 900)>\n", + "dask.array<stack, shape=(81, 450, 900), dtype=float64, chunksize=(1, 450, 900), chunktype=numpy.ndarray>\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 2010-04-01 2010-05-01 ... 2016-12-01\n", + " * longitude (longitude) float32 -180.0 -179.6 -179.2 ... 178.8 179.2 179.6\n", + " * latitude (latitude) float32 -90.0 -89.6 -89.2 -88.8 ... 88.8 89.2 89.6
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
array(['2010-04-01T00:00:00.000000000', '2010-05-01T00:00:00.000000000',\n", + " '2010-06-01T00:00:00.000000000', '2010-07-01T00:00:00.000000000',\n", + " '2010-08-01T00:00:00.000000000', '2010-09-01T00:00:00.000000000',\n", + " '2010-10-01T00:00:00.000000000', '2010-11-01T00:00:00.000000000',\n", + " '2010-12-01T00:00:00.000000000', '2011-01-01T00:00:00.000000000',\n", + " '2011-02-01T00:00:00.000000000', '2011-03-01T00:00:00.000000000',\n", + " '2011-04-01T00:00:00.000000000', '2011-05-01T00:00:00.000000000',\n", + " '2011-06-01T00:00:00.000000000', '2011-07-01T00:00:00.000000000',\n", + " '2011-08-01T00:00:00.000000000', '2011-09-01T00:00:00.000000000',\n", + " '2011-10-01T00:00:00.000000000', '2011-11-01T00:00:00.000000000',\n", + " '2011-12-01T00:00:00.000000000', '2012-01-01T00:00:00.000000000',\n", + " '2012-02-01T00:00:00.000000000', '2012-03-01T00:00:00.000000000',\n", + " '2012-04-01T00:00:00.000000000', '2012-05-01T00:00:00.000000000',\n", + " '2012-06-01T00:00:00.000000000', '2012-07-01T00:00:00.000000000',\n", + " '2012-08-01T00:00:00.000000000', '2012-09-01T00:00:00.000000000',\n", + " '2012-10-01T00:00:00.000000000', '2012-11-01T00:00:00.000000000',\n", + " '2012-12-01T00:00:00.000000000', '2013-01-01T00:00:00.000000000',\n", + " '2013-02-01T00:00:00.000000000', '2013-03-01T00:00:00.000000000',\n", + " '2013-04-01T00:00:00.000000000', '2013-05-01T00:00:00.000000000',\n", + " '2013-06-01T00:00:00.000000000', '2013-07-01T00:00:00.000000000',\n", + " '2013-08-01T00:00:00.000000000', '2013-09-01T00:00:00.000000000',\n", + " '2013-10-01T00:00:00.000000000', '2013-11-01T00:00:00.000000000',\n", + " '2013-12-01T00:00:00.000000000', '2014-01-01T00:00:00.000000000',\n", + " '2014-02-01T00:00:00.000000000', '2014-03-01T00:00:00.000000000',\n", + " '2014-04-01T00:00:00.000000000', '2014-05-01T00:00:00.000000000',\n", + " '2014-06-01T00:00:00.000000000', '2014-07-01T00:00:00.000000000',\n", + " '2014-08-01T00:00:00.000000000', '2014-09-01T00:00:00.000000000',\n", + " '2014-10-01T00:00:00.000000000', '2014-11-01T00:00:00.000000000',\n", + " '2014-12-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000',\n", + " '2015-02-01T00:00:00.000000000', '2015-03-01T00:00:00.000000000',\n", + " '2015-04-01T00:00:00.000000000', '2015-05-01T00:00:00.000000000',\n", + " '2015-06-01T00:00:00.000000000', '2015-07-01T00:00:00.000000000',\n", + " '2015-08-01T00:00:00.000000000', '2015-09-01T00:00:00.000000000',\n", + " '2015-10-01T00:00:00.000000000', '2015-11-01T00:00:00.000000000',\n", + " '2015-12-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000',\n", + " '2016-02-01T00:00:00.000000000', '2016-03-01T00:00:00.000000000',\n", + " '2016-04-01T00:00:00.000000000', '2016-05-01T00:00:00.000000000',\n", + " '2016-06-01T00:00:00.000000000', '2016-07-01T00:00:00.000000000',\n", + " '2016-08-01T00:00:00.000000000', '2016-09-01T00:00:00.000000000',\n", + " '2016-10-01T00:00:00.000000000', '2016-11-01T00:00:00.000000000',\n", + " '2016-12-01T00:00:00.000000000'], dtype='datetime64[ns]')
array([-180. , -179.6, -179.2, ..., 178.8, 179.2, 179.6], dtype=float32)
array([-90. , -89.6, -89.2, ..., 88.8, 89.2, 89.6], dtype=float32)
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "
---|---|---|---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.003584 | \n", + "0.177971 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "7.0 | \n", + "5.0 | \n", + "0.013915 | \n", + "0.638954 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "14.0 | \n", + "0.014664 | \n", + "0.832961 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.016293 | \n", + "0.551958 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.033126 | \n", + "0.676935 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.020528 | \n", + "0.325193 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "2.0 | \n", + "0.054576 | \n", + "0.310260 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005878 | \n", + "0.160282 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005559 | \n", + "0.262777 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "1.0 | \n", + "0.037897 | \n", + "0.306111 | \n", + "
720467 rows × 9 columns
\n", + "<xarray.DataArray 'LAI' (time: 81, latitude: 560, longitude: 1440)>\n", + "dask.array<getitem, shape=(81, 560, 1440), dtype=float32, chunksize=(1, 560, 1440), chunktype=numpy.ndarray>\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 2010-04-01 2010-05-01 ... 2016-12-01\n", + " * latitude (latitude) float64 -59.88 -59.62 -59.38 ... 79.38 79.62 79.88\n", + " * longitude (longitude) float64 -179.9 -179.6 -179.4 ... 179.4 179.6 179.9
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
array(['2010-04-01T00:00:00.000000000', '2010-05-01T00:00:00.000000000',\n", + " '2010-06-01T00:00:00.000000000', '2010-07-01T00:00:00.000000000',\n", + " '2010-08-01T00:00:00.000000000', '2010-09-01T00:00:00.000000000',\n", + " '2010-10-01T00:00:00.000000000', '2010-11-01T00:00:00.000000000',\n", + " '2010-12-01T00:00:00.000000000', '2011-01-01T00:00:00.000000000',\n", + " '2011-02-01T00:00:00.000000000', '2011-03-01T00:00:00.000000000',\n", + " '2011-04-01T00:00:00.000000000', '2011-05-01T00:00:00.000000000',\n", + " '2011-06-01T00:00:00.000000000', '2011-07-01T00:00:00.000000000',\n", + " '2011-08-01T00:00:00.000000000', '2011-09-01T00:00:00.000000000',\n", + " '2011-10-01T00:00:00.000000000', '2011-11-01T00:00:00.000000000',\n", + " '2011-12-01T00:00:00.000000000', '2012-01-01T00:00:00.000000000',\n", + " '2012-02-01T00:00:00.000000000', '2012-03-01T00:00:00.000000000',\n", + " '2012-04-01T00:00:00.000000000', '2012-05-01T00:00:00.000000000',\n", + " '2012-06-01T00:00:00.000000000', '2012-07-01T00:00:00.000000000',\n", + " '2012-08-01T00:00:00.000000000', '2012-09-01T00:00:00.000000000',\n", + " '2012-10-01T00:00:00.000000000', '2012-11-01T00:00:00.000000000',\n", + " '2012-12-01T00:00:00.000000000', '2013-01-01T00:00:00.000000000',\n", + " '2013-02-01T00:00:00.000000000', '2013-03-01T00:00:00.000000000',\n", + " '2013-04-01T00:00:00.000000000', '2013-05-01T00:00:00.000000000',\n", + " '2013-06-01T00:00:00.000000000', '2013-07-01T00:00:00.000000000',\n", + " '2013-08-01T00:00:00.000000000', '2013-09-01T00:00:00.000000000',\n", + " '2013-10-01T00:00:00.000000000', '2013-11-01T00:00:00.000000000',\n", + " '2013-12-01T00:00:00.000000000', '2014-01-01T00:00:00.000000000',\n", + " '2014-02-01T00:00:00.000000000', '2014-03-01T00:00:00.000000000',\n", + " '2014-04-01T00:00:00.000000000', '2014-05-01T00:00:00.000000000',\n", + " '2014-06-01T00:00:00.000000000', '2014-07-01T00:00:00.000000000',\n", + " '2014-08-01T00:00:00.000000000', '2014-09-01T00:00:00.000000000',\n", + " '2014-10-01T00:00:00.000000000', '2014-11-01T00:00:00.000000000',\n", + " '2014-12-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000',\n", + " '2015-02-01T00:00:00.000000000', '2015-03-01T00:00:00.000000000',\n", + " '2015-04-01T00:00:00.000000000', '2015-05-01T00:00:00.000000000',\n", + " '2015-06-01T00:00:00.000000000', '2015-07-01T00:00:00.000000000',\n", + " '2015-08-01T00:00:00.000000000', '2015-09-01T00:00:00.000000000',\n", + " '2015-10-01T00:00:00.000000000', '2015-11-01T00:00:00.000000000',\n", + " '2015-12-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000',\n", + " '2016-02-01T00:00:00.000000000', '2016-03-01T00:00:00.000000000',\n", + " '2016-04-01T00:00:00.000000000', '2016-05-01T00:00:00.000000000',\n", + " '2016-06-01T00:00:00.000000000', '2016-07-01T00:00:00.000000000',\n", + " '2016-08-01T00:00:00.000000000', '2016-09-01T00:00:00.000000000',\n", + " '2016-10-01T00:00:00.000000000', '2016-11-01T00:00:00.000000000',\n", + " '2016-12-01T00:00:00.000000000'], dtype='datetime64[ns]')
array([-59.875, -59.625, -59.375, ..., 79.375, 79.625, 79.875])
array([-179.875, -179.625, -179.375, ..., 179.375, 179.625, 179.875])
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "
---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.003584 | \n", + "0.177971 | \n", + "0.655549 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "7.0 | \n", + "5.0 | \n", + "0.013915 | \n", + "0.638954 | \n", + "2.144423 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "14.0 | \n", + "0.014664 | \n", + "0.832961 | \n", + "3.433299 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.016293 | \n", + "0.551958 | \n", + "1.811093 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.033126 | \n", + "0.676935 | \n", + "4.477733 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.020528 | \n", + "0.325193 | \n", + "0.777770 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "2.0 | \n", + "0.054576 | \n", + "0.310260 | \n", + "0.655549 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005878 | \n", + "0.160282 | \n", + "0.599994 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005559 | \n", + "0.262777 | \n", + "1.111100 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "1.0 | \n", + "0.037897 | \n", + "0.306111 | \n", + "0.055555 | \n", + "
720467 rows × 10 columns
\n", + "<xarray.Dataset>\n", + "Dimensions: (latitude: 601, longitude: 1200, time: 81)\n", + "Coordinates:\n", + " * latitude (latitude) float64 90.0 89.7 89.4 89.1 ... -89.4 -89.7 -90.0\n", + " * longitude (longitude) float64 -180.0 -179.7 -179.4 ... 179.1 179.4 179.7\n", + " * time (time) datetime64[ns] 2010-04-01 2010-05-01 ... 2016-12-01\n", + "Data variables:\n", + " spi03 (time, latitude, longitude) float32 dask.array<chunksize=(1, 601, 1200), meta=np.ndarray>\n", + " spi06 (time, latitude, longitude) float32 dask.array<chunksize=(1, 601, 1200), meta=np.ndarray>\n", + " spi12 (time, latitude, longitude) float32 dask.array<chunksize=(1, 601, 1200), meta=np.ndarray>\n", + "Attributes:\n", + " GRIB_edition: 1\n", + " GRIB_centre: ecmf\n", + " GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts\n", + " GRIB_subCentre: 0\n", + " Conventions: CF-1.7\n", + " institution: European Centre for Medium-Range Weather Forecasts\n", + " history: 2021-03-24T08:59:39 GRIB to CDM+CF via cfgrib-0....
array([ 90. , 89.7, 89.4, ..., -89.4, -89.7, -90. ])
array([-180. , -179.7, -179.4, ..., 179.1, 179.4, 179.7])
array(['2010-04-01T00:00:00.000000000', '2010-05-01T00:00:00.000000000',\n", + " '2010-06-01T00:00:00.000000000', '2010-07-01T00:00:00.000000000',\n", + " '2010-08-01T00:00:00.000000000', '2010-09-01T00:00:00.000000000',\n", + " '2010-10-01T00:00:00.000000000', '2010-11-01T00:00:00.000000000',\n", + " '2010-12-01T00:00:00.000000000', '2011-01-01T00:00:00.000000000',\n", + " '2011-02-01T00:00:00.000000000', '2011-03-01T00:00:00.000000000',\n", + " '2011-04-01T00:00:00.000000000', '2011-05-01T00:00:00.000000000',\n", + " '2011-06-01T00:00:00.000000000', '2011-07-01T00:00:00.000000000',\n", + " '2011-08-01T00:00:00.000000000', '2011-09-01T00:00:00.000000000',\n", + " '2011-10-01T00:00:00.000000000', '2011-11-01T00:00:00.000000000',\n", + " '2011-12-01T00:00:00.000000000', '2012-01-01T00:00:00.000000000',\n", + " '2012-02-01T00:00:00.000000000', '2012-03-01T00:00:00.000000000',\n", + " '2012-04-01T00:00:00.000000000', '2012-05-01T00:00:00.000000000',\n", + " '2012-06-01T00:00:00.000000000', '2012-07-01T00:00:00.000000000',\n", + " '2012-08-01T00:00:00.000000000', '2012-09-01T00:00:00.000000000',\n", + " '2012-10-01T00:00:00.000000000', '2012-11-01T00:00:00.000000000',\n", + " '2012-12-01T00:00:00.000000000', '2013-01-01T00:00:00.000000000',\n", + " '2013-02-01T00:00:00.000000000', '2013-03-01T00:00:00.000000000',\n", + " '2013-04-01T00:00:00.000000000', '2013-05-01T00:00:00.000000000',\n", + " '2013-06-01T00:00:00.000000000', '2013-07-01T00:00:00.000000000',\n", + " '2013-08-01T00:00:00.000000000', '2013-09-01T00:00:00.000000000',\n", + " '2013-10-01T00:00:00.000000000', '2013-11-01T00:00:00.000000000',\n", + " '2013-12-01T00:00:00.000000000', '2014-01-01T00:00:00.000000000',\n", + " '2014-02-01T00:00:00.000000000', '2014-03-01T00:00:00.000000000',\n", + " '2014-04-01T00:00:00.000000000', '2014-05-01T00:00:00.000000000',\n", + " '2014-06-01T00:00:00.000000000', '2014-07-01T00:00:00.000000000',\n", + " '2014-08-01T00:00:00.000000000', '2014-09-01T00:00:00.000000000',\n", + " '2014-10-01T00:00:00.000000000', '2014-11-01T00:00:00.000000000',\n", + " '2014-12-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000',\n", + " '2015-02-01T00:00:00.000000000', '2015-03-01T00:00:00.000000000',\n", + " '2015-04-01T00:00:00.000000000', '2015-05-01T00:00:00.000000000',\n", + " '2015-06-01T00:00:00.000000000', '2015-07-01T00:00:00.000000000',\n", + " '2015-08-01T00:00:00.000000000', '2015-09-01T00:00:00.000000000',\n", + " '2015-10-01T00:00:00.000000000', '2015-11-01T00:00:00.000000000',\n", + " '2015-12-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000',\n", + " '2016-02-01T00:00:00.000000000', '2016-03-01T00:00:00.000000000',\n", + " '2016-04-01T00:00:00.000000000', '2016-05-01T00:00:00.000000000',\n", + " '2016-06-01T00:00:00.000000000', '2016-07-01T00:00:00.000000000',\n", + " '2016-08-01T00:00:00.000000000', '2016-09-01T00:00:00.000000000',\n", + " '2016-10-01T00:00:00.000000000', '2016-11-01T00:00:00.000000000',\n", + " '2016-12-01T00:00:00.000000000'], dtype='datetime64[ns]')
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "spi03 | \n", + "spi06 | \n", + "spi12 | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.003584 | \n", + "0.177971 | \n", + "0.655549 | \n", + "0.776954 | \n", + "0.525000 | \n", + "-0.447657 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "7.0 | \n", + "5.0 | \n", + "0.013915 | \n", + "0.638954 | \n", + "2.144423 | \n", + "-0.711328 | \n", + "0.038671 | \n", + "0.396093 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "14.0 | \n", + "0.014664 | \n", + "0.832961 | \n", + "3.433299 | \n", + "-1.662499 | \n", + "-1.019922 | \n", + "-0.342188 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.016293 | \n", + "0.551958 | \n", + "1.811093 | \n", + "-0.465234 | \n", + "0.118750 | \n", + "0.388281 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.033126 | \n", + "0.676935 | \n", + "4.477733 | \n", + "-0.428124 | \n", + "0.118750 | \n", + "0.384375 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.020528 | \n", + "0.325193 | \n", + "0.777770 | \n", + "-0.266016 | \n", + "-0.875389 | \n", + "0.050391 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "2.0 | \n", + "0.054576 | \n", + "0.310260 | \n", + "0.655549 | \n", + "0.026953 | \n", + "-0.254295 | \n", + "-0.213281 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005878 | \n", + "0.160282 | \n", + "0.599994 | \n", + "-1.494532 | \n", + "-2.109764 | \n", + "-0.639062 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005559 | \n", + "0.262777 | \n", + "1.111100 | \n", + "-1.486719 | \n", + "-2.152733 | \n", + "-0.605859 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "1.0 | \n", + "0.037897 | \n", + "0.306111 | \n", + "0.055555 | \n", + "0.056250 | \n", + "0.458595 | \n", + "-0.818749 | \n", + "
720467 rows × 13 columns
\n", + "<xarray.Dataset>\n", + "Dimensions: (latitude: 451, longitude: 900, time: 81)\n", + "Coordinates:\n", + " * longitude (longitude) float32 -180.0 -179.6 -179.2 ... 178.8 179.2 179.6\n", + " * latitude (latitude) float32 90.0 89.6 89.2 88.8 ... -89.2 -89.6 -90.0\n", + " * time (time) datetime64[ns] 2010-04-01 2010-05-01 ... 2016-12-01\n", + "Data variables:\n", + " d2m (time, latitude, longitude) float32 dask.array<chunksize=(1, 451, 900), meta=np.ndarray>\n", + " erate (time, latitude, longitude) float32 dask.array<chunksize=(1, 451, 900), meta=np.ndarray>\n", + " fg10 (time, latitude, longitude) float32 dask.array<chunksize=(1, 451, 900), meta=np.ndarray>\n", + " si10 (time, latitude, longitude) float32 dask.array<chunksize=(1, 451, 900), meta=np.ndarray>\n", + " swvl1 (time, latitude, longitude) float32 dask.array<chunksize=(1, 451, 900), meta=np.ndarray>\n", + " t2m (time, latitude, longitude) float32 dask.array<chunksize=(1, 451, 900), meta=np.ndarray>\n", + " tprate (time, latitude, longitude) float32 dask.array<chunksize=(1, 451, 900), meta=np.ndarray>\n", + "Attributes:\n", + " Conventions: CF-1.6\n", + " history: 2020-11-19 14:28:47 GMT by grib_to_netcdf-2.17.1: grib_to_n...
array([-180. , -179.6 , -179.20001, ..., 178.79999, 179.20001,\n", + " 179.6 ], dtype=float32)
array([ 90. , 89.6, 89.2, ..., -89.2, -89.6, -90. ], dtype=float32)
array(['2010-04-01T00:00:00.000000000', '2010-05-01T00:00:00.000000000',\n", + " '2010-06-01T00:00:00.000000000', '2010-07-01T00:00:00.000000000',\n", + " '2010-08-01T00:00:00.000000000', '2010-09-01T00:00:00.000000000',\n", + " '2010-10-01T00:00:00.000000000', '2010-11-01T00:00:00.000000000',\n", + " '2010-12-01T00:00:00.000000000', '2011-01-01T00:00:00.000000000',\n", + " '2011-02-01T00:00:00.000000000', '2011-03-01T00:00:00.000000000',\n", + " '2011-04-01T00:00:00.000000000', '2011-05-01T00:00:00.000000000',\n", + " '2011-06-01T00:00:00.000000000', '2011-07-01T00:00:00.000000000',\n", + " '2011-08-01T00:00:00.000000000', '2011-09-01T00:00:00.000000000',\n", + " '2011-10-01T00:00:00.000000000', '2011-11-01T00:00:00.000000000',\n", + " '2011-12-01T00:00:00.000000000', '2012-01-01T00:00:00.000000000',\n", + " '2012-02-01T00:00:00.000000000', '2012-03-01T00:00:00.000000000',\n", + " '2012-04-01T00:00:00.000000000', '2012-05-01T00:00:00.000000000',\n", + " '2012-06-01T00:00:00.000000000', '2012-07-01T00:00:00.000000000',\n", + " '2012-08-01T00:00:00.000000000', '2012-09-01T00:00:00.000000000',\n", + " '2012-10-01T00:00:00.000000000', '2012-11-01T00:00:00.000000000',\n", + " '2012-12-01T00:00:00.000000000', '2013-01-01T00:00:00.000000000',\n", + " '2013-02-01T00:00:00.000000000', '2013-03-01T00:00:00.000000000',\n", + " '2013-04-01T00:00:00.000000000', '2013-05-01T00:00:00.000000000',\n", + " '2013-06-01T00:00:00.000000000', '2013-07-01T00:00:00.000000000',\n", + " '2013-08-01T00:00:00.000000000', '2013-09-01T00:00:00.000000000',\n", + " '2013-10-01T00:00:00.000000000', '2013-11-01T00:00:00.000000000',\n", + " '2013-12-01T00:00:00.000000000', '2014-01-01T00:00:00.000000000',\n", + " '2014-02-01T00:00:00.000000000', '2014-03-01T00:00:00.000000000',\n", + " '2014-04-01T00:00:00.000000000', '2014-05-01T00:00:00.000000000',\n", + " '2014-06-01T00:00:00.000000000', '2014-07-01T00:00:00.000000000',\n", + " '2014-08-01T00:00:00.000000000', '2014-09-01T00:00:00.000000000',\n", + " '2014-10-01T00:00:00.000000000', '2014-11-01T00:00:00.000000000',\n", + " '2014-12-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000',\n", + " '2015-02-01T00:00:00.000000000', '2015-03-01T00:00:00.000000000',\n", + " '2015-04-01T00:00:00.000000000', '2015-05-01T00:00:00.000000000',\n", + " '2015-06-01T00:00:00.000000000', '2015-07-01T00:00:00.000000000',\n", + " '2015-08-01T00:00:00.000000000', '2015-09-01T00:00:00.000000000',\n", + " '2015-10-01T00:00:00.000000000', '2015-11-01T00:00:00.000000000',\n", + " '2015-12-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000',\n", + " '2016-02-01T00:00:00.000000000', '2016-03-01T00:00:00.000000000',\n", + " '2016-04-01T00:00:00.000000000', '2016-05-01T00:00:00.000000000',\n", + " '2016-06-01T00:00:00.000000000', '2016-07-01T00:00:00.000000000',\n", + " '2016-08-01T00:00:00.000000000', '2016-09-01T00:00:00.000000000',\n", + " '2016-10-01T00:00:00.000000000', '2016-11-01T00:00:00.000000000',\n", + " '2016-12-01T00:00:00.000000000'], dtype='datetime64[ns]')
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "spi03 | \n", + "spi06 | \n", + "spi12 | \n", + "d2m | \n", + "erate | \n", + "fg10 | \n", + "si10 | \n", + "swvl1 | \n", + "t2m | \n", + "tprate | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.003584 | \n", + "0.177971 | \n", + "0.655549 | \n", + "0.776954 | \n", + "0.525000 | \n", + "-0.447657 | \n", + "0.406953 | \n", + "0.827660 | \n", + "-196.723999 | \n", + "-154.286743 | \n", + "0.003297 | \n", + "0.254569 | \n", + "1.853317 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "7.0 | \n", + "5.0 | \n", + "0.013915 | \n", + "0.638954 | \n", + "2.144423 | \n", + "-0.711328 | \n", + "0.038671 | \n", + "0.396093 | \n", + "0.287460 | \n", + "3.016632 | \n", + "431.780701 | \n", + "28.249649 | \n", + "0.005519 | \n", + "0.299962 | \n", + "55.425812 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "14.0 | \n", + "0.014664 | \n", + "0.832961 | \n", + "3.433299 | \n", + "-1.662499 | \n", + "-1.019922 | \n", + "-0.342188 | \n", + "0.013466 | \n", + "-3.028435 | \n", + "755.989075 | \n", + "154.893127 | \n", + "0.050565 | \n", + "-0.337244 | \n", + "32.763611 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.016293 | \n", + "0.551958 | \n", + "1.811093 | \n", + "-0.465234 | \n", + "0.118750 | \n", + "0.388281 | \n", + "0.387394 | \n", + "5.030487 | \n", + "413.472107 | \n", + "42.046005 | \n", + "0.016681 | \n", + "0.273752 | \n", + "71.841888 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.033126 | \n", + "0.676935 | \n", + "4.477733 | \n", + "-0.428124 | \n", + "0.118750 | \n", + "0.384375 | \n", + "0.381312 | \n", + "6.291336 | \n", + "393.559875 | \n", + "-27.938068 | \n", + "0.003139 | \n", + "0.076797 | \n", + "92.562195 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.020528 | \n", + "0.325193 | \n", + "0.777770 | \n", + "-0.266016 | \n", + "-0.875389 | \n", + "0.050391 | \n", + "-1.367281 | \n", + "1.625626 | \n", + "292.504852 | \n", + "59.417725 | \n", + "0.006094 | \n", + "-1.379390 | \n", + "9.860245 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "2.0 | \n", + "0.054576 | \n", + "0.310260 | \n", + "0.655549 | \n", + "0.026953 | \n", + "-0.254295 | \n", + "-0.213281 | \n", + "0.455697 | \n", + "0.501305 | \n", + "-115.465073 | \n", + "-19.559784 | \n", + "-0.018831 | \n", + "0.631343 | \n", + "-2.685104 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005878 | \n", + "0.160282 | \n", + "0.599994 | \n", + "-1.494532 | \n", + "-2.109764 | \n", + "-0.639062 | \n", + "-0.879230 | \n", + "-2.990351 | \n", + "710.314941 | \n", + "152.261505 | \n", + "0.015199 | \n", + "-0.608153 | \n", + "6.517075 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005559 | \n", + "0.262777 | \n", + "1.111100 | \n", + "-1.486719 | \n", + "-2.152733 | \n", + "-0.605859 | \n", + "-0.919799 | \n", + "-2.017698 | \n", + "706.356201 | \n", + "156.933868 | \n", + "0.015889 | \n", + "-0.627131 | \n", + "4.443192 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "1.0 | \n", + "0.037897 | \n", + "0.306111 | \n", + "0.055555 | \n", + "0.056250 | \n", + "0.458595 | \n", + "-0.818749 | \n", + "0.713625 | \n", + "0.389204 | \n", + "-201.990448 | \n", + "1.390381 | \n", + "-0.014896 | \n", + "0.647231 | \n", + "-5.461624 | \n", + "
720467 rows × 20 columns
\n", + "<xarray.Dataset>\n", + "Dimensions: (latitude: 640, longitude: 1280, time: 81)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 2010-04-01 2010-05-01 ... 2016-12-01\n", + " * longitude (longitude) float64 -180.0 -179.7 -179.4 ... 179.2 179.4 179.7\n", + " * latitude (latitude) float64 89.78 89.51 89.23 ... -89.23 -89.51 -89.78\n", + "Data variables:\n", + " danger_risk (time, latitude, longitude) float32 dask.array<chunksize=(1, 640, 1280), meta=np.ndarray>\n", + " fwinx (time, latitude, longitude) float32 dask.array<chunksize=(1, 640, 1280), meta=np.ndarray>\n", + " ffmcode (time, latitude, longitude) float32 dask.array<chunksize=(1, 640, 1280), meta=np.ndarray>\n", + " dufmcode (time, latitude, longitude) float32 dask.array<chunksize=(1, 640, 1280), meta=np.ndarray>\n", + " drtcode (time, latitude, longitude) float32 dask.array<chunksize=(1, 640, 1280), meta=np.ndarray>\n", + " infsinx (time, latitude, longitude) float32 dask.array<chunksize=(1, 640, 1280), meta=np.ndarray>\n", + " fbupinx (time, latitude, longitude) float32 dask.array<chunksize=(1, 640, 1280), meta=np.ndarray>\n", + " fdsrte (time, latitude, longitude) float32 dask.array<chunksize=(1, 640, 1280), meta=np.ndarray>\n", + "Attributes:\n", + " CDI: Climate Data Interface version 1.9.8 (https://mpimet.mpg.de...\n", + " Conventions: CF-1.6\n", + " history: Sun Apr 25 20:57:44 2021: cdo -R -f nc -remapbil,n320 -setg...\n", + " institution: European Centre for Medium-Range Weather Forecasts\n", + " CDO: Climate Data Operators version 1.9.8 (https://mpimet.mpg.de...
array(['2010-04-01T00:00:00.000000000', '2010-05-01T00:00:00.000000000',\n", + " '2010-06-01T00:00:00.000000000', '2010-07-01T00:00:00.000000000',\n", + " '2010-08-01T00:00:00.000000000', '2010-09-01T00:00:00.000000000',\n", + " '2010-10-01T00:00:00.000000000', '2010-11-01T00:00:00.000000000',\n", + " '2010-12-01T00:00:00.000000000', '2011-01-01T00:00:00.000000000',\n", + " '2011-02-01T00:00:00.000000000', '2011-03-01T00:00:00.000000000',\n", + " '2011-04-01T00:00:00.000000000', '2011-05-01T00:00:00.000000000',\n", + " '2011-06-01T00:00:00.000000000', '2011-07-01T00:00:00.000000000',\n", + " '2011-08-01T00:00:00.000000000', '2011-09-01T00:00:00.000000000',\n", + " '2011-10-01T00:00:00.000000000', '2011-11-01T00:00:00.000000000',\n", + " '2011-12-01T00:00:00.000000000', '2012-01-01T00:00:00.000000000',\n", + " '2012-02-01T00:00:00.000000000', '2012-03-01T00:00:00.000000000',\n", + " '2012-04-01T00:00:00.000000000', '2012-05-01T00:00:00.000000000',\n", + " '2012-06-01T00:00:00.000000000', '2012-07-01T00:00:00.000000000',\n", + " '2012-08-01T00:00:00.000000000', '2012-09-01T00:00:00.000000000',\n", + " '2012-10-01T00:00:00.000000000', '2012-11-01T00:00:00.000000000',\n", + " '2012-12-01T00:00:00.000000000', '2013-01-01T00:00:00.000000000',\n", + " '2013-02-01T00:00:00.000000000', '2013-03-01T00:00:00.000000000',\n", + " '2013-04-01T00:00:00.000000000', '2013-05-01T00:00:00.000000000',\n", + " '2013-06-01T00:00:00.000000000', '2013-07-01T00:00:00.000000000',\n", + " '2013-08-01T00:00:00.000000000', '2013-09-01T00:00:00.000000000',\n", + " '2013-10-01T00:00:00.000000000', '2013-11-01T00:00:00.000000000',\n", + " '2013-12-01T00:00:00.000000000', '2014-01-01T00:00:00.000000000',\n", + " '2014-02-01T00:00:00.000000000', '2014-03-01T00:00:00.000000000',\n", + " '2014-04-01T00:00:00.000000000', '2014-05-01T00:00:00.000000000',\n", + " '2014-06-01T00:00:00.000000000', '2014-07-01T00:00:00.000000000',\n", + " '2014-08-01T00:00:00.000000000', '2014-09-01T00:00:00.000000000',\n", + " '2014-10-01T00:00:00.000000000', '2014-11-01T00:00:00.000000000',\n", + " '2014-12-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000',\n", + " '2015-02-01T00:00:00.000000000', '2015-03-01T00:00:00.000000000',\n", + " '2015-04-01T00:00:00.000000000', '2015-05-01T00:00:00.000000000',\n", + " '2015-06-01T00:00:00.000000000', '2015-07-01T00:00:00.000000000',\n", + " '2015-08-01T00:00:00.000000000', '2015-09-01T00:00:00.000000000',\n", + " '2015-10-01T00:00:00.000000000', '2015-11-01T00:00:00.000000000',\n", + " '2015-12-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000',\n", + " '2016-02-01T00:00:00.000000000', '2016-03-01T00:00:00.000000000',\n", + " '2016-04-01T00:00:00.000000000', '2016-05-01T00:00:00.000000000',\n", + " '2016-06-01T00:00:00.000000000', '2016-07-01T00:00:00.000000000',\n", + " '2016-08-01T00:00:00.000000000', '2016-09-01T00:00:00.000000000',\n", + " '2016-10-01T00:00:00.000000000', '2016-11-01T00:00:00.000000000',\n", + " '2016-12-01T00:00:00.000000000'], dtype='datetime64[ns]')
array([-180. , -179.71875, -179.4375 , ..., 179.15625, 179.4375 ,\n", + " 179.71875])
array([ 89.784877, 89.506203, 89.225883, ..., -89.225883, -89.506203,\n", + " -89.784877])
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n",
+ "
| \n",
+ "\n", + "\n", + " | \n", + "
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "... | \n", + "t2m | \n", + "tprate | \n", + "danger_risk | \n", + "fwinx | \n", + "ffmcode | \n", + "dufmcode | \n", + "drtcode | \n", + "infsinx | \n", + "fbupinx | \n", + "fdsrte | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.003584 | \n", + "0.177971 | \n", + "0.655549 | \n", + "... | \n", + "0.254569 | \n", + "1.853317 | \n", + "-0.408514 | \n", + "-6.540662 | \n", + "0.409787 | \n", + "-28.476147 | \n", + "-435.756500 | \n", + "-0.604823 | \n", + "-48.407936 | \n", + "-5.157768 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "7.0 | \n", + "5.0 | \n", + "0.013915 | \n", + "0.638954 | \n", + "2.144423 | \n", + "... | \n", + "0.299962 | \n", + "55.425812 | \n", + "-0.067000 | \n", + "-0.084618 | \n", + "6.273533 | \n", + "-0.538086 | \n", + "-20.080078 | \n", + "0.267007 | \n", + "-0.873047 | \n", + "-0.086460 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "14.0 | \n", + "0.014664 | \n", + "0.832961 | \n", + "3.433299 | \n", + "... | \n", + "-0.337244 | \n", + "32.763611 | \n", + "0.218694 | \n", + "1.595769 | \n", + "6.249068 | \n", + "3.641309 | \n", + "6.909269 | \n", + "0.687314 | \n", + "5.850041 | \n", + "0.220082 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.016293 | \n", + "0.551958 | \n", + "1.811093 | \n", + "... | \n", + "0.273752 | \n", + "71.841888 | \n", + "-0.128096 | \n", + "-0.487267 | \n", + "4.348554 | \n", + "-1.812235 | \n", + "-52.787262 | \n", + "0.159193 | \n", + "-3.456243 | \n", + "-0.198016 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.033126 | \n", + "0.676935 | \n", + "4.477733 | \n", + "... | \n", + "0.076797 | \n", + "92.562195 | \n", + "-0.099173 | \n", + "-0.372817 | \n", + "4.207914 | \n", + "-1.145141 | \n", + "-49.045151 | \n", + "0.194680 | \n", + "-3.067599 | \n", + "-0.133346 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.020528 | \n", + "0.325193 | \n", + "0.777770 | \n", + "... | \n", + "-1.379390 | \n", + "9.860245 | \n", + "-0.001600 | \n", + "0.213408 | \n", + "3.380115 | \n", + "0.573486 | \n", + "2.652710 | \n", + "0.321904 | \n", + "0.713867 | \n", + "0.011017 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "2.0 | \n", + "0.054576 | \n", + "0.310260 | \n", + "0.655549 | \n", + "... | \n", + "0.631343 | \n", + "-2.685104 | \n", + "0.000000 | \n", + "-0.034499 | \n", + "-4.597795 | \n", + "-0.155521 | \n", + "-92.605637 | \n", + "-0.084250 | \n", + "-0.304651 | \n", + "-0.000867 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005878 | \n", + "0.160282 | \n", + "0.599994 | \n", + "... | \n", + "-0.608153 | \n", + "6.517075 | \n", + "-0.002031 | \n", + "0.067574 | \n", + "0.882902 | \n", + "0.393799 | \n", + "131.938141 | \n", + "0.012117 | \n", + "0.793365 | \n", + "0.001631 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005559 | \n", + "0.262777 | \n", + "1.111100 | \n", + "... | \n", + "-0.627131 | \n", + "4.443192 | \n", + "-0.002258 | \n", + "0.045247 | \n", + "0.583693 | \n", + "0.309570 | \n", + "123.781250 | \n", + "-0.005449 | \n", + "0.623535 | \n", + "0.000401 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "1.0 | \n", + "0.037897 | \n", + "0.306111 | \n", + "0.055555 | \n", + "... | \n", + "0.647231 | \n", + "-5.461624 | \n", + "-0.000151 | \n", + "-0.041893 | \n", + "-3.639202 | \n", + "-0.159950 | \n", + "-15.920909 | \n", + "-0.092828 | \n", + "-0.306207 | \n", + "-0.001705 | \n", + "
720467 rows × 28 columns
\n", + "<xarray.DataArray 'frpfire' (time: 81, latitude: 1800, longitude: 3600)>\n", + "[524880000 values with dtype=float32]\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 2010-04-01 2010-05-01 ... 2016-12-01\n", + " * longitude (longitude) float32 -180.0 -179.9 -179.8 ... 179.8 179.9 180.0\n", + " * latitude (latitude) float32 89.95 89.85 89.75 ... -89.75 -89.85 -89.95\n", + "Attributes:\n", + " long_name: Wildfire radiative power\n", + " units: W m**-2\n", + " cell_methods: time: mean
[524880000 values with dtype=float32]
array(['2010-04-01T00:00:00.000000000', '2010-05-01T00:00:00.000000000',\n", + " '2010-06-01T00:00:00.000000000', '2010-07-01T00:00:00.000000000',\n", + " '2010-08-01T00:00:00.000000000', '2010-09-01T00:00:00.000000000',\n", + " '2010-10-01T00:00:00.000000000', '2010-11-01T00:00:00.000000000',\n", + " '2010-12-01T00:00:00.000000000', '2011-01-01T00:00:00.000000000',\n", + " '2011-02-01T00:00:00.000000000', '2011-03-01T00:00:00.000000000',\n", + " '2011-04-01T00:00:00.000000000', '2011-05-01T00:00:00.000000000',\n", + " '2011-06-01T00:00:00.000000000', '2011-07-01T00:00:00.000000000',\n", + " '2011-08-01T00:00:00.000000000', '2011-09-01T00:00:00.000000000',\n", + " '2011-10-01T00:00:00.000000000', '2011-11-01T00:00:00.000000000',\n", + " '2011-12-01T00:00:00.000000000', '2012-01-01T00:00:00.000000000',\n", + " '2012-02-01T00:00:00.000000000', '2012-03-01T00:00:00.000000000',\n", + " '2012-04-01T00:00:00.000000000', '2012-05-01T00:00:00.000000000',\n", + " '2012-06-01T00:00:00.000000000', '2012-07-01T00:00:00.000000000',\n", + " '2012-08-01T00:00:00.000000000', '2012-09-01T00:00:00.000000000',\n", + " '2012-10-01T00:00:00.000000000', '2012-11-01T00:00:00.000000000',\n", + " '2012-12-01T00:00:00.000000000', '2013-01-01T00:00:00.000000000',\n", + " '2013-02-01T00:00:00.000000000', '2013-03-01T00:00:00.000000000',\n", + " '2013-04-01T00:00:00.000000000', '2013-05-01T00:00:00.000000000',\n", + " '2013-06-01T00:00:00.000000000', '2013-07-01T00:00:00.000000000',\n", + " '2013-08-01T00:00:00.000000000', '2013-09-01T00:00:00.000000000',\n", + " '2013-10-01T00:00:00.000000000', '2013-11-01T00:00:00.000000000',\n", + " '2013-12-01T00:00:00.000000000', '2014-01-01T00:00:00.000000000',\n", + " '2014-02-01T00:00:00.000000000', '2014-03-01T00:00:00.000000000',\n", + " '2014-04-01T00:00:00.000000000', '2014-05-01T00:00:00.000000000',\n", + " '2014-06-01T00:00:00.000000000', '2014-07-01T00:00:00.000000000',\n", + " '2014-08-01T00:00:00.000000000', '2014-09-01T00:00:00.000000000',\n", + " '2014-10-01T00:00:00.000000000', '2014-11-01T00:00:00.000000000',\n", + " '2014-12-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000',\n", + " '2015-02-01T00:00:00.000000000', '2015-03-01T00:00:00.000000000',\n", + " '2015-04-01T00:00:00.000000000', '2015-05-01T00:00:00.000000000',\n", + " '2015-06-01T00:00:00.000000000', '2015-07-01T00:00:00.000000000',\n", + " '2015-08-01T00:00:00.000000000', '2015-09-01T00:00:00.000000000',\n", + " '2015-10-01T00:00:00.000000000', '2015-11-01T00:00:00.000000000',\n", + " '2015-12-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000',\n", + " '2016-02-01T00:00:00.000000000', '2016-03-01T00:00:00.000000000',\n", + " '2016-04-01T00:00:00.000000000', '2016-05-01T00:00:00.000000000',\n", + " '2016-06-01T00:00:00.000000000', '2016-07-01T00:00:00.000000000',\n", + " '2016-08-01T00:00:00.000000000', '2016-09-01T00:00:00.000000000',\n", + " '2016-10-01T00:00:00.000000000', '2016-11-01T00:00:00.000000000',\n", + " '2016-12-01T00:00:00.000000000'], dtype='datetime64[ns]')
array([-179.95001, -179.85 , -179.75 , ..., 179.75 , 179.85 ,\n", + " 179.95001], dtype=float32)
array([ 89.95, 89.85, 89.75, ..., -89.75, -89.85, -89.95], dtype=float32)
\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "... | \n", + "tprate | \n", + "danger_risk | \n", + "fwinx | \n", + "ffmcode | \n", + "dufmcode | \n", + "drtcode | \n", + "infsinx | \n", + "fbupinx | \n", + "fdsrte | \n", + "frp | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.003584 | \n", + "0.177971 | \n", + "0.655549 | \n", + "... | \n", + "1.853317 | \n", + "-0.408514 | \n", + "-6.540662 | \n", + "0.409787 | \n", + "-28.476147 | \n", + "-435.756500 | \n", + "-0.604823 | \n", + "-48.407936 | \n", + "-5.157768 | \n", + "0.000000 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.625 | \n", + "-73.125 | \n", + "5.152665 | \n", + "NaN | \n", + "7.0 | \n", + "5.0 | \n", + "0.013915 | \n", + "0.638954 | \n", + "2.144423 | \n", + "... | \n", + "55.425812 | \n", + "-0.067000 | \n", + "-0.084618 | \n", + "6.273533 | \n", + "-0.538086 | \n", + "-20.080078 | \n", + "0.267007 | \n", + "-0.873047 | \n", + "-0.086460 | \n", + "0.019714 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "14.0 | \n", + "0.014664 | \n", + "0.832961 | \n", + "3.433299 | \n", + "... | \n", + "32.763611 | \n", + "0.218694 | \n", + "1.595769 | \n", + "6.249068 | \n", + "3.641309 | \n", + "6.909269 | \n", + "0.687314 | \n", + "5.850041 | \n", + "0.220082 | \n", + "0.000000 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.016293 | \n", + "0.551958 | \n", + "1.811093 | \n", + "... | \n", + "71.841888 | \n", + "-0.128096 | \n", + "-0.487267 | \n", + "4.348554 | \n", + "-1.812235 | \n", + "-52.787262 | \n", + "0.159193 | \n", + "-3.456243 | \n", + "-0.198016 | \n", + "0.007889 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.033126 | \n", + "0.676935 | \n", + "4.477733 | \n", + "... | \n", + "92.562195 | \n", + "-0.099173 | \n", + "-0.372817 | \n", + "4.207914 | \n", + "-1.145141 | \n", + "-49.045151 | \n", + "0.194680 | \n", + "-3.067599 | \n", + "-0.133346 | \n", + "0.000000 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
720462 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.020528 | \n", + "0.325193 | \n", + "0.777770 | \n", + "... | \n", + "9.860245 | \n", + "-0.001600 | \n", + "0.213408 | \n", + "3.380115 | \n", + "0.573486 | \n", + "2.652710 | \n", + "0.321904 | \n", + "0.713867 | \n", + "0.011017 | \n", + "0.000000 | \n", + "
720463 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "2.0 | \n", + "0.054576 | \n", + "0.310260 | \n", + "0.655549 | \n", + "... | \n", + "-2.685104 | \n", + "0.000000 | \n", + "-0.034499 | \n", + "-4.597795 | \n", + "-0.155521 | \n", + "-92.605637 | \n", + "-0.084250 | \n", + "-0.304651 | \n", + "-0.000867 | \n", + "0.000000 | \n", + "
720464 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.375 | \n", + "2.790013 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005878 | \n", + "0.160282 | \n", + "0.599994 | \n", + "... | \n", + "6.517075 | \n", + "-0.002031 | \n", + "0.067574 | \n", + "0.882902 | \n", + "0.393799 | \n", + "131.938141 | \n", + "0.012117 | \n", + "0.793365 | \n", + "0.001631 | \n", + "0.000000 | \n", + "
720465 | \n", + "2016-12-01 | \n", + "49.125 | \n", + "-0.125 | \n", + "1.610908 | \n", + "NaN | \n", + "1.0 | \n", + "6.0 | \n", + "0.005559 | \n", + "0.262777 | \n", + "1.111100 | \n", + "... | \n", + "4.443192 | \n", + "-0.002258 | \n", + "0.045247 | \n", + "0.583693 | \n", + "0.309570 | \n", + "123.781250 | \n", + "-0.005449 | \n", + "0.623535 | \n", + "0.000401 | \n", + "0.000000 | \n", + "
720466 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "1.0 | \n", + "0.037897 | \n", + "0.306111 | \n", + "0.055555 | \n", + "... | \n", + "-5.461624 | \n", + "-0.000151 | \n", + "-0.041893 | \n", + "-3.639202 | \n", + "-0.159950 | \n", + "-15.920909 | \n", + "-0.092828 | \n", + "-0.306207 | \n", + "-0.001705 | \n", + "0.000000 | \n", + "
720467 rows × 29 columns
\n", + "\n", + " | time | \n", + "latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "... | \n", + "tprate | \n", + "danger_risk | \n", + "fwinx | \n", + "ffmcode | \n", + "dufmcode | \n", + "drtcode | \n", + "infsinx | \n", + "fbupinx | \n", + "fdsrte | \n", + "frp | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "2010-04-01 | \n", + "-39.875 | \n", + "-65.375 | \n", + "0.235708 | \n", + "1.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.003584 | \n", + "0.177971 | \n", + "0.655549 | \n", + "... | \n", + "1.853317 | \n", + "-0.408514 | \n", + "-6.540662 | \n", + "0.409787 | \n", + "-28.476147 | \n", + "-435.756500 | \n", + "-0.604823 | \n", + "-48.407936 | \n", + "-5.157768 | \n", + "0.000000 | \n", + "
1 | \n", + "2010-04-01 | \n", + "-39.375 | \n", + "175.125 | \n", + "15.806868 | \n", + "3.0 | \n", + "7.0 | \n", + "14.0 | \n", + "0.014664 | \n", + "0.832961 | \n", + "3.433299 | \n", + "... | \n", + "32.763611 | \n", + "0.218694 | \n", + "1.595769 | \n", + "6.249068 | \n", + "3.641309 | \n", + "6.909269 | \n", + "0.687314 | \n", + "5.850041 | \n", + "0.220082 | \n", + "0.000000 | \n", + "
2 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.375 | \n", + "7.532907 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.016293 | \n", + "0.551958 | \n", + "1.811093 | \n", + "... | \n", + "71.841888 | \n", + "-0.128096 | \n", + "-0.487267 | \n", + "4.348554 | \n", + "-1.812235 | \n", + "-52.787262 | \n", + "0.159193 | \n", + "-3.456243 | \n", + "-0.198016 | \n", + "0.007889 | \n", + "
3 | \n", + "2010-04-01 | \n", + "-39.125 | \n", + "-72.125 | \n", + "21.445339 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.033126 | \n", + "0.676935 | \n", + "4.477733 | \n", + "... | \n", + "92.562195 | \n", + "-0.099173 | \n", + "-0.372817 | \n", + "4.207914 | \n", + "-1.145141 | \n", + "-49.045151 | \n", + "0.194680 | \n", + "-3.067599 | \n", + "-0.133346 | \n", + "0.000000 | \n", + "
4 | \n", + "2010-04-01 | \n", + "-38.875 | \n", + "-73.125 | \n", + "24.395179 | \n", + "3.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.007279 | \n", + "0.527810 | \n", + "4.866618 | \n", + "... | \n", + "36.827591 | \n", + "0.001888 | \n", + "0.155949 | \n", + "4.679501 | \n", + "-1.645196 | \n", + "4.946845 | \n", + "0.350790 | \n", + "-1.998169 | \n", + "-0.181037 | \n", + "0.003937 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
662536 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.375 | \n", + "19.511560 | \n", + "3.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.012388 | \n", + "0.337806 | \n", + "1.122211 | \n", + "... | \n", + "11.752808 | \n", + "0.001543 | \n", + "0.293289 | \n", + "3.657032 | \n", + "0.905957 | \n", + "2.282520 | \n", + "0.338811 | \n", + "1.021387 | \n", + "0.018449 | \n", + "0.000000 | \n", + "
662537 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.625 | \n", + "120.068342 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.017362 | \n", + "0.325193 | \n", + "0.599994 | \n", + "... | \n", + "9.860245 | \n", + "-0.000420 | \n", + "0.246845 | \n", + "3.500041 | \n", + "0.730444 | \n", + "2.304420 | \n", + "0.331265 | \n", + "0.832579 | \n", + "0.014133 | \n", + "0.000000 | \n", + "
662538 | \n", + "2016-12-01 | \n", + "45.125 | \n", + "2.875 | \n", + "3.711282 | \n", + "2.0 | \n", + "1.0 | \n", + "6.0 | \n", + "0.020528 | \n", + "0.325193 | \n", + "0.777770 | \n", + "... | \n", + "9.860245 | \n", + "-0.001600 | \n", + "0.213408 | \n", + "3.380115 | \n", + "0.573486 | \n", + "2.652710 | \n", + "0.321904 | \n", + "0.713867 | \n", + "0.011017 | \n", + "0.000000 | \n", + "
662539 | \n", + "2016-12-01 | \n", + "48.125 | \n", + "-120.125 | \n", + "9.861333 | \n", + "1.0 | \n", + "7.0 | \n", + "2.0 | \n", + "0.054576 | \n", + "0.310260 | \n", + "0.655549 | \n", + "... | \n", + "-2.685104 | \n", + "0.000000 | \n", + "-0.034499 | \n", + "-4.597795 | \n", + "-0.155521 | \n", + "-92.605637 | \n", + "-0.084250 | \n", + "-0.304651 | \n", + "-0.000867 | \n", + "0.000000 | \n", + "
662540 | \n", + "2016-12-01 | \n", + "49.625 | \n", + "-114.625 | \n", + "2.074960 | \n", + "2.0 | \n", + "7.0 | \n", + "1.0 | \n", + "0.037897 | \n", + "0.306111 | \n", + "0.055555 | \n", + "... | \n", + "-5.461624 | \n", + "-0.000151 | \n", + "-0.041893 | \n", + "-3.639202 | \n", + "-0.159950 | \n", + "-15.920909 | \n", + "-0.092828 | \n", + "-0.306207 | \n", + "-0.001705 | \n", + "0.000000 | \n", + "
662541 rows × 29 columns
\n", + "\n", + " | latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "spi03 | \n", + "... | \n", + "ffmcode | \n", + "dufmcode | \n", + "drtcode | \n", + "infsinx | \n", + "fbupinx | \n", + "fdsrte | \n", + "frp | \n", + "daysElapsed | \n", + "timeYear | \n", + "timeMonth | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "-32.375 | \n", + "28.125 | \n", + "1.001038 | \n", + "3.0 | \n", + "1.0 | \n", + "9.0 | \n", + "0.014507 | \n", + "0.228241 | \n", + "0.222220 | \n", + "-0.398828 | \n", + "... | \n", + "3.302874 | \n", + "13.643188 | \n", + "109.829220 | \n", + "1.191657 | \n", + "22.684143 | \n", + "2.530905 | \n", + "0.000000 | \n", + "212 | \n", + "2010 | \n", + "8 | \n", + "
1 | \n", + "17.875 | \n", + "82.375 | \n", + "27.360060 | \n", + "4.0 | \n", + "5.0 | \n", + "12.0 | \n", + "0.024084 | \n", + "0.385490 | \n", + "0.555550 | \n", + "-0.349998 | \n", + "... | \n", + "-3.897657 | \n", + "-43.599540 | \n", + "-57.730576 | \n", + "-3.418025 | \n", + "-41.623190 | \n", + "-7.454767 | \n", + "0.000000 | \n", + "1520 | \n", + "2014 | \n", + "3 | \n", + "
2 | \n", + "-31.625 | \n", + "28.375 | \n", + "3.641749 | \n", + "3.0 | \n", + "1.0 | \n", + "9.0 | \n", + "0.020789 | \n", + "0.275492 | \n", + "0.288886 | \n", + "-0.404686 | \n", + "... | \n", + "-5.759307 | \n", + "-13.695341 | \n", + "-106.551190 | \n", + "-0.762760 | \n", + "-19.835646 | \n", + "-1.497616 | \n", + "0.000000 | \n", + "1277 | \n", + "2013 | \n", + "7 | \n", + "
3 | \n", + "13.375 | \n", + "37.125 | \n", + "17.883150 | \n", + "4.0 | \n", + "1.0 | \n", + "8.0 | \n", + "0.042149 | \n", + "0.256732 | \n", + "0.433329 | \n", + "-0.295313 | \n", + "... | \n", + "1.007990 | \n", + "-88.729330 | \n", + "26.709599 | \n", + "1.302401 | \n", + "-74.875960 | \n", + "3.221945 | \n", + "0.000000 | \n", + "455 | \n", + "2011 | \n", + "4 | \n", + "
4 | \n", + "8.125 | \n", + "-1.625 | \n", + "1.747495 | \n", + "4.0 | \n", + "1.0 | \n", + "8.0 | \n", + "0.006682 | \n", + "0.199548 | \n", + "0.722215 | \n", + "1.403907 | \n", + "... | \n", + "-1.280416 | \n", + "-128.986300 | \n", + "-210.755860 | \n", + "-1.751252 | \n", + "-125.311600 | \n", + "-7.706358 | \n", + "0.007889 | \n", + "1492 | \n", + "2014 | \n", + "2 | \n", + "
5 rows × 31 columns
\n", + "\n", + " | latitude | \n", + "longitude | \n", + "dry_matter | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "spi03 | \n", + "spi06 | \n", + "spi12 | \n", + "d2m | \n", + "... | \n", + "ffmcode | \n", + "dufmcode | \n", + "drtcode | \n", + "infsinx | \n", + "fbupinx | \n", + "fdsrte | \n", + "frp | \n", + "daysElapsed | \n", + "timeYear | \n", + "timeMonth | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "... | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "530032.000000 | \n", + "
mean | \n", + "3.655381 | \n", + "18.944044 | \n", + "81.688910 | \n", + "0.008974 | \n", + "0.372455 | \n", + "1.198224 | \n", + "-0.150948 | \n", + "-0.150079 | \n", + "-0.104575 | \n", + "0.207567 | \n", + "... | \n", + "0.992243 | \n", + "9.640836 | \n", + "24.398638 | \n", + "0.486638 | \n", + "10.198012 | \n", + "1.021441 | \n", + "0.016800 | \n", + "1299.705472 | \n", + "2013.057719 | \n", + "7.037356 | \n", + "
std | \n", + "25.075860 | \n", + "62.861161 | \n", + "231.033890 | \n", + "0.010678 | \n", + "0.174444 | \n", + "1.240191 | \n", + "0.966769 | \n", + "0.990232 | \n", + "1.020436 | \n", + "1.449496 | \n", + "... | \n", + "3.104970 | \n", + "50.228942 | \n", + "112.639016 | \n", + "1.591400 | \n", + "48.270810 | \n", + "3.765627 | \n", + "0.065342 | \n", + "720.506871 | \n", + "1.975931 | \n", + "3.128706 | \n", + "
min | \n", + "-53.375000 | \n", + "-178.375000 | \n", + "0.000003 | \n", + "0.000100 | \n", + "0.013333 | \n", + "0.000000 | \n", + "-3.090235 | \n", + "-3.090235 | \n", + "-3.090235 | \n", + "-10.326317 | \n", + "... | \n", + "-29.217953 | \n", + "-487.233900 | \n", + "-995.420800 | \n", + "-14.604648 | \n", + "-434.393680 | \n", + "-42.597305 | \n", + "0.000000 | \n", + "90.000000 | \n", + "2010.000000 | \n", + "1.000000 | \n", + "
25% | \n", + "-14.375000 | \n", + "-13.875000 | \n", + "2.865247 | \n", + "0.002679 | \n", + "0.238871 | \n", + "0.444440 | \n", + "-0.787499 | \n", + "-0.814844 | \n", + "-0.787499 | \n", + "-0.582896 | \n", + "... | \n", + "-0.309050 | \n", + "-9.317945 | \n", + "-33.849669 | \n", + "-0.313922 | \n", + "-10.052906 | \n", + "-0.584911 | \n", + "0.000000 | \n", + "638.000000 | \n", + "2011.000000 | \n", + "5.000000 | \n", + "
50% | \n", + "-4.875000 | \n", + "24.875000 | \n", + "12.255775 | \n", + "0.005189 | \n", + "0.339245 | \n", + "0.811103 | \n", + "-0.156640 | \n", + "-0.141014 | \n", + "-0.076073 | \n", + "0.090870 | \n", + "... | \n", + "0.649816 | \n", + "2.638136 | \n", + "14.453959 | \n", + "0.306134 | \n", + "3.965799 | \n", + "0.381645 | \n", + "0.000000 | \n", + "1308.000000 | \n", + "2013.000000 | \n", + "7.000000 | \n", + "
75% | \n", + "11.875000 | \n", + "39.125000 | \n", + "56.225450 | \n", + "0.010857 | \n", + "0.477850 | \n", + "1.399986 | \n", + "0.472265 | \n", + "0.513283 | \n", + "0.591407 | \n", + "0.900308 | \n", + "... | \n", + "2.224207 | \n", + "25.823007 | \n", + "78.100291 | \n", + "1.179688 | \n", + "28.332432 | \n", + "2.539695 | \n", + "0.011826 | \n", + "1946.000000 | \n", + "2015.000000 | \n", + "10.000000 | \n", + "
max | \n", + "72.125000 | \n", + "178.125000 | \n", + "12042.022608 | \n", + "0.148362 | \n", + "1.246869 | \n", + "6.933264 | \n", + "3.089850 | \n", + "3.089455 | \n", + "3.089487 | \n", + "9.319929 | \n", + "... | \n", + "34.290535 | \n", + "859.559200 | \n", + "1768.237300 | \n", + "17.965261 | \n", + "808.088000 | \n", + "45.783276 | \n", + "6.347862 | \n", + "2526.000000 | \n", + "2016.000000 | \n", + "12.000000 | \n", + "
8 rows × 28 columns
\n", + "\n", + " | VIF | \n", + "Tolerance | \n", + "
---|---|---|
latitude | \n", + "1.165061e+00 | \n", + "8.583242e-01 | \n", + "
longitude | \n", + "1.076477e+00 | \n", + "9.289560e-01 | \n", + "
slope | \n", + "1.056147e+00 | \n", + "9.468378e-01 | \n", + "
vod | \n", + "1.720640e+00 | \n", + "5.811790e-01 | \n", + "
lai | \n", + "1.652676e+00 | \n", + "6.050794e-01 | \n", + "
spi03 | \n", + "1.744887e+00 | \n", + "5.731029e-01 | \n", + "
spi06 | \n", + "2.498931e+00 | \n", + "4.001711e-01 | \n", + "
spi12 | \n", + "1.923490e+00 | \n", + "5.198884e-01 | \n", + "
d2m | \n", + "8.605499e+00 | \n", + "1.162048e-01 | \n", + "
erate | \n", + "3.365486e+00 | \n", + "2.971339e-01 | \n", + "
fg10 | \n", + "4.876421e+00 | \n", + "2.050684e-01 | \n", + "
si10 | \n", + "4.938596e+00 | \n", + "2.024867e-01 | \n", + "
swvl1 | \n", + "7.249975e+00 | \n", + "1.379315e-01 | \n", + "
t2m | \n", + "5.459977e+00 | \n", + "1.831510e-01 | \n", + "
tprate | \n", + "4.182489e+00 | \n", + "2.390921e-01 | \n", + "
danger_risk | \n", + "1.096355e+02 | \n", + "9.121136e-03 | \n", + "
fwinx | \n", + "3.368237e+02 | \n", + "2.968913e-03 | \n", + "
ffmcode | \n", + "9.775058e+00 | \n", + "1.023012e-01 | \n", + "
dufmcode | \n", + "1.077591e+02 | \n", + "9.279959e-03 | \n", + "
drtcode | \n", + "5.670577e+00 | \n", + "1.763489e-01 | \n", + "
infsinx | \n", + "3.117142e+01 | \n", + "3.208066e-02 | \n", + "
fbupinx | \n", + "1.405852e+02 | \n", + "7.113124e-03 | \n", + "
fdsrte | \n", + "1.176580e+02 | \n", + "8.499210e-03 | \n", + "
frp | \n", + "1.014273e+00 | \n", + "9.859277e-01 | \n", + "
daysElapsed | \n", + "1.440085e+06 | \n", + "6.944035e-07 | \n", + "
timeYear | \n", + "1.445220e+06 | \n", + "6.919364e-07 | \n", + "
timeMonth | \n", + "2.519448e+04 | \n", + "3.969124e-05 | \n", + "
H2O_cluster_uptime: | \n", + "2 days 19 hours 29 mins |
H2O_cluster_timezone: | \n", + "UTC |
H2O_data_parsing_timezone: | \n", + "UTC |
H2O_cluster_version: | \n", + "3.32.1.1 |
H2O_cluster_version_age: | \n", + "2 months and 12 days |
H2O_cluster_name: | \n", + "H2O_from_python_moc0_j96c9b |
H2O_cluster_total_nodes: | \n", + "1 |
H2O_cluster_free_memory: | \n", + "23.28 Gb |
H2O_cluster_total_cores: | \n", + "16 |
H2O_cluster_allowed_cores: | \n", + "16 |
H2O_cluster_status: | \n", + "locked, healthy |
H2O_connection_url: | \n", + "http://localhost:54321 |
H2O_connection_proxy: | \n", + "{\"http\": null, \"https\": null} |
H2O_internal_security: | \n", + "False |
H2O_API_Extensions: | \n", + "Amazon S3, XGBoost, Algos, AutoML, Core V3, TargetEncoder, Core V4 |
Python_version: | \n", + "3.8.8 final |
\n", + " | latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "spi03 | \n", + "... | \n", + "dufmcode | \n", + "drtcode | \n", + "infsinx | \n", + "fbupinx | \n", + "fdsrte | \n", + "frp | \n", + "daysElapsed | \n", + "timeYear | \n", + "timeMonth | \n", + "log_dry_matter | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "-32.375 | \n", + "28.125 | \n", + "1.001038 | \n", + "3.0 | \n", + "1.0 | \n", + "9.0 | \n", + "0.014507 | \n", + "0.228241 | \n", + "0.222220 | \n", + "-0.398828 | \n", + "... | \n", + "13.643188 | \n", + "109.829220 | \n", + "1.191657 | \n", + "22.684143 | \n", + "2.530905 | \n", + "0.000000 | \n", + "212 | \n", + "2010 | \n", + "8 | \n", + "0.001037 | \n", + "
1 | \n", + "17.875 | \n", + "82.375 | \n", + "27.360060 | \n", + "4.0 | \n", + "5.0 | \n", + "12.0 | \n", + "0.024084 | \n", + "0.385490 | \n", + "0.555550 | \n", + "-0.349998 | \n", + "... | \n", + "-43.599540 | \n", + "-57.730576 | \n", + "-3.418025 | \n", + "-41.623190 | \n", + "-7.454767 | \n", + "0.000000 | \n", + "1520 | \n", + "2014 | \n", + "3 | \n", + "3.309084 | \n", + "
2 | \n", + "-31.625 | \n", + "28.375 | \n", + "3.641749 | \n", + "3.0 | \n", + "1.0 | \n", + "9.0 | \n", + "0.020789 | \n", + "0.275492 | \n", + "0.288886 | \n", + "-0.404686 | \n", + "... | \n", + "-13.695341 | \n", + "-106.551190 | \n", + "-0.762760 | \n", + "-19.835646 | \n", + "-1.497616 | \n", + "0.000000 | \n", + "1277 | \n", + "2013 | \n", + "7 | \n", + "1.292464 | \n", + "
3 | \n", + "13.375 | \n", + "37.125 | \n", + "17.883150 | \n", + "4.0 | \n", + "1.0 | \n", + "8.0 | \n", + "0.042149 | \n", + "0.256732 | \n", + "0.433329 | \n", + "-0.295313 | \n", + "... | \n", + "-88.729330 | \n", + "26.709599 | \n", + "1.302401 | \n", + "-74.875960 | \n", + "3.221945 | \n", + "0.000000 | \n", + "455 | \n", + "2011 | \n", + "4 | \n", + "2.883859 | \n", + "
4 | \n", + "8.125 | \n", + "-1.625 | \n", + "1.747495 | \n", + "4.0 | \n", + "1.0 | \n", + "8.0 | \n", + "0.006682 | \n", + "0.199548 | \n", + "0.722215 | \n", + "1.403907 | \n", + "... | \n", + "-128.986300 | \n", + "-210.755860 | \n", + "-1.751252 | \n", + "-125.311600 | \n", + "-7.706358 | \n", + "0.007889 | \n", + "1492 | \n", + "2014 | \n", + "2 | \n", + "0.558184 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
530027 | \n", + "10.625 | \n", + "-13.875 | \n", + "36.482942 | \n", + "4.0 | \n", + "1.0 | \n", + "8.0 | \n", + "0.008239 | \n", + "0.415102 | \n", + "1.566651 | \n", + "0.874609 | \n", + "... | \n", + "126.336510 | \n", + "63.899292 | \n", + "1.229383 | \n", + "116.538080 | \n", + "3.192863 | \n", + "0.015762 | \n", + "1216 | \n", + "2013 | \n", + "5 | \n", + "3.596845 | \n", + "
530028 | \n", + "-15.375 | \n", + "34.625 | \n", + "1.640657 | \n", + "3.0 | \n", + "1.0 | \n", + "9.0 | \n", + "0.016233 | \n", + "0.205404 | \n", + "1.022212 | \n", + "0.112892 | \n", + "... | \n", + "-13.123533 | \n", + "22.029633 | \n", + "-1.279937 | \n", + "-11.235716 | \n", + "-2.089784 | \n", + "0.000000 | \n", + "577 | \n", + "2011 | \n", + "8 | \n", + "0.495097 | \n", + "
530029 | \n", + "11.875 | \n", + "36.625 | \n", + "13.193764 | \n", + "4.0 | \n", + "1.0 | \n", + "8.0 | \n", + "0.022857 | \n", + "0.218347 | \n", + "0.377774 | \n", + "1.757421 | \n", + "... | \n", + "6.771729 | \n", + "19.831726 | \n", + "0.491823 | \n", + "4.540405 | \n", + "1.184292 | \n", + "0.000000 | \n", + "1096 | \n", + "2013 | \n", + "1 | \n", + "2.579744 | \n", + "
530030 | \n", + "2.875 | \n", + "19.375 | \n", + "850.061983 | \n", + "4.0 | \n", + "5.0 | \n", + "8.0 | \n", + "0.002305 | \n", + "0.789469 | \n", + "1.566651 | \n", + "-0.131250 | \n", + "... | \n", + "62.941635 | \n", + "53.213240 | \n", + "3.535935 | \n", + "56.135567 | \n", + "7.314124 | \n", + "0.003937 | \n", + "2191 | \n", + "2016 | \n", + "1 | \n", + "6.745309 | \n", + "
530031 | \n", + "57.125 | \n", + "66.375 | \n", + "39.315957 | \n", + "2.0 | \n", + "1.0 | \n", + "10.0 | \n", + "0.000804 | \n", + "0.350035 | \n", + "0.166665 | \n", + "2.015236 | \n", + "... | \n", + "-2.222433 | \n", + "46.653778 | \n", + "-0.674004 | \n", + "-3.326023 | \n", + "-0.165738 | \n", + "0.003937 | \n", + "1551 | \n", + "2014 | \n", + "4 | \n", + "3.671630 | \n", + "
530032 rows × 32 columns
\n", + "\n", + " | MAE | \n", + "
---|---|
Normalization - skewed features only | \n", + "46.512712 | \n", + "
Normalization - all features | \n", + "46.477336 | \n", + "
Standardization - skewed features only | \n", + "46.441018 | \n", + "
Standardization - all features | \n", + "46.350385 | \n", + "
Power transformation - skewed features only | \n", + "46.567469 | \n", + "
Power transformation - all features | \n", + "46.508879 | \n", + "
H2O_cluster_uptime: | \n", + "3 days 4 hours 0 mins |
H2O_cluster_timezone: | \n", + "UTC |
H2O_data_parsing_timezone: | \n", + "UTC |
H2O_cluster_version: | \n", + "3.32.1.1 |
H2O_cluster_version_age: | \n", + "2 months and 12 days |
H2O_cluster_name: | \n", + "H2O_from_python_moc0_j96c9b |
H2O_cluster_total_nodes: | \n", + "1 |
H2O_cluster_free_memory: | \n", + "16.30 Gb |
H2O_cluster_total_cores: | \n", + "16 |
H2O_cluster_allowed_cores: | \n", + "16 |
H2O_cluster_status: | \n", + "locked, healthy |
H2O_connection_url: | \n", + "http://localhost:54321 |
H2O_connection_proxy: | \n", + "{\"http\": null, \"https\": null} |
H2O_internal_security: | \n", + "False |
H2O_API_Extensions: | \n", + "Amazon S3, XGBoost, Algos, AutoML, Core V3, TargetEncoder, Core V4 |
Python_version: | \n", + "3.8.8 final |
model_id | mean_residual_deviance | rmse | mse | mae | rmsle |
---|---|---|---|---|---|
StackedEnsemble_AllModels_AutoML_20210607_163002 | 1.26954 | 1.12674 | 1.26954 | 0.879706 | nan |
StackedEnsemble_BestOfFamily_AutoML_20210607_163002 | 1.30452 | 1.14216 | 1.30452 | 0.89436 | nan |
GBM_grid__1_AutoML_20210607_163002_model_56 | 1.327 | 1.15195 | 1.327 | 0.903173 | nan |
GBM_grid__1_AutoML_20210607_163002_model_44 | 1.36617 | 1.16883 | 1.36617 | 0.91748 | nan |
GBM_grid__1_AutoML_20210607_163002_model_25 | 1.3715 | 1.17111 | 1.3715 | 0.920402 | nan |
GBM_grid__1_AutoML_20210607_163002_model_34 | 1.37222 | 1.17142 | 1.37222 | 0.918598 | nan |
GBM_grid__1_AutoML_20210607_163002_model_16 | 1.37375 | 1.17207 | 1.37375 | 0.921342 | nan |
XGBoost_grid__1_AutoML_20210607_163002_model_51 | 1.38061 | 1.17499 | 1.38061 | 0.921333 | nan |
GBM_grid__1_AutoML_20210607_163002_model_78 | 1.38208 | 1.17562 | 1.38208 | 0.923067 | nan |
GBM_grid__1_AutoML_20210607_163002_model_99 | 1.38243 | 1.17577 | 1.38243 | 0.920229 | nan |
Leaderboard shows models with their metrics. When provided with H2OAutoML object, the leaderboard shows 5-fold cross-validated metrics by default (depending on the H2OAutoML settings), otherwise it shows metrics computed on the frame. At most 20 models are shown by default." + ], + "text/markdown": [ + "\n", + "> Leaderboard shows models with their metrics. When provided with H2OAutoML object, the leaderboard shows 5-fold cross-validated metrics by default (depending on the H2OAutoML settings), otherwise it shows metrics computed on the frame. At most 20 models are shown by default." + ], + "text/plain": [ + "\n", + "> Leaderboard shows models with their metrics. When provided with H2OAutoML object, the leaderboard shows 5-fold cross-validated metrics by default (depending on the H2OAutoML settings), otherwise it shows metrics computed on the frame. At most 20 models are shown by default." + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
model_id | mean_residual_deviance | rmse | mse | mae | rmsle | training_time_ms | predict_time_per_row_ms | algo |
---|---|---|---|---|---|---|---|---|
StackedEnsemble_AllModels_AutoML_20210607_163002 | 1.26954 | 1.12674 | 1.26954 | 0.879706 | nan | 8851 | 0.045374 | StackedEnsemble |
StackedEnsemble_BestOfFamily_AutoML_20210607_163002 | 1.30452 | 1.14216 | 1.30452 | 0.89436 | nan | 765 | 0.004911 | StackedEnsemble |
GBM_grid__1_AutoML_20210607_163002_model_56 | 1.327 | 1.15195 | 1.327 | 0.903173 | nan | 25170 | 0.003743 | GBM |
GBM_grid__1_AutoML_20210607_163002_model_44 | 1.36617 | 1.16883 | 1.36617 | 0.91748 | nan | 17868 | 0.00544 | GBM |
GBM_grid__1_AutoML_20210607_163002_model_25 | 1.3715 | 1.17111 | 1.3715 | 0.920402 | nan | 18995 | 0.002782 | GBM |
GBM_grid__1_AutoML_20210607_163002_model_34 | 1.37222 | 1.17142 | 1.37222 | 0.918598 | nan | 22237 | 0.003631 | GBM |
GBM_grid__1_AutoML_20210607_163002_model_16 | 1.37375 | 1.17207 | 1.37375 | 0.921342 | nan | 14428 | 0.003112 | GBM |
XGBoost_grid__1_AutoML_20210607_163002_model_51 | 1.38061 | 1.17499 | 1.38061 | 0.921333 | nan | 28355 | 0.001478 | XGBoost |
GBM_grid__1_AutoML_20210607_163002_model_78 | 1.38208 | 1.17562 | 1.38208 | 0.923067 | nan | 16272 | 0.004717 | GBM |
GBM_grid__1_AutoML_20210607_163002_model_99 | 1.38243 | 1.17577 | 1.38243 | 0.920229 | nan | 39663 | 0.004755 | GBM |
GBM_grid__1_AutoML_20210607_163002_model_69 | 1.38396 | 1.17642 | 1.38396 | 0.924127 | nan | 15838 | 0.005228 | GBM |
GBM_grid__1_AutoML_20210607_163002_model_61 | 1.38551 | 1.17708 | 1.38551 | 0.925907 | nan | 12322 | 0.004353 | GBM |
GBM_grid__1_AutoML_20210607_163002_model_5 | 1.38861 | 1.17839 | 1.38861 | 0.924053 | nan | 18153 | 0.003283 | GBM |
XGBoost_grid__1_AutoML_20210607_163002_model_29 | 1.39094 | 1.17938 | 1.39094 | 0.920863 | nan | 122067 | 0.002432 | XGBoost |
XGBoost_grid__1_AutoML_20210607_163002_model_16 | 1.39295 | 1.18023 | 1.39295 | 0.921588 | nan | 138964 | 0.003957 | XGBoost |
GBM_grid__1_AutoML_20210607_163002_model_89 | 1.39513 | 1.18115 | 1.39513 | 0.928252 | nan | 14894 | 0.002325 | GBM |
XGBoost_grid__1_AutoML_20210607_163002_model_44 | 1.39629 | 1.18165 | 1.39629 | 0.925907 | nan | 18488 | 0.001136 | XGBoost |
GBM_grid__1_AutoML_20210607_163002_model_15 | 1.39838 | 1.18253 | 1.39838 | 0.929277 | nan | 22856 | 0.003174 | GBM |
GBM_grid__1_AutoML_20210607_163002_model_57 | 1.39844 | 1.18256 | 1.39844 | 0.928957 | nan | 16400 | 0.003175 | GBM |
XGBoost_grid__1_AutoML_20210607_163002_model_48 | 1.39974 | 1.18311 | 1.39974 | 0.927135 | nan | 22447 | 0.001397 | XGBoost |
Residual Analysis plots the fitted values vs residuals on a test dataset. Ideally, residuals should be randomly distributed. Patterns in this plot can indicate potential problems with the model selection, e.g., using simpler model than necessary, not accounting for heteroscedasticity, autocorrelation, etc. Note that if you see \"striped\" lines of residuals, that is an artifact of having an integer valued (vs a real valued) response variable." + ], + "text/markdown": [ + "\n", + "> Residual Analysis plots the fitted values vs residuals on a test dataset. Ideally, residuals should be randomly distributed. Patterns in this plot can indicate potential problems with the model selection, e.g., using simpler model than necessary, not accounting for heteroscedasticity, autocorrelation, etc. Note that if you see \"striped\" lines of residuals, that is an artifact of having an integer valued (vs a real valued) response variable." + ], + "text/plain": [ + "\n", + "> Residual Analysis plots the fitted values vs residuals on a test dataset. Ideally, residuals should be randomly distributed. Patterns in this plot can indicate potential problems with the model selection, e.g., using simpler model than necessary, not accounting for heteroscedasticity, autocorrelation, etc. Note that if you see \"striped\" lines of residuals, that is an artifact of having an integer valued (vs a real valued) response variable." + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHgAAAKACAYAAADn488NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdfZwddX33//dnN0uyS0I2gRSyiwJaCYK5JCTeXM1Fm+ClafEuF1i1gLe19u6yhdJcV2JtgXpDbGprf1bbWu+qqICAWxFtrEKspUKbmHCl3KxWNJAN98nGJLshm83398fMbGZmZ86Zc86cM2fOvp6PRx6Q77n7zsx3JvP9zPf7+ZpzTgAAAAAAACivrqIrAAAAAAAAgMYQ4AEAAAAAACg5AjwAAAAAAAAlR4AHAAAAAACg5AjwAAAAAAAAlBwBHgAAAAAAgJIjwAMAHcTM7jezVSmvrTKz3Tn9zhYze1ce31Xj755pZs7MZjXwHRea2XAdn+s1s9vNbL+ZfaXe328XZnatmd2Q03f91Mz+Zx7f1QqV6pvneVLh9yO/0Yr9V8s5659jP9/M+gAAgPwR4AGAAvgdunEzO2hmj5vZ58xsbqPf65w7zzm3JYcqNszM3u53FN9YdF3CnHPfc84tqeOjb5B0qqSTnXO/2mg9/E7+Fv//Xaj8PDP7lpntM7NRM9tmZheHPtPU4EOj/MDRhN+2gz+jRderCPWcA/7+c2b2e7HyK/3ya3OvaBOY2VlmdszMPlHj595uZv9a4/udmf1FrHytX/45/+81B4fN7G3++fczM9ttZn8W/ryZLTSzr5rZITPbZWaXhV57uZn9s5ntNbOnzOwrZrY49PpqM7vLDxj/NOG3z/RfHzOzh+IBQDNbZGZf8q8R+8zsi6HXZpvZZ/x6P25mfxB67cLYuXnQ3y+XVtkXLzKzzWb2dPh6FXvPm83sQX9//NjMLvTLzzWzrX4995nZt83s3NDnzMw+bGbP+H/+zMwsy74ws1eb2b/6++FxM/t7M5sXen2Lf928tiznDgA0ggAPABTntc65uZLOl7RM0oaC65O3t0na6/+3E5wh6YfOuaO1frCWTqWk2yX9s7xg0s9J+j1JP6v1Nwt2k3NubuhPf9EVKki958APEz7zVr+8LN4qaZ+kN5vZ7Cb/1o8lvSl2nuWxv/okXSnpFEkvk/QKSX8Yev3jko7IO1cvl/Q3Znae/9oCSZ+UdKa8a8cBSZ8NffaQpM9IWpfy21+WtF3SyZL+SNItZrYo9Pptkh73v/vnJP156LVrJb3Af221pP9jZr8sTQW4p85NSa+RdFDSP1XZFxOSbpb060kvmtkrJX1Y0jskzZP0i5Ie9l/eIy9AvlDevvyapBtDH3+3pLWSXizpv/l1+s2M+2K+pA9IGpD0QkmnS9pUZVsAoGMR4AGAgjnnHpe0WV6gR9LUE9g/N7NHzOwJM/tbM+v1XzvFzL7uP7Hca2bfM7Mu/7WpqR7mTSn6nP/E9AFJLwn/rsWmYfjv/YD//wv833jK//zXzez0rNtkZmdI+iV5N+5rzOzU0Gur/KfhV5vZk2b2mJm9I/T6q81su//0+dG0p65m9qtmti1WdrWZDfn/f7GZPWBmB8xsxMz+MPz7oc/8X//1A2Y2bGavSPit6yT9ibxO5EEz+3Uz6zKz95n35P5JM/u8mc333x+MFvh1M3tE0p0Z99spks6S9PfOuSP+n7udc/9qZidK+qakgdCT9wEze6mZfd9vD4+Z2V+b2Qmh7zzPjo8keMLM3pvwuz1m9mUzu9XMTvC3bb15T+GfMbObzWxh6P1v8bf7GTP7oyzbFvqsM7PfMrMf+W3r42be03oz+3kz+655oxqeNrObQp87J7QdwxYaFeO33U+Y2Tf9/XK3mZ1mZh/1f+MhM1sWq8pL/Paxz8w+a2ZzUuo74O+Xp8zsJxYbWVNhO1PPgQz+Q1Kf+cEC/7+9fnn4N37DzP7L3ydfM7OB0Guv9Ld7v5n9tSSLffad5o222GfeyIwzUrYj8TzK4K2S3icvMPDa0PdNG0lj/vQxM3uhpL+V9N8tNPLLzOb759dTfrt7n/nXPN/jknZKWuO/f6GkX5AXSKibc+5v/IDIEefciKQvSlrp/8aJki6V9MfOuYPOuX/1f+8t/me/6Zz7inPuZ865MUl/HXzWf/3fnXNf0PEgyBQzO1vSBZKucc6NO+du9bfvUv/1V0l6jqR1zrn9zrkJ59z20Fe8VdL7nXP7nHMPSvp7SW9P2cy3SbrFOXeoyr4Yds59WtL9KW+5TtKfOufucc4dc86N+PtMzrlR59xPnXNOXjuclBSeAvg2SR9xzu32P/ORoL7V9oVz7kvOuX9yzo055/b527pSADBDEeABgIKZFzj5FUn/FSr+sKSz5QV9fl7SoLwAgyRdLWm3pEXynhy/V1LSkPlrJD3f/7NGtY0i6JL3tPkMSc+VNC6vg5LVWyVt9W/GH5T3dDvsNHlPXgflPRH+uJkt8F875H++X9KrJf22ma1N+I2vSTrL7xQGrpD0Bf//Py3pN51z8yS9SAlBFjNbIul/S3qJ/741kn4af59z7hpJH9LxkSmfltcBebu8J+TPkzRX0/fRL8l7qrwm4Tu3OOdW+f8fdL6fkdcObjBvismpofcfktdO9oSewO+R11m6St6T8f8ub5TB7/jbN0/St+U9nR+Q15a+E9sHvZKGJD0r6Y3OuSPyRg2t9es/IG8kxsf9958r6W/kdWQH5D1Vzxz8871GXsDxxZLeGNo/75f0LXmjH06X9DH/N0+UN6rpS/JGK/yapE/Y8dES8r/nff5+eFbS9yX9wP/7LZIiU3jktck18s6Ps/3PRvhBhNsl3Sevrb5C0pVmNu14Jqh2DlTzBf87JO/c/XysbhdJul7edi+WtEv+qAg/UHirju+PHyvU6fXPp/dKukTedeR78kZJJKl6HsWZNzXndL8+N4e2oyI/GPFbkr4fG/n1MXnXi+fJa5NvlTdSJOzzod95s6R/lNcO8vSLOh7gOFvSpHMuPEroPknnTfvU9M9Wc56kh51zB1K+++WShiX9gx9k/Q8z+yXJC87LOy/vq1YvM+uTN7LmHzLWK5GZdUtaIWmRH3DcbV6guTf2vlFJh+Udzw+FXjqvQn2r7Yu4yH52zq3yr7XXOueurX3rAKBcCPAAQHGGzOyApEclPSkvICN/NMNvSLrKObfXv7H9kLxOi+Q9EV8s6Qz/ye33/CejcW+U9EH/Ox6V9P9lrZhz7hnn3K3+U9EDkj4or2OV1Vvldcbl/zceXJqQ97R3wjn3DXlTBJb4v73FObfTfwr8/+R1PKf9tnPuWUk3yQvqBKMczpT09dBvnGtmJ/lPsn+QUM9JSbP99/X4T5l/nHEbL5f0F865h51zB+VNsXuzRaeJXOucO+ScG8/yhf5xXC0vyPQRSY+Z2b+Y2QsqfGab/9T8qHPup5L+Tsf312skPe6c+4hz7rBz7oBz7t7Qx0+SF/z5saR3OOcm/fLflPRH/hP1Z+VN+XiDv21vkPR159y/+K/9saRjsWq90bwRRcGfu2Kvb/Sf6j8i6S4dH702IS+oOODXN8jF8hpJP3XOfdbfzh/IC2C8IfSdX/X3xWFJX5V02Dn3eX+bbpI3DTLsr51zjzrn9spr37+WsHtfImmRc+5P/VEcD8sbIfDmhPfGVTsHqrlB0q+ZWY//e/GE2JdL+oxz7gf+cdggb+TLmZIulvSAc+4W59yEpI/KG+US+E1J1zvnHnTelMMPSTo/ZRRPlvMo7m2SvumPqPiSpF8xs5/LuN0RfvDgTZI2+O33p/LOjbfE3vpVSavMG0X3VsUCYo0yb5ThCh2fCjVX0v7Y2/bLm54U/+x/kxegT5uOFVftu0+X9Cp5585p8vbHP/qBvbmh91esl7xRME9L+m7GeqU5VVKPvPPxQh2fdhwJmvoBu/nygurhEUfx7d0vaa7/b2Et+/mV8tren8RfA4CZggAPABRnrf9UfJWkc+Q9aZe8J+p9krYFHWR5nfAg58AmeaM8vmVmD5vZ+pTvH5AXPArsyloxM+szs7/zp0P8TNK/SOr3O1vVPrtS3jSjIMfClyQtNbPzQ297xkVz2YzJ75iY2cvMS6j5lJntl/dE/xQl+wdJl/kdgbdIutnv7Epe5+ViSbvMm/bz3+Mfds79l7wcG9dKetLMbgxPc6liQNF9ukvSLHmdncCjqpEfVPnfzrnnywt2HFKFzqqZnW3eFLrH/WP1IR3fX8+RF7xJ83J5OS82xoKEZ0j6aqj9PSgvGHaqYu3KH1n0TOx7b3bO9Yf+rI69Hg42TB17Sf9H3hSOfzdvRbh3hurzsnDQSF6A47TQ9zwR+v/xhL/Hk5jHz42k436GvClx4d99r6LHeJqM50BFfvDrv+Qdzx/5QdqwSPvzg4zPyBtpFD9GTtHtPUPSX4W2aa+8/T6YUJWq51GYP2rjV+VNZ5Jz7vuSHpF0WaXPVXCKpBM0/VyL1NUPot4hf9SSc+7uOn9vGn/E00ZJv+Kce9ovPigvQBp2krxcO+HP/ry8qZW/75z7XsafrPbd4/ICnp/2g+Q3yju+K/3PKvb5afXyvU3S51MeENQiCGB/zDn3mL+P/kJeu4nwrxd/K+nzoaBffHtPknTQr1fW/fxyeefZG2KjqgBgRiHAAwAFc859V9LndPzJ8NPybpjPC3WQ5zsvIab8p9hXO+eeJy+3xR9YQt4YSY/J6+AHnht7fUxeICkQ7ixfLW9EzcuccyfJG/YuxfJ4pHib/74dZva4pGDESKZpGvJu0r8m6TnOufnyOgOJv+ucu0dektML5XUgvxB67T+cc6+XN6VnSN5UkaTv+JJz7n/I6/Q6edPjstjjfybwXElHFQ0sNNRx8jv1H5c3NSbt+/5G0kOSXuAfq/fq+P56VN4UpDTfkjfN5zsWzRHzqLzObDhIM8d5+TEi7cqf5nFy7Vs3nXPucefcbzjnBuSNMvmE30F+VNJ3Y/WZ65z77QZ+Ln5u7El4z6OSfhL73XnOuWkd15hGz4HA5+Wdi0kBvkj786exnSwp6RiZotv7qLxpV+Ht6nXO/Vv8R7KeRyH/S14H/BN+0PFxecGYYNuDXC9p1554G39ax0d2BZ7rb2dcsL++kPBaXcxLTvz38pLi7wy99ENJs2Kj616s0PQgf0TUt+Xlw6mlTvdLep6FVoOKfff/U8q1xR819Zj//sR6+XV7jryHCw2PdPJ/c3danRJ0yTv+QZDufqXXt9q+kHn5tb4m6Z3OucgUVACYaQjwAEB7+KikV5rZ+c65Y/I6FH8ZPOE0s8Eg74eZvca8ZLQmb3WlSf9P3M2SNpiXMPl0Se+Jvb5D3uiXbr8TE54GNU9ekGnUvISl12TZCPMS1b5RXmLZ80N/3iPpcsu2mtQ8SXudc4fN7KWq/uT/8/Jy3xwNpvSYlyj4cjOb709RCfZTvL5LzOwi81b5OSxvm5P2ZZIvS7rKvOWg5+p4jp6aV9kK1WeBmV3nH98uf8rFOyXd47/lCUkn+9NQAvPkbd9BMztHUjjo8XVJp5m3xPZsM5tnZi8L/6Zz7s/kBdW+4/+e5AXVPhhM2TFvSebX+6/dIuk1ZvY/zEvm/KfK6X7CvMTZQT6fffI6jJP+dpxtXnLnHv/PSyyaf6lWv2tmp/vt+73ypnHF/bukn5mXiLvXP1deZGYvSXhvsA15nAOBm+RNxUkKqnxJ0jvM7Hy//X5I0r3+FKY7JJ1nZpf4v/d7igZR/lbetSFI4jzfzH41YVsynUcxb5O3OtRSHd/2lfKmgC11zj0lLzhzhb8/36loEPIJSaf7bUv+FLub5bXHeX6b/ANNn7ImeVONXik/d1OK2WY2J/Qnte2al+foi5Iudc79e/g1fyTKbZL+1MxO9EdtvV5+cMnMBuXlK/q4c+5vE767y28rPd5fbU5om38o7/p8jV/+v+SNtLvV//hXJS0wbxn3bjN7g7xgSTBq6fOS3udfT86RN+X3c7EqvEXSv7mMU1LNM0feaCr59QqvjvZZSe8xs58zLw/QlfKny5qX8HuZX9eT5I3u2SdvZGBQ3z/w/50bkBek+1yWfWFmL5I3wvU9zrnbs2wLAHQyAjwA0Ab8Ts/n5eUzkaT/K296xj3mTbv5tvwcNfKWv/22vKHr35f0CefcloSvvU7eVIafyBupEX+C/PvyRgAF012GQq99VN6qPU/LCy5UW0I3sFZekOTz/miMx523StinJXVL+uUM3/E78jpNB+TlUqg2YuAL8ka4xLfvLZJ+6u+/35KfqydmtrypF0/Lmzb0c/I6+1l8xv/Nf5G3jw9rehCtVkfk5RH6trzO9H/KSxT7dklyzj0kL7D0sHnTawbkLdt8mbwpC3+vUKDCefmTXinvOD8u6UfycvxEOOfeL+/4f9sPePyVvCfi3/KPwz3ylomWc+5+Sb8rL8DwmLyO2u7YVwarjYX/ZMnB8hJJ95rZQf/3f9859xN/O14lLxfNHn9bPizv+NXrS/LOi4f9Px+Iv8EPLrxWXpDiJ/Layafk5RFJk8c5EPz+uHPu2y4hh5M/UuGP5XV0H5MXJHmz/9rT8qZJbZQ3besFOt75l3Puq/L2343++fGf8hJ4J8lyHkmaCmq8QtJHw9vunNsm7xoS5CH6DXn5aJ6Rlyw3PHLoTnmjMx43s2A61Hvkjfx5WNK/yjt2n0nYJ8459x3n5VVKc1De8Qn+XFThvX8s71h/I9SOvxl6/XfkXSeflHde/rZ/fkjSu+Qlhb4mfB6EPvuL/u9/Q8cT2X8r9Pqb5eX82SfvOL7B/3dC/va9Tt65v1/SekmvD00fu0be1Mxd8oJem5xz8Wv4W1VbcuUz/DoG2zcuL9Fz4P3yVnn7obzAzXZ5ua0kL2H+l/26/lhesvdfdl6+LMnLG3a7vNWx/lNegPLvsuwLecGgRZI+HdrPWZNZA0DHscan3QIAUBzzcn48KekC59yPiq4PAAAAUARG8AAAyu63Jf0HwR0AAADMZAR4AAClZWY/lTfV7OqCq4IZxsy+mTAN7aCZZZ3iV1pm9t6Ubf9m9U+3l5l8HOPYFwBQfkzRAgAAAAAAKDlG8AAAAAAAAJRcLUt1Fu6UU05xZ555ZqTs0KFDOvHEE4upEFAF7RPtiraJdkb7RLuibaKd0T7Rrmib+du2bdvTzrlF8fJSBXjOPPNMbd26NVK2ZcsWrVq1qpgKAVXQPtGuaJtoZ7RPtCvaJtoZ7RPtiraZPzPblVTOFC0AAAAAAICSI8ADAAAAAABQcgR4AAAAAAAASo4ADwAAAAAAQMkR4AEAAAAAACg5AjwAAAAAAAAlR4AHAAAAAACg5AjwAAAAAAAAlBwBHgAAAAAAgJIjwAMAAAAAAFByBHgAAAAAAABKjgAPAAAAAABAyRHgAQAAAAAAKDkCPAAAAAAAACVHgAcAAAAAAKDkCPAAAAAAAACUHAEeAAAAAACAkiPAAwAAAAAAUHIEeAAAAAAAAEqOAA8AAAAAAEDJEeABAAAAAAAoOQI8AAAAAAAAJTer6AoAADATDG0f0abNw9ozOq6B/l6tW7NEa5cNFl0tAAAAdAgCPAAANNnQ9hFtuG2nxicmJUkjo+PacNtOSSLIAwAAgFwwRQsAgCbbtHl4KrgTGJ+Y1KbNwwXVCAAAAJ2mVCN4xsbGtG3btkjZ8PCw5s2bFylbvHixBgYGWlk1AABS7Rkdr6kcAAAAqFWpAjx9fX1avnx5pOzAgQPTygAAaCcD/b0aSQjmDPT3FlAbAAAAdCKmaAEA0GTr1ixRb093pKy3p1vr1iwpqEYAAADoNKUawQMAQBkFiZRZRQsAAADNQoAHAIAWWLtskIAOAAAAmoYpWgAAAAAAACVHgAcAAAAAAKDkCPAAAAAAAACUHAEeAAAAAACAkiPAAwAAAAAAUHIEeAAAAAAAAEqOAA8AAAAAAEDJEeABAAAAAAAouaYHeMzsM2b2pJn9Z6hsoZn9s5n9yP/vgmbXAwAAAAAAoFO1YgTP5yT9cqxsvaTvOOdeIOk7/t8BAAAAAABQh6YHeJxz/yJpb6z49ZL+wf//f5C0ttn1AAAAAAAA6FTmnGv+j5idKenrzrkX+X8fdc71h17f55xLnKZlZu+W9G5JOvXUU5ffeOONkdcPHjyouXPnNqnmQGNon2hXtE20M9on2hVtE+2M9ol2RdvM3+rVq7c551bEy2cVUZlaOOc+KemTkrRixQq3atWqyOtbtmxRvAxoF7RPtCvaJtoZ7RPtiraJdkb7RLuibbZOUatoPWFmiyXJ/++TBdUDAAAAAACg9IoK8HxN0tv8/3+bpH8sqB4AAAAAAACl14pl0r8s6fuSlpjZbjP7dUkbJb3SzH4k6ZX+3wEAAAAAAFCHpufgcc79WspLr2j2bwMAAAAAAMwERU3RAgAAAAAAQE7afhUtAACAog1tH9GmzcPaMzqugf5erVuzRGuXDRZdLQAAgCkEeAAAACoY2j6iDbft1PjEpCRpZHRcG27bKUkEeQAAQNtgihYAAEAFmzYPTwV3AuMTk9q0ebigGgEAAExXqhE8Y2Nj2rZtW6RseHhY8+bNi5QtXrxYAwMDrawaAADoUHtGx2sqBwAAKEKpAjx9fX1avnx5pOzAgQPTygAAAPIy0N+rkYRgzkB/bwG1AQAASMYULQAAgArWrVmi3p7uSFlvT7fWrVlSUI0AAACmK9UIHgAAgFYLEimzihYAAGhnBHgAAACqWLtskIAOAABoa0zRAgAAAAAAKDkCPAAAAAAAACVHgAcAAAAAAKDkCPAAAAAAAACUHAEeAAAAAACAkiPAAwAAAAAAUHIEeAAAAAAAAEqOAA8AAAAAAEDJEeABAAAAAAAoOQI8AAAAAAAAJUeABwAAAAAAoOQI8AAAAAAAAJQcAR4AAAAAAICSI8ADAAAAAABQcgR4AAAAAAAASo4ADwAAAAAAQMkR4AEAAAAAACg5AjwAAAAAAAAlR4AHAAAAAACg5AjwAAAAAAAAlBwBHgAAAAAAgJIjwAMAAAAAAFByBHgAAAAAAABKjgAPAAAAAABAyRHgAQAAAAAAKDkCPAAAAAAAACVHgAcAAAAAAKDkCPAAAAAAAACUHAEeAAAAAACAkiPAAwAAAAAAUHIEeAAAAAAAAEqOAA8AAAAAAEDJEeABAAAAAAAoOQI8AAAAAAAAJTer6AoAKJ+h7SPatHlYe0bHNdDfq3VrlmjtssGiqwUAAAAAMxYBHgA1Gdo+og237dT4xKQkaWR0XBtu2ylJBHkAAAAAoCBM0QJQk02bh6eCO4HxiUlt2jxcUI0AAAAAAKUawTM2NqZt27ZFyoaHhzVv3rxI2eLFizUwMNDKqgEzxp7R8ZrKAQAAAADNV6oAT19fn5YvXx4pO3DgwLQyAM0z0N+rkYRgzkB/bwG1AQAAAABITNECUKN1a5aot6c7Utbb0611a5YUVCO0o6HtI1q58U6dtf4Ordx4p4a2jxRdJQAAAKCjlWoED4DiBYmUWUULaUjEDQAAALQeAR4ANVu7bJCOOlJVSsRNuwEAAACao1QBHpIsA0D7IxE3AAAA0HqlCvCQZBkA2h+JuAEAAIDWI8kyACBXJOIGAAAAWq9UI3gAAO2PRNwAAABA6xHgAQDkjkTcAAAAQGsR4AEAAEBHGdo+wihCAMCMQ4AHAAAAHWNo+4g23LZT4xOTkqSR0XFtuG2nJBHkAQB0NJIsAwAAoGNs2jw8FdwJjE9MatPm4YJqBABAa5RqBM/Y2Ji2bdsWKRseHta8efMiZYsXL9bAwEArqwYAAIA2sGd0vKZyAAA6RaEBHjO7StK7JDlJOyW9wzl3OO39fX19Wr58eaTswIED08oAAAAwMw3092okIZgz0N9bQG0AAGidwqZomdmgpN+TtMI59yJJ3ZLeXFR9AAAAUH7r1ixRb093pKy3p1vr1iwpqEYAALRG0VO0ZknqNbMJSX2S9hRcHwAAAJRYkEiZVbQAADNNYQEe59yImf25pEckjUv6lnPuW0XVBwAAAJ1h7bJBAjoAgBnHnHPF/LDZAkm3SnqTpFFJX5F0i3Puhtj73i3p3ZJ06qmnLr/xxhsj33Pw4EHNnTu3JXUGakX7RLuibaKd0T7RrmibaGe0T7Qr2mb+Vq9evc05tyJeXuQUrf8p6SfOuackycxuk/QLkiIBHufcJyV9UpJWrFjhVq1aFfmSLVu2KF4GtAvaJ9oVbRPtjPaJdkXbRDujfaJd0TZbp7Aky/KmZr3czPrMzCS9QtKDBdYHAAAAAACglAoL8Djn7pV0i6QfyFsivUv+SB0AAAAAAABkV+gqWs65ayRdU2QdAAAAAAAAyq7IKVoAAAAAAADIAQEeAAAAAACAkiPAAwAAAAAAUHIEeAAAAAAAAEqOAA8AAAAAAEDJFbqKFgA0y9D2EW3aPKw9o+Ma6O/VujVLtHbZYNHVAgAAAICmIMADoOMMbR/Rhtt2anxiUpI0MjquDbftlCSCPAAAAAA6ElO0AHScTZuHp4I7gfGJSW3aPFxQjQAAAACguUo1gmdsbEzbtm2LlA0PD2vevHmRssWLF2tgYKCVVQPQRvaMjtdUDgAAAABlV6oAT19fn5YvXx4pO3DgwLQyADPbQH+vRhKCOQP9vQXUBgAAAACajylaADrOujVL1NvTHSnr7enWujVLCqoRAAAAADRXqUbwAEAWQSJlVtECAAAAMFMQ4AHQkdYuGySgAwAAAGDGYIoWAAAAAABAyRHgAQAAAAAAKDkCPAAAAAAAACVHgAcAAAAAAKDkCPAAAAAAAACUHAEeAAAAAACAkiPAAwAAAAAAUHIEeAAAAAAAAEqOAA8AAAAAAEDJEeABAAAAAAAoOQI8AAAAAAAAJUeABwAAAAAAoOQI8AAAAAAAAJQcAR4AAAAAAICSI8ADAAAAAABQcgR4AAAAAAAASo4ADwAAAAAAQMkR4AEAAAAAACg5AjwAAAAAAAAlR4AHAAAAAACg5AjwAAAAAAAAlBwBHgAAAAAAgJKbVXQFAMxMQ9tHtGnzsPaMjmugv1fr1izR2mWDRVcLAAAAAEqJAA+AlhvaPqINt+3U+MSkJGlkdFwbbtspSQR5APq/NNUAACAASURBVAAAAKAOTNEC0HKbNg9PBXcC4xOT2rR5uKAaAQAAAEC5lWoEz9jYmLZt2xYpGx4e1rx58yJlixcv1sDAQCurBqAGe0bHayoHAAAAAFRWqgBPX1+fli9fHik7cODAtDIA7W2gv1cjCcGcgf7eAmoDAAAAAOXHFC0ALbduzRL19nRHynp7urVuzZKCagQAAAAA5VaqETwAOkOQSJlVtAAAAAAgHwR4ABRi7bJBAjoAAAAAkBOmaAEAAAAAAJQcAR4AaNDQ9hGt3Hinzlp/h1ZuvFND20eKrhJQSsG5tHNkP+cSAABAjZiiBQANGNo+og237dT4xKQkaWR0XBtu2ylJTEEDahA5l57DuQQAAFArRvAAQAM2bR6eCu4ExicmtWnzcEE1AsqJcwkAAKAxpRrBs3fvXt1www2RsgceeEC7d++OlJ177rm64IILWlk1ADPUntHxmsoBJONcAgAAaEypAjwLFy7UFVdcESnbsmWLVq1aVUyFgBliaPsIS5qnGOjv1UhCB3Sgv7eA2kRx3FAm7XwuAQAAlAFTtABUFOTFGBkdl9PxvBgkP/WsW7NEvT3dkbLenm6tW7OkoBp5OG4om3Y9lwAAAMqCAA+AisiLUdnaZYO6/pKlGuzvlUka7O/V9ZcsLXykDMet/Gba6mzhc0lqn3MJAACgLEo1RYscPEDrkRejurXLBtuuE8pxK7eZujpbcC5t2bJF77l8VdHVAQAAKJVSBXjIwQO0HnkxyonjVm6VRmB1coAHAAAA9StVgGdsbEzbtm2LlA0PD2vevHmRssWLF2tgYKCVVQM61ro1SyIjCSTyYpQBx63cGIEFAACAWpUqwNPX16fly5dHyg4cODCtDEB+gtECrMZULhy3bNp1pTFGYAEAAKBWpQrwAChGO+aYgadSgKKTj1segZl2znPDCCwAAADUigAPAJRUMwMU7TqyRcpvu9s5zw0jsAAAAFCrUgV4yMEDYCaLB13GjhxtSoCinUe2SPkFZto9z00nj8ACAABA/koV4Dl8+LAefPDBSNmuXbt04oknRsrMjAAPgI6SFHRJ02iAop1Htkj5BWbIcwMAAIBOUqoAz5w5c/TCF74wUnbo0KFpZaeddlorqwWgAO08hagZkoIuaRoNULT7yJa8AjPkuQEAAEAn6Sq6AgBQq2A0y8jouJyOTyEa2j5SdNWaJmtwJY8ARVqgpF1Gtqxbs0S9Pd2Rsnq2e+2yQV1/yVIN9vfKJA329+r6S5Z2dKAQAAAAnavQETxm1i/pU5JeJMlJeqdz7vtp72eZdABS+08hykt4lFKXmSadm/ae/t4enTh7Vq4jmdp9ZEueCYjJcwMAAIBOUfQUrb+S9E/OuTeY2QmS+iq9mSTLAKT2n0KUh3jOnaTgTm9Pt6593Xm5ByjKsIITgRkAAAAgqrAAj5mdJOkXJb1dkpxzRyQdqfQZRvAAkGZGcty0nDvdZjrmXNODLgRQAAAAgHIxl/BUuCU/bHa+pE9KekDSiyVtk/T7zrlDsfe9W9K7Jenkk09e/sEPfjDyPePj4+rtjXbqTj75ZJ1yyinNqzyQ0cGDBzV37tyiq9FxRscnNLJvXMdC168uMw0u6FV/b0+BNcvPzpH9qa8tHZzf8PfTNtHOaJ9oV7RNtDPaJ9oVbTN/q1ev3uacWxEvLzLAs0LSPZJWOufuNbO/kvQz59wfp31mxYoVbuvWrZGyLVu2aNWqVU2tK1Av2mfzFLmKVit+e+XGOxNHKQ329+ru9Rc1/P20TbQz2ifaFW0T7Yz2iXZF28yfmSUGeIrMwbNb0m7n3L3+32+RtL7A+gAokaKmEMVz4wQreAV1yku7JzoGAAAA0F4KC/A45x43s0fNbIlzbljSK+RN1wKAttWqFbzKkOgYaJUiR+wBAACURdGraL1H0hf9FbQelvSOSm9mFS0ARWvlCl7tkuiYzjWStKpdNGvUHO0aAAB0mkIDPM65HZKmzRtLwypaAIo2E1bwCgxtH9F1t9+vfWMTU2XNmpKGcmnVVEWpOaPmWll/AACAVil6BE9NGMEDoGgzJTdOvAMc1owpaSiXVk1VlJozaq6V9QcAAGiVUgV49u/fr2984xuRsocfflhPPvlkpOylL30pAR4ATTFTcuMkdYDDsnaumQbTmVo5VbEZo+ZaWX8AAIBWKVWAZ/78+br44osjZVu3btWKFdFZXosXL25ltQDMMO2SGyerpCBLf5XPVOvoZulcMw2mc7VyqmIzRs3NpKmWAABg5ihVgIccPABQm7Qgy/W/0F3xc2kdYCl755ppMJ2rlVMVmzFqbqZMtQQAADNLqQI85OABUA1TgqLSgixP7J9I+YQnqQMsSf29Pbr2dedl2qdMg8mubO221VMV8x41N1OmWgIAgJmlVAEeAKik06cE1RMESAumHJk8VvFzeXSAmQaTTVnbbdmmKsZlqX/ZAm8AAGBmK1WAhylaACrp5ClB9QYB0oIsJ3R3Vf3NRjvwTIPJppPbbZmVNfAGAABmrlIFePbu3asbbrghUvbAAw9o9+7dkbJzzz1XF1xwQSurBqANdPKUoHqDAGlBllPnn9C0ugbafRpMu4zOKKrdtsv2tysCbwAAoGxKFeABgEo6eUpQvUGAtCBL//4f5V7HtN9vx85wO43OKKLdttP2t6tODhij9QioAgBaoVQBnoULF+qKK66IlG3ZskWrVq0qpkIA2konTwlqJAiQFGTZsqU1AZ521U6jM4pot+20/e2qkwPGaC0CqgCAVilVgIcpWgAqafcpQY3o5OBVEdppdEYR7badtr9dcc4hLwRUAQCtUqoAz5w5c/TCF74wUnbo0KFpZaeddlorqwWgjbTrlKBGdXLwqgjtNjqj1e223ba/HXHOIS8EVAEArVKqAA+raAEok7xzLsQ7nJs2D0fKkd1MGJ1Rqf3NhO3PQ6cGjNFaBFQBAK1SqgAPAJRFM3IukMchP50+OqNaW+n07QfaCQFVlAGJwIHOQIAHAJqgGTkXyOOQr04enZGlrXTy9jcDnR/Ui4Aq2h0PkIDOUaoAz2OPPab3v//9kbKHH35Y3/ve9yJlL33pS7VmzZpWVg0AIpqRc4E8Do2ZSR102kq+6PygUQRU0c54gAR0jlIFeObPn6+LL744UrZ161atWLEiUrZ48eJWVgsApmlGzgXyONSvyA56EYEl2kq+6PwA6GQ8FAA6R1fRFQCATrRuzRL19nRHyhrNudCM75wpKnXQmykILI2MjsvpeGBpaPtIU3+XtpIvOj8AOlla8J+HAkD5EOABgCZYu2xQ11+yVIP9vTJJg/29uv6SpQ2vopX3d84URXXQiwos0VbyRecHQCfjoQDQOUo1RQsAyqQZOReqfWeReWbaOcdNUVOWihz5Qc6P/LAKEoBO1u6JwNv5/gJoN6UK8PT19Wn58uWRsgMHDkwrA4BKOvVGoeg8M3n+dt7HqKgOen9fj/aNTUwrZ+RHubR75wcAGtWuDwVIcg/UplQBHgBoVCffKBSZCLbaVKRaOsbNOEZFdNCHto/o4OGj08p7uq2tR350agC0Ue3a+QGATkaSe6A2pQrwsEw6gEbleaPQbh3hIqcDpf1GEJypJVjTrJu5VnfQN20e1sQxN638xBNmte1NaScHQFGMdrtOAigXktwDtSHJMoAZJa8bhaJWR6qkyESwab/RbVZzkuFOuZlLq+/+8elTtsKGto9o5cY7ddb6O7Ry450tbVNFJYVGZ2rH6ySAciHJPVCbUgV4Zs+erbPOOivyZ/HixdPKFi1aVHRVAbSpvG4UWtERrrWjX+QqGGm/Pemmj2CRKgdr8ryZKzJYUs92FN0h7pTgGtoDAUOkKfLajHJhhS+gNqUK8ABAo/K6UWh2RzhLRz9+gyypsKWx05blHqwjyJHXMao3WJJXx6Oe7Si6Qzy/t6emcqASAoZIUnQgG+WSdn/BVE8gWaly8MyZM0cvfOELI2WHDh2aVnbaaae1sloASiSvZLvNXna7Wh6atFwp11+yVHevvyiXOtQqLcdNratX5XWM6snlk2cOmnq2o+gOsVlt5UAlzb5OopxImotakeQeyK5UAZ6nn35an/rUpyJlu3fv1o4dOyJlF154oS677LJWVg1AieRxo9DsZberdfTLcoNcb7Amj2OUNVgSTgLbZTZtWlkj+7XW7Si6QzyasKR7pXKgkmZfJ1FORQeyAaCTlSrAM3fuXK1cuTJS9sADD+jcc8+NlJ1zzjmtrBaAGajZy25X6+iX6Qa5qCdvWYIl8RE79eQMylPRHeJq+4wVkVCLZl8nUU5FB7IBoJOVKsCzcOFCXXHFFZGyLVu2aNWqVcVUCMCM1szARbWOPjfI1WUJliSNhEqStl/zDngU3SGutM9YQj1fMyVYxtQKxBUdyAaATlaqAM/Y2Ji2bdsWKRseHta8efMiZYsXL9bAwEArqwYAuarW0a/3BjnoVL75OQf0RxvvLGWnMmvHOEuwJMvInLT92qyARx4d4nqDB5X22cqNd5ZiWmAZECzDTFZ0IBsAOlmpAjwAymmmPKnOW6WOfj03yJFO5XOa16ls5vGutWNcLVjS39ejfQn5ZbpMck4V69/KPEi17NNGgwdp+6xM0wLbXVlyaAHNwsguAGiOUgV4Dh8+rAcffDBStmvXLp144omRMjNjBA9QgKROqCSeVDdJrTfIrehUNntkQt7bkJJyRyfN6dGOa15V8bOtCnjUuk+bdZyZFpifVgbLCLADADBzlCrAc/DgQd19992Rst27d2vfvn2Rsq6uLl1wwQWtrBow46V1Quf0dPGkuk3Us6pUrR3CZgeRaukYZ9mO/ePJq0OllYdlTeKcVIda9nGt+7RZwQPyZuSnVcEypoIBADCzlCrA09PTM21kzuHDh6eVnXzyya2sFgCld0LTEtgyrSNfWQIG9awqVWuHsNkjE7J2jLNsx9D2kcRl0ZO+L0m1gEdaHbbu2qtbt41k3se17tNmBQ86OW9Gq0e5rD5nkW6455HE8jwxFSw7RjoBADpBqQI8s2fP1llnnRUpGx8fn1a2aFG+N0gAqqu1Az+TpnWEOw79fT1yzhshklcnImtQpt5VpWrpEDZ7ZELWUSTVtiPYZ0nBnayjUqoFPNLq8OV7H532u5X2ca37tJkjbToxb0YRo1zueuipmsrrRd6kbBjpBADoFKUK8Ozbt09DQ0ORsieeeEI//OEPI2X79+9nihbQYmmd0P7eHj179NiMndYR7ziEE/qOjI5r3Vfu03W336/RsfoDPlmDMuHAg3RAgzWsKpW1Q9hIcCHLE/Sso0iqbUfa8ujdZrr+kqWZj0GlgEdaHZKCSpXeX+s+7eSRNs1QxCiXVgVeyJuUDSOdAACdolQBnp6enmmjc5599tlpZQsWLGhltQAovRN67evOkzRzO5tpgYTAxDE3FfSp96lxWqcwqWMXBCS2bNmi91y+atrrjXYI6w0u1PIEPcsokmrbkbbPjjmXW9tMq0N3jdPC6tmnnTjSplmKGOXSqsALeZOyYaQTAKBTlCrAM3fuXK1cuTJS9sADD+jcc8+NlJ1zzjmtrBYAVe+EztTOZq0dhHqeGqd1Fk1e4KSW78qjQ1hPcCHvJ+jVtqOWXD71BifT6nDp8sFIDp543ZIQsGmeIka5tCrwwmiubBjpBADoFKUK8ABob63shJYlIWZ/X09kWlYWtQaF1q1Zoqtu2qH4mBAn6eqb79NVN+3IvI+qdQibtd/zfoJebTuSOtimaJLbRvNyVKrDijMWlqL9NlO7nMNFjHJpZeCF4GB1jHSC1D7XJABoBAEeAKVTpoSYKelWKqr1qfHaZYO68qYdia8FU4Fq2UdpHcJm7vdmPEGv1LFdu2xQW3ft1RfveWQqMOYkfdFf2egDa5fmMqoorQ4zvdPdTudwI9MKG+kMlq0NdHLnl5FOaKdrEgA0ggAPgNIpU0LM/eO1jd6p96nxYEqAJKzRfdTM/V7EE/S7HnoqcdTTF+95RCvOWEhejhykBQXa7RyuNdgy0zqDM2F7yxZwQ77a7ZoEAPUqVYDn6aef1mc/+9lI2d69e3XvvfdGyi666CJW0UJb6eQnn0XIo+PdqmOSNjIlzOQFFpJWtcoqKUCSpJHgRDMDHkU8QU+rt/PrQV6OxlQKCqSdE2UJns20zuBM2150vvg9QNmvSQAQKFWAZ86cOTr77LMjZbt379bpp58eKTvrrLNaWS2UTKuDLTPhyWerNdrxHto+onW33KeJyePTl9bdcp+k/I9JUuClp8s0d86shpZGjws+nzZVK9BIcKLZAY9WP0GvdlP/l286f8bk5WjGdTEtKHDd7fdPBTXjyhI8m2mjuzpxe3nw0v6adYyS7svKfk0CgECpAjynnHKK3vWud0XKtm7dqhUrVkTKFi9e3MpqoUSKCLakdXKuvrk5AYVmaaeb4Uan81x3+/1TwZ3AxKTTdbffn/s2tTqZ6qbNw6lBi0aDE52WiDQtObXk3dTPlLwc7xvaGclFlNd1Ma3zn5Z03KSWt6V6r2szbXRXp20vD17aXzOPUdJ9mZOmBXnK/O8bgJmrVAGep59+Wp/61KciZbt379aOHdEn1hdeeKEuu+yyVlYNJVHEMPO0Ts6kc6W5oUy60brqph268qYdDU0rqlejHe+0Dmatq11l1cqRKWlTtRb09eia157XUD06JeAR7tT39nRpbOJY5PXwTX2lY9dOQc96DW0fiQR3AnlcF7NMTwxzau21sJEOZNmDnbW23bJvbxxTztpfM49Rpem5g/29pb6mA0CpAjwTExN66qmnImWjo6OaPXt2pGzfvn2trBZKpIhh5pU6OWW5oUx72iUV9+SzXRNi1tPpzzNQ0OwgTD37vZ0CIfFO/djEsbqmzHXKCIBNm4cTRzBJjV8X04ICs2d1aTQh+fhgi0eDNNKBLEuwM+nck1Rz2y3L9mbVrHuBdrrWlV0z79fS7ssG+3t19/qLGv5+AChSqQI8PT09WrRoUaTs2WefnVa2YMGCVlYLJVLEMPNqyW/LkMOgWh3LEqgK9Pf2JHYw+3t7Gvreejr9lT4j1dehaqfgV7sFQpI69RPHnPpOmKXtf/Kqhr6nbOeBVPncbvS6mBYUkFTYaJBwB7zRwFY7nWdJ0s692bO66mq77b69tWjGvUC7XevKrpn3a502Ig0AwkoV4AEaVcQ/6sGN3dU336dJN71L0Y45DOJPIeenBETCyhCoClz7uvO07iv3aeLY8ePR02W69nXnNfS99XT60z5z7dfu17NHj7Wks9DMp8617pNmPwHP66lwp4wASOtE5ZUPp1JQoNUjHeId8DTteE2uR9q5V+aHDXmp5V5g2jn54uT9V6agbxlGGjXzfq3TRqQBQFipAjxM0UKjivpHPfj+MjwxSnoK2dNt6umySEAkrtEnn608Js1qB/V0+tNeSwqoNaOz0OynzrXsk1Y8Ac/rqXC7jQCo9xxK6kSZpMtf/tymn4Ot7kwldcDj2uma3Oh1sdaATacEtrLI+m9A0jk5sm9SQ9tHpr23LCuNlWWkUTtONwaAMihVgGfBggVau3ZtpOyBBx7QueeeGymL/x0IK+of9bI8MUqcwjLptKCvR30nzEpcTrSRTlHeN5tZO0XxdjC0fUQrN97Z0LGpp9NfayLavDsLzX7qXMs+acUT8LyeCtfzPdXaZr3b38g5VJbrUh4qnTsmtdW253FdrHRtYbWgbPcCSefkMecSz8lWTgFvJPhXppFGBGEAoHalCvA8/fTT+uxnPxsp27t3r+69995I2UUXXaQLLriglVUDMinDzUrqiJKxiakcJXmOuMnzZrPeTlFeQaa0fEtjR44mPvFN+0xvT7fm9HQlrurVZaaz1t8xbb/Xe0ya/dS5lkBIWme0lgBYNXkFNGr9nixtrN5jUekcylLHMlyX8pA1sWr8XFp9ziLd9dBTVY9zu10XK+V/Cy8JXe9KiI1ubxmmCdVyTrZqCnjSteTKm3bo2q/dr2tfV32lxLKMNAIA1KdUAZ558+Zp1apVkbKHH35Yz3ve8yJlK1asaGGtgM6S5Slknh3CPG826+0U5RVkCt577dfuj0yx2jc2kRgwCjo44xOT6jbTpHNTnS1p+pQ+SVN5nOLJmOsNUGV96lxvZ6yWQEiwD5LK81St/dY7CqySLG2s3hEAaedK0A7afSpGq2TpgCd1nm+455Gp19P2Yd4jEfO4LobPvaR2FQR36lk1qNHtLcs0oVrOyVaNhkubajg6nvzvTCC4rqVNtJ5JU/QAoJOVKsBz4MABbdmyJVK2d+9ePfLII5Gyrq4urVmzpoU1AzpHqxNR19OpTeuA19spyjPItHbZoDZtHp6WQyfemY93cCadm9rP8Wk7e0bH1ZUQ/AiP0qg3QFVvp/eqm3boypt2ZHr6nzUQkhTcqVTeDLV2PLMGg9JGIYXbWL2JX5PahuQFxsoyFaMVsnTAs+TpSdqHWYPEacuWx8vymu4TnHtnrb8jsWNf6zUuqH9S3cLb26zpiPXKM0dVl1nqv4etGA1X6Zil7cNqCcaTrvntProKAJCsVAGew4cP68EHH4yUHTlyRE888USkbOHCha2sFtBRWp2To9aAUqUOeL2dorxzJ2QJGGXp4IQ7C2etvyPxO4OcSLXUI6zeTm/QWcwzEfBghSk0rVJLxzMt8LV11159YO3SyPviOU8C8ZFxQR1qSfyaFNzp7elmtaQE1TrgWfdNvJ1mmV6Y1F7W3XKf5DSVwD44ny5dPqhbt43kFmjP4xqXZRWyPaPjTZ2OWI+8c1QNLpgsNNhRLW9b0j6sFLiMB+nLMroKAJCsVAGe/v5+vf71r4+U7d69W6effnqk7MILL2xltYCO08qcHLUGlK67/f7UDni9o4/yHrWUpTNVawen0nLWacvY5zXkvlqnK8tIhdXnLIp0WJM6Da0ePZakluOSFvj64j2PaMUZCyNtOym4k7QUeb2JX4PvC35nTk+XZs/qytwu8npiX/Yn/1mTnpsUyauVNr1Q0lTOrLEjRxMT2MeNT0zqroee0vWXLM1tX+ZxbmUZ3TTQ39vU6Yj1aHS0UPycjI8kb7VKuZWk5H2Ydl0zadoUvWaNrir7tQEAyqJUAZ69e/fqxhtvjJQdPXpUs2ZFN+NHP/qRLrvsslZWDUADsgaUhraPJCYelo4/Ka+nU5QWZJJU18paWTpTaR2ctCTKq89ZFMkFEnCSzKaP2DD/M9VkeVqbpdMb7kAkfecX73lkWpAjacSSVOyKTrV0PNM6TU6KbFel9+WZnyW8f/eNTain29TTZVOjQ6TkTn3iyJKv3Kfrbr9fo2MTmY9DM578t7pTWK3zHIgf40rTCJ1qTxS+Z3Q810D72mWD2rprr75876OadE7dZrp0eW3fXy3QG7Stq27aUfXzrQzmdlpS4eCYXXf7/dP+PUzbh3lc1xrZX4wKAoDWKVWAZ+HChbr00ksjZYzgAWaOIN9Mmg237dT1lyytK2lovDOVx7D+8A347FldkfekdSTTkijfum0k9fdGxyZ0+cufGwmiOP8z4ZEkSbI8rc3S6Q13FCpN6YqLdxqKXtGplo5npcBXeLsqrd5Uj6yjTCYmnRb09ajvhFkVAyRJx2vimJtqu1nbft5P/hvN/ZT2nZUCRklBxizHOG16Yb3yHskytH1Et24bmbq+TDqX6foQr1PaNvb39kyt4JSWo6ee6Yh5aOVooVYJrpNZA6B5XNca2V9lWpodAMquVAGeAwcO6Lvf/W6k7NChQ/rxj38cKTMzRvAAHaieqUL1yuOG9PDEsan/j69wEu/g1JpEOWygv1d3PfRU4giZq2++T1fdtCP15j/L09rgM/HVwQI93dGko7U86c1rta68vqOWjmcwWqFabp200Vcjo+NaufHOmrcx6ygTyQv+bf+TV1V8T5bjlaXtV1rNKzydKau8cj8FsgZt40HGlRvvrNrhreWYhPV0WyQHj3S8492Oy66ntfcTZ8+qeaplq4K57TD1s1my7sNar2u17q9qbbXTRlF1IqbQAZ2jVAGeY8eOaXw8+o/BkSNH1NUVfTJ+6NChVlYLQBMk3WzUOlWoEY3ekFbqUAWvB9v2l286P9O0hiTVpkUkjQgK37RlfVobPJlPCvCceMKsTN+ZVvdAHitYSdOXjL/yph267vb7dc1rz6sr50al923dtXfa9LP4dn39vsdSv6OeQEVSZ23syNHE6YtZnrpnPV7V2mKl76lnOkaWgO6VN+2Yyr9VT+6iLEGOLB3e+DHJsu7bgr4eXfPa8yKfq9SO22HZ9StTrjPh496K0TlZO6PB+8YnJqfyJNU7+qvsmhEMkhqb5lvmUVSdhCl0QGcpPMBjZt2Stkoacc69ptJ7Z8+erec973mRsr17905bNevss8/Ou5pArnhSUlnazUbSyjJxwQ1jPfs4y9LTWW9IK41mSNq2/r6eih30pJvjbjNdf8nSitMiwpI6s0md17T8PWnbtD8W9Fm3ZonWfeW+yKgESeruMs2bPUv7x5PzujS6gtWVN+2QmZSUDmXf2ERTblg/sHapVpyxcFpC6U2bh6dGTiUFxcLqGXlWbUqhFA1CVDofask7kzTiKLx0dtpqYfVsY9bAU9bOSL1Bjqwd3vAxOTNl1buwYIRfUsd75cY7c53SklcHu9JUtPOv+9bUNK1mjs7J2hlNWm0uOCf497ayWo5fvdN8s+aJQ/MxhQ7oLF3V39J0vy/pwarvkvTss8/q4Ycfjvx5/PHHp5X98Ic/bHKVgfoFN50j/lPe4OZ0aHt6jpWiDW0f0cqNd+qs9Xdo5cY7m17XtJuNYGWZIHdJfHnw8NSGWvdx/DNpS09nHdZfqeOUtG3Oed+f9Hvr1ixJfO0jb3xx5AY6/p4kSTlvLl0+GNmXQf6e+P5K26ak0T5z50x/fjB5zOnE2bP0k42v1t3rL6prulggbUWfCrluIyOo8rR2jMXUrQAAIABJREFU2aDuXn+RfrLx1Vq3Zolu3TYSaXtZVAoyZDn/1i4bnDo3TF5HPAj+VTsf4p/t7+3xpg4liH82/N1Seq6latuYJGublrId26ztN0n4GCe13bgs+ZUq1TnvKS1p15BapymtW7Nk2nU3EExDLerfh/i+zPo+NCbrNN+s/840U6vvZcqCKXRAZyl0BI+ZnS7p1ZI+KOkPqr3/2LFjOnjwYKRsYmJCR48ejZQ988wzOdYSyFfZnpQUMXS30s1G+Mli2qiEep5+pwUMus10zLmaR1pVyleRZHR8Qh990/mJUzWyTDFImy4Ul9SZTcvfk2W0T1oncTRhNJLktZ+kVcKGto/UNGqq3hvPZt+wZllKOklakKGW8y/tqXuWa07SiKC0UWHhz9ayvV1mNeXiCY+cqTQ6KFDt2K4+Z1HidLrV5yyKrJa3+pxFuuuhpxoaYbluzRKtu+W+xGXQs9Q57ykteU2bqjRNS8qW96tRWTujdFpbI62tzu/tiZxXh549munfmWZhGlI6ptABncVcpcedzf5xs1skXS9pnqQ/TJqiZWbvlvRu//+Xz5kzJ/K6c05m0edJz3/+8/Wxj32sWdUGMjt48KDmzp0bKds5sj/1/UsH5ze7SjUbfvyAjkwem1Z+QneXlpw2ry1/s5593IzjUuk740ymFw2eNPX30fEJ7Rkd12RsmlOXmQYX9Kq/tydSPjo+od17x+UqdIHNTF3mjaRZ3CfNmtOn/t6emrZ9dHxCT+w/rCOTx3RCd5dOnT9nWl2k9GOYtC2SNLJvXMcS/j0Kb2/4t01WcVsrqVRvKfs2JqnlmIc9Z2FfTfuxlvOvkbZd7bO1bm9a+407ePCgjnbPjhyHeXNm6cDho6ntqrvLdO7ikxJfGx2fSGxjc2fP0tiRycS2V2ud479X7XyU0o9jUn3rqUczZDm3A1nrXMs5l/WcaNa/XUn/rs9kSW3VZJJ59+hZtOLep4h7mSLU0z7b+XqDzsG1M3+rV6/e5pxbES8vbASPmb1G0pPOuW1mtirtfc65T0r6pCQtWLDAveIVr4i8/sQTT+jUU0+NlK1evVqrVqV+JdAyW7ZsmdYW/yhlRZbB/l695/JV08qL9o71d8glzOY0ST/ZuKopvzmakk/k+kuWalWGJ2317OO0z3Sb6SPnvqCuJ3xp35nmp37dhraPaMN3dmp8Inl6ymB/t+5ev2rq7+8b2umPTEifzrKgr0cHDx+dyotz9dKj+sQPJnX9JefqxnuSR2o00iaTjmHatkjSyOj0uneb6dde9hx96b6nNDJ6yB/B0aUss4vTcvEEenu8bU/M7fOdnRqfOP47Pd0TOvEEl5o7KCztmC/o826S43mWTNLlL3+u3vMrSxO/L4/zL61O/b092lHl+FY7lypt78/GjyaOyIq33yRD3/xnbfi3ychx6O0xXX/JBZKUmOOpp9u06Zzkc9VbCSu5jU266tPAstQ5y++FmaS/fNP5qde0ds3VlvXcDlTbd0nnXNr5mfb7Sf8+NPrvSJqkf9fLolltKv69aUnfk7Tq3qeIe5ki1Ns+2/V6g85R5mtn2RQ5RWulpNeZ2cWS5kg6ycxucM5dkfaBAwcO6Dvf+U6k7OjRo5o1K7oZo6Oj+t3f/d0mVBloXNmWbC1i6G6j0wnq2cdpiWYnnUsdxl3thqiWpZPDOTuqTXsJltfeMzqempw56bvj7wuGx1faX2krVWVJOBt+X1qsJZh6k2TSuUhS7VrG61z+sudOJT+uNs0oLGnfT0y6qUTJ1Yb1p+3LYAWv8P6c39sjM+mL9zyiux56KnE/5nH+pSW9PnTkaNUpU9XOpUrbW+/KcJL0xP7Dfof/uOCY3b3+Il13+/3T2vPEpEud7pH2m0kBqHrrXOv7nSpPDWnVMuK1CuqUdAySVNsXtU5briXpdZb3daKsKwzmNUUp3lbPypBkXGrtvQ/TkCpr1+sNgNoVFuBxzm2QtEGS/BE8f1gpuCNJ3d3d6u/vj5QdPnxY8Wlbg4NcoNC+ynbTmVdAqtanQ43cbNSzj4PXrr75vmmdvvByzEF+jnhOkKSb5Xg90nLMmBTZn9U6RKbjyXurdbCCY1VpeeMgf8+X731Uk86p20yXLvfqHu8QrLvlPslpKliQNSfM8zd8I3Hbu8102vw5qaOn6slnI3l5hT6w1ksyfNb6OxKDQ0n7OUvHfHxiUtfdfn9i+6rW9oL3JOWDuOqmHdq6a68+sPb4aJ6k4ExPl2U+/4LzLh7ckSoHRAJZtift9bTgWpYOlTeVYvrT9uD4pOV42jM6nnityboiV5paO4FZfi9LIuZ2FW7Hja48WE+unKR/H4a2j0SCTv29Pbr2defp7vUXVducjpKWa2b2rK6W5f/L0v4X9PVMBb5boYiHa4yKScZ+AZqr8GXSa9HV1aXe3uiNwrFjx6aVnXjiia2sFlCzMj0pySMglXdywyw3B/Xs47XLBlNHHQT1vuGeR6b+niVhZDwpdNJSsZe//LmRz1S6Oa6WaDYsvIx6UuAqeM/Q9hHdum1k6vVg5MzX73sscTRLXJZOQtpIiUnnUm+86w3uSNHOYbUnt1k6qXH7xiamOpLx4EyWtpc0asHJG82z4oyF0c/HhjhNHHO68qYduvZr908tS50kqb3FZQloVduetNcrBaeqncMndCdPwxvo762YkLu/ryfymyOj41r3lfv0ppc+JzIarBb1rjZVad/HvzPPDk8rO0/Vrm9Z9l0eIyuGto9MS2o9Oj6hdV+5b6qeeWvXTmraiKi0ttiMpNNZRq/2nTCrpfur1Q/XSOqcjP0CNF9bBHicc1skban2vsnJSY2OjkbKjhw5oomJ6JO8p556KsfaAWg0IJXHymHhVX2qjZxpRKNP+tNuloP6V1sNS0q/OV6QYTpWwKTIMuqVAiy1dgiSjIyO68z1d6Q+lR1M2a/dfpL86y9ZOu3GO20ESBbhzmHS/uzpNh169qjOXH9HpD1lnbITlxqcSZHWTpwUOS82bR5OXYlpdHxCVyaM+glcd/v9VY9hrStb1Sw+/86krbv2RoItSefwqfPnqLdnclqwYPU5i7Thtp2Jx6m3p1sHD09oIpZHdeKY09fve2yqjVVqU4M5raIV70wG0/FGx6bnccqzw1NU5yl8fQsEIwGr/W4eIyvSzpOJY9VHqdWjnTuptQZsmjFFKdz+0863tBUVG1Up8NbKh2tlWzG1VdgvQPO1RYAnq6NHj04L8Bw7dkxdXdEnfbt27WpltQBU0ehytfGb6WYutVpL3pwkwQiD8A3m6nMWRTq0k85NdWBqzTGxMmPi5l94fjTQ0J0y4qHbLNcnuPvGJrxpXIp2dKrlOLr+kqWJUymSRjw5eR3xtESe8Slv8f3Z7yecDvLqJIVPus10zLmp9yZNcYqLB2cqqRRIDHd8shzrpMDS0PaRTMHASjmmGpXU6Z6YdFNTAcOmLa/94vSgX9K5GQQTwiPswkbHJ6Y6d2nn0GB/b13TedI6lFk7k5U6PMHrWYNNRXSe0kaKBSMBqwU98xhZUeka1owRKu3cSU27bpx4QrfGjkxGrne1BtJqGbVU7XyTvGtmXsGx+BQ95fjd9Wj0vqdTsV+A5itVgMfM1N2dsApGrGz27NmtqhKADBodgl8t6bBU381BpZvVekaPhEcYhJ/seitcRVXrDFSa9pIlAHXPw/siIzMqjeBJG11Tr6TcLtVyHKXtizk9x/NG9Pf26DUvXjw1umJ+b496ui0SREia8hb8flC2cuOdVYMfx5zTTza+WtL0dnLo2ePBobis7XDdmiW66qYdqdPtgo5Plil5SYGlIDiQRT0d0ywdvVoTGwflI6PjGtk3qcHTNC3gkjaF8phzuuuhbKN388zFkTaSY+uuvZlHAaXtp+C7ahklUkTnqdL1OWvbanRkRaVgaDNGqLRzJzVtxOKRo8ci1xKTMo2wCtQ7ainLv1mNBscqTUctKvBGUudk7Beg+UoV4HHO6dlnn51WdvTo0UjZ3r17W1ktAFU02qHKctOc9eYg61SvpES4ScIjStJGGFRaQarW6TFZA1DxkRlpQZyg3pW2Mxj9kzYKKEnSMauU4yi8MljSqCdJOvDs0cgIjSDIEjyZzvrkv9b2FO98Dm0fSQ3OZG2Ha5d5ia2Tgn9hWSeMxbep1oBdWnLieCLdpGOT1tFLu5HP0o6OueSpNWmrxg3091Y8rsEy9eE65pGLI20kR/i4VusIV9pPtY4SqSXfVF5TY6qdT3kGPdLqv27Nkmk5eKTsOZ9q1Q6d1EojxyRVDUo7KXNQNPi+ekYtxeuTduZnaSdp21ztIVARgbdmJnVu1/xPWZRtJVmgjEoV4Onp6dHAwECkLGkVrRUrVrSyWgCqaLRDVW2qStabg1qneiXVu1p+jkpJmpPUM3w8eG9ShyZteyrdVAXfl7bSVjClrJZpa2kdnWpTk4L/JgU+JlOmSY0dmdRfvun8lrWnSsGZQ89WXno8fmN++cufO9We6sv+4+kPBTCGto/UlIw7+HzaSJR4MCfriLS0kQSzukzjE9VrF++UDW0f0f6UkVfh1e2SXPPa8yJ/zysXR6VcSmGVOsK1Jhmv1FmtdJ7nMdooSbXzKa+gR7X6T0w6mUlB7DBYRUvKf3nwojup1UbTxNt32rLltQQ+Ghm1FH5oUm9wvNI2V6tDEaNDmpXUuZ3zP2XRrP0C4LhSBXhmzZqlU045JVL2s5/9TCeddFKk7LTTTmtltQBk0EiHKulmOj5ypt5cF3HxG8Va611rkuZ6h49XSr4bFmxP/KbqhO6uqRW2gtfTRgXVulx5T3f6Mt7VpiYFaglO1JL7JqhDo+3pA2uXasUZC6flfBgdn0i92U66Mb9128jUcciaXynJwcPHA0ubNg8n7r9g+lp8ZFRvT7ecU+LT+aR8OVmfwKflPhqPZ0FOEe+Ubdo8rLRP3vXQU6nHNWnKXqOCQF0t7TS8f+KBvkuXD04LstSzzHxa50lKnx5Zy2ijJJVGAOa5WliW0VLOeb8Zvrat3Hhn7vlyiu6k1jqaJu3fJSdv/2Spe9p3hIPLWeqddm2qFhyrtM2V/t0tcnRIXoHksHbO/5RVM/YLgONKFeAZGxvT1q1bq77v0Ucf1Yc//OEW1AhAK+R1M53nVK80q89ZlJroNU3SSIV685vEpU01GvrmP2vT5uHjSW3XLKlrufL+3h4dOTqpMb/TnraKVrgOaSOFGlGp8xzff8H/h4Mz80NP++P7pdK2bNo8PG3K0P/P3vsHx3Gmd37ftwcNsofSckCHtsU5UuTKPjLhYUksdSa9vMqJTLK8FC0aJneXp5NSqZRz+0cqlZCrQgXy6ixwTzZxwa2lOzuV5OpcV86RqwIpahHS3DvKd6SSC8/kWjSAZWFNxreWBO5Qu2ZMDCUBDaIx8+aPwTvo6Xnft9/+Mb+A51O1tcJwpvvtnp7u5/2+z/N9VMF2WGCuE57C8HcL0mWVyISpNV2W0lMoSlcx2W8nqveRnwM7NtZ8l7qR3C+6TZt0h5Vuqr4zf5mUTujzEydLRFZSqOo8BslYo04Wg2Wjqi6BSTMPomRLCcPu9Y6d2C9LRZxJalqlNVGzaXQiXBQvHVnWqF9cjjtuHrJv3WfvF128cXy39PhEFtdKEhPa2f+JIIj2oKMEnrVr12Lbtm01r83OzmLdunU1rz333HNNHBVBEM3An+ItJuAjV+62pNRLRxRPA4F/Ymw6CTLNFJpbqATfQG0mxa8/M49CMVOzj9NHeyO1K4/bdShtU2dAP3lWTV4+e7zs31Z0PXzj3AT8VWCFoouToxM4MTqhzOzRGeQGV8bDAnNVSWAw40aF2I7q2sj7rrN5XxZN0fWUooTKLyf4fpPfTtQJyB9Ofmx87OL7D5t06ybYph5EcwuLyjHlFd+Z//yohL6hi1NSITKpIGCSuRgk6nelO+9+37MgUcSkKNmR4ppViTtie6b4OzS93LuIE6fejSwcpFFaE5Y5tinn4NWx29XMuwxjeGHvZrze3wsAGLo4JT0npl46ss9HaUVvcm+K+tlNOaflGVXNpB38nwiCaG86SuBZWFjAvXv3al4rlUp1psq3b99u5rCIFUonm9h1KmHnPGmAbFKaA6DG7DfNdr0yghNj0/Rr1WpqkJk5DwPnJwGG6ntn5jxw1JdqjFy5i+uDB6XHm6bfRJwspzAKRRe7T72LT+Y9BK16ZOfv1KWpunMns/gJK10J8xTyf8YkMFdNlE3Ol9iO7Nrwl82pjMBlos2xPXmpWCErKYpb4qFCNzn3Y7H68g7ZvQSo92IRAl7OsTG7sFg9ZzoPIh3iPDz79AalWKTaRtH16jIhomaJyI5bd08KyzZKiolRvRBDddk/gP7+HZUo96+x8ULd76noLt1XYS7OJC2tCTuXjp3B1p9xau4VJc5x5sY03rn1Y8x5ZTDN9k2eXY8SZkOp7v0HdmwM/WyY79FqKftptf8TQRDtT0cJPIwxdHXVDzn4GrVJJ5LS6SZ2rSSuMGZyzpMGyGGrfEm/97HxAqwInaYyjNWVZZimX4vPnDw3gbDdeQpz4rB9BPeVhuA5Nl7AhVuFyJ8zQScIBI8tSqmQwNRIWPWZuIG5SVZY3XaCX7nvb12ZRH6pG5X/O1aJFVExaZcch/WObSQEr+mylB3uVFkNMg8iHeK7lk02xbh0iNKiOOf51bHbUj8dVZmSyO7QZRuFEXa/N8keYlgWzsS5lt17k2a4+ZGVw6lQ+Z1FyVwBkpfW6M6lKI19+dyk9N9FCa3uSl7vhHvpJM0eUd3LTO5xaT2HOn3xbjVlKxEEEY+OEnhKpRKKxWLo+0x8eghCx0owsWsFSQQSk3OeRu25bpUvyfce5nMRJGgEKogSQIvPpjVpDjNvTXLt68o0mkFaGQk6I2FdJs/WwcvV7AR/p5+1thV5n0GC2Q4jV+7WiXr+yaiuTEJWcpfWyrjJuYqDX6wbGy8ozYTj/EaiiDuA/rsyETt0AoeOsfGCsruZyvxY3H/iCngm9/uwa1eXgSO798quRf/4TQT2vK+kxwTdMUR59iQVR3T7EiWXUa9XP7ML4V46SbNHkj7D03gOrYTFu9WSrUQQRDw6SuABgEwmU/M35xyM1SadbtiwoZlDIlYgZGIXjyQCick5z2VtaeZF3Ml7cCVPNek0+d7DJm85xwZjQHHO006iogbQwdW8KBlEfpKmeKtKYsRkPm4phR+LAWu7rOpqtClppq/rjITDumCJ78X/9czMqbtu+fcp2y4DpO3hw65jVamLzDdIhckquOo9/X15bFW0bY4DW9oXgEgiqwkqDyIVuntR1OeH3yw4THiJ2tGL+d4dd7Jocr/X3VdN7gmFohsqOvjHPzZewMD5SW3W4uxjc1NgQH8MUZ49ScUR3TjEeY96vfrxSuEZSUmzR1rtH0OLdwRBrAY6SuCxLAuOU/sQKJVKdaJPPk83aSIZrQ5CdIyNF2qMDsO6FjWTJMJY2DkfGy/gs/nFun/XteTWIVvJS+JHoTpGBuCD4cPG44oTQIsJTvDa0MEYQ26pdEO0QR+5crdmDKbIzuXA25MAXy4PS2PKvaYrg6MSTxgdDJUsmaApd49CLNQRNhkbOLQ9dHIpI2yCofKt+NIzG6SiSth1HMyk8b+/UHRxYnQCpy5N1dxX/GKNaHcujlO2Cp7WSrljW1hY5ChxDoupfZLEtZtm+ZfKg0iH7vqI6kEEmGX06Hx9VMx55cgeMv79hWWsCR+z9Y4NO8OkJU6mv5Io101/X76mQ5yMoutJr3EVKr8z24r27EkqjoSVON4vunhx35ZE/mYmz+ok2SOt9o+JE6N0ekkXQRCrDyOBhzG2H8AE53yWMfYSgC8C+Cec848aOrr6cZAHD9EUWh2EqJCtTs7MeZXJNFqfYpxEGDuwY2NdiUGw84xs4ryuu6sqbkQJwqIYzZp872mKgir/jigG1DryOQd/raeEoSP/SegkPLjfAzs21pnrys5lmPlzHIQnygt7N+MPJz8OFbJsiwFsuYTHb5wbBQYoz7k4N+sdG16pHFncEfgnxbmsDc4rhqaia5OMG38xU5OJIMqTZCNgqBUfwrKOhDm3mCz7fxeyyXNQpApbKTcV2BZKvCpy6E5tGtmVtsXwxNquuiy7YAnTzOxjaRZZT9bW3nOSehDJhEATXx8VUT1k/PsLOwZxTRVdr/I7TEDUDIuioXArsufe/+ih1jBc/LdfOIrbfjuqOBK8/x7bk1f6Qm3KOdVuWeI9rHIL1P52gttoJCqRC0jW3MCUqM/plVLSRRDE6oJxg1ROxtgPAOwC8AUA/xLA7wM4yjn/240dXt04eLAcS1ai9dRTT6FQaIyJJ7F6SGPV5r333sNzzz2X2ph0JSBxW1aniSz4V3nNhH2OAXhx35ZqwLpt8LJy4vrG8d2R96vaHlAJ3sXkOq4fhckYTDHZdlh5UPAz7733Hr55o6z1YjGZzDl2JnXT3DAcO4O1tiUVCKwlf5tctpKdJHvERSkXU5VBRRHUTPcTRxoSv5Nnn94QOp4PJZlkut9BnLGIbDXd7/WD4cPSzkR+Xu5dxLdvmycZ92RtZLu7Ynv7yLo2qcoOXz4/iZJixhy8bwW35e8UlbWjlxsCwJu+69Hkdx+G7Lrw4z8PcUtA00A2Ttl3ZJrFKAj+9lRCnyDt57oK2YKObTEc/yW5MbbqWWPqfxbcRrMyVxr17DTppBe2L9Xvqx3iLT/+Yx3cXcbPbf8iCVBE29Gse+dqgjF2i3P+bPB10+hpkXPOGWO/ikrmzu8zxv7rdIdohkyQCr62sLDQrOEQK5h2NLFLy+xRhSqgMw304qagq7Jp/J01dCtvcerqdeUSjxfL1Un92HjBaGUxafq9DtXxnfCVHYW1QpaNJ8yrxcQU1vVKNabBzUBnmFvmlQnwK+/cVo5J9nJP1kZxzpM2nxq6OAWg9rudW1hMVdiKe/o4gLM3pnH5Bx9rx5PxLYQ0yvDavwoetlIu+73MLSzG6m4GVK4/VSlNGLLJmmzl/uToBLq7LKW4A1S+D1EiIzJ/gmVwJc5hWyyWuAPUliwlve8L/yLVfSp4Hlol7mRYfRaQKrsiasJQ8Ii8Mq/L+gMQKv6lHS8MXZySmqWfuTGNnGNjrW2Ferr5x6nz5wkKnM3MXIn6/Db1/5KN//TRXpw+2mv83SUpO2+VQLZQKnd8lhGVxRFEMkwFnk8ZY68AeAnAf8oYywAI76fYImZnZ1s9BIJoCDpRIpdN9pNUBUTvf/SwZrUwLNALCmMmAolJEKUrmzs5OhH6+SC6cgm/H02UILdRoqDuOMJaIeccGxOvfbnudd0KN0e0zIAWzfmkZBgzEqaCyMSd6r+5Xs1Keqs6gangCG/7LiZ2aWceCYImzSZlrkFz3BOK37EJj5au58WI4o6qBFMlOj9eNBNlvnNzuua+KRMR4uKf/KqeCSq/oiAc+tbscX5LjUAmTKiEgbQJig1F18Mr/7bx4ofuHl10PTh2pi67MFg2OruwWBU8VeJOT9Y2+t4bZUYcRUQxFZ50478+eLDhptDtLJC1O1QWRxDJCe/PWuE4gMcAfp1z/hMAeQAjDRtVQhYX5X4FBNHpDBzarvQz+Gx+sdpJJg6qIOGtm/eUwUMY4kFdKLrgWH5QB8epCpb8r/f35XH6aC/yOQcMlRXH00crZRCWZHVXvL5t8DL2D1/F2HihKjZtG7yMkSt3cWyPOli4X3S1gVOjEWPdalBC43oleCX5xFO0vg0StgIpsg7SIufYeGnfFjh2JvzNCShxrhVgVMe0Kecgrwnak0zIAeClfVsSfT4p4tgaMWEPmjQLYXhN13KI0ZO1tSUkpj4yqu9vvWNXsrYijFvcQ2RjSpoZU+aNERsEYnwHdmyUnpMol2uJc+X9uZ06R24dvIz/+B/8q+r4oo4tyf3Mv6+fPppP7bngfyaJ55QpwX0Gn7dF15NmswUfl8KLyL/vJB0lo2Ly/BeYPpNV4ywU3UjneuDQ9rpnlokvXzNjh5XW9bWVcRdBrBSMBB7O+U8457/DOf93S39Pc87/j8YOLT5BTx6CWCn09+Ux8tVd0kBVGGbGRRUMqFb94rYOlz2oTYOo/r48rg8exAfDh6slFbq2yP6Jy8Dbkxg4P1kjNl24VUDOkWc+5bJ2ywInf6BuyuyCfDIpWt8G0ZWZCEzmiI6dQY9B9ti6NV14vb+3RqQzwWKIZNKazznScg7BixKRSWSfzD5uzOJAT9auKTdsBSK7xuSaYqgIcnZGf94dO4OcY9ddJ65Xwpkb0zUZCPOacqQoopNsTI6dAWPRBRUh4someu3QMVHHppyDsfECLtwqpOahBNTfn5t9Hl7at0V7b3C9Mk6MTmDr4GWlsJ9zbOnz5I3ju/Hm8d3V+4/uPhHEfx4WFGK6KuNEJeDIFkAG3p7E7lPvYtvgZaNSM/8+TX9Hssel+N7HxgvYfepd5WeD10OYQGUiYEURUUyfybrrVrfYFES1sBSWSdLM2CGKQNYJrDTBiiBagVbgYYx9yhj7RPK/TxljnzRrkFHp6elp9RAIomHoAgvxAIyzKqgKBlRBcJLW4cFxnhydwFrbQs6xIwVRUSaGXonXZWG4XgkLi/LPP5rzsF4h/kQNnKIGwUMXp1Jd/Y+6aqmiJ1vJwgkGu689vzM0M0d8536RTpcxIygvtTYT14ZuTiYmBTqfEL/IBNRmn0QxZjXFsTN47fmdbVHWZZKVlc85+GD4MCZe+zJGvrKrep7EfUD8f0/Wxpouy/ic6VZgowTuC4GMhJxj49iefCzvHt1Er9UdE3WI6zxqNpadYUZiaaHoYuvgZfR9610c2LGx4Vl3gp6sjdf7e/HGkggThux37tgZDB3ZqZyU++8/ZcPaUnG+xX1aRfB5EZbBquo+WHQr5aImWVj+Z1HSCbAYn+o3HezEF3Z8phm8UUQUUzFDJhoFCcsK8ccnQMVI77a+AAAgAElEQVRs37S8q5miS9wso3ZlpQlWBNEKtB48nPMnmzWQNPnkk7bVnggiFXR14cHOG4Wii4Hz4W3UVZ4Zx/bkpR07dMGD8AFQdqnK2th96t2aQHJmTu4poCONSbPK6LQMYGGxVNclSnfsJl07gvXksnrzRuAPsAGgK0br4mx3V113ID86415ZcGbaNtorcaxb04Wdm57E9R+pW5yLSYFqHD1Zu8YPKqfwLYrb0UoYlfq7+Ky1LeO27HaG4fjfrO+QkyZLepn0+Bw7gwM7NtacowM7NtaMp8Q57AzDZ/OLkcvWCkVX+hvReYuFwRhw4ZZatGSsUqqpy1iT+VX09+Xxze/eVmbGtRIx3qjnbOQruyr/b9gRa2bOw5kb08guie+NEEAFFgNee34ngOXnlKknU4YxlDmv8xAKe46YXHdZ20J3l4UToxPLv5vN8veKcli/gbjOG8VUkNGZIx/YsbH63yofNj+OnVEKsxnGtPcdDnOfG3EfNvWGMfWvM/H2EtsTY7y/JDDJUH0HSX1gTMeZBsFj7c5YqXTvbBXNPHcEsVIx9eABADDGfpYxtkX8r1GDIghCj27FRtV5Q3QCUqFaRQuW1fhX12SZKWHlRRar+AXJAswoddavjqk9O6Kk3uuY88oolZcFIMe2sNa2cHJ0wijd/pV3buPUpfpsHNcr4dSlKewfvooToxNNNTEV3bfiIMp8ZBlIIriUlfYwxWfFNWe6b524I7YHqFdvZ+a8mu9HNRkSIkhURADqN+IVk2QT1nXXl7H1ZO1UvZCAyvEFM3PyOacq5vrP0dkb09Isg7ieRCdGJ+p+I0myRGbmPOXvhwH40uc3GAU6wYne2HihLcUdQVSPrHzOqctg+fbXdhmd9zmv3FBxJ2tb+Nxau+a+GqXcuCQRd0wwyfLwH3vYFR8shw3LYDXNSChzrsxo8pd+qh57FkPNs3voSH3GpWNnQjukBcuZw46vEaU2UbJ9TLJFVd9BUh+YuKVdcfEf6/aff7JjxR2g+eeOIFYiRl20GGNHAHwbwCYAfwngaQB/BmBn44YWH89rXCBCEO2AriW3avJuEqCrVtFkr6tWuNZ0WaGrgLrJoWn70bOKSTMD8MLe+iwIO8MAXrtvx85grW1pyzv8JSGuV4a7lPETXNFTBYSqczEz58VuCZ0Gi5LvIGMxPLmmS3utiHbR73/0EK/399ZdB0XXg20x9GRtzMx5UgNeYPka1mXcRGXb4OXqb+HYnjy+c3M6ktmsn6gfyzk2+vvy2D98NbZgJzpBid+bOLeqsex/ZgMm7j2KLETI2oIDkI690Q3SXK+EP5z8uK518RNrkl8PHMC//9FDo2MQhuz+rKVWECV7zPR9qtVv/3Mkye8vY+kzpFR8OHy4eo2Le464R0T9DcXptJPW8QfHITrJhXVgMs1gFGKoDP/zsqh4nnAOfDB8uO71YPwQdh6CAlLY8cXtQBVElvUnu3/piJoVojNp9mdp6WhUV83VAJ07gkiGaZv0fwhgH4B/wznvY4wdAPBC44aVDDJZJlYSsuBGPPzSegCq9qF7ryxw0wkagjDbA5PgT1f+xVHxWXn26Q3ScinZawNvT0q7jYQRJ93eFLbkO9NMEahUrpRCDR3ZiZOjE9pzfObGNM7cmJaWD3hljmx3F7LdXXXXiSxF33SiE0bVqPT8JGDYJjoNbIth6EhlvSPJdRC89sM8Vv74Rw+xPmtjdqFU/R7yOQczs4+VpYcMlbIOf4lkT9bG4S881TKfIDEOMWkbGy/gxz+8BSC594vpJSCu4ULRNc64Spu4kYtOFGIAju1RPyvEc8TUgFtGqcyN27ILROaYzG/M9UqxyiRdr4RvnJuoWeRY152BnbHwyPWkzzZx/FsHL0fcmxohNsnKm8XvT+wbSCYw+e8ZKkElJzHBV8UPuvtwUEAKE00O7Ngo/S35y8qC1GSDZm3Me6XqogoQv2W2blFMhq58j1p2EwTR7pgKPB7n/K8YYxZjzOKcX2OM/aOGjiwB1CadWCnEqQMXmROy15PuI/jeRlAounjmle/hhb2bqxkiwaBMN4nWdXTSiWLfODcRSxAQY8kpzntcOK8E1Puf2WCUhcCYXDyLOlEqLHUWijoxDqL7joL/1t+Xx/sfPcRbN++hxKNPFoMkbWmu87zoydp45Hq14/PNzOP6yfgnfoIwsagMVK+5EudVDx2dQNHdZdX9e5QyskbhF/2GLk7h13+hSepcGxH32hEld7LvngMY/ZN7ePbpDTX3vuB99cCOjRj9/r3Yv52oHytxjrHxgrZMMo1xVLLbwp9tWdtSiqJxcL0Srt15gGN78jh7Y7p6PBwVzyjxfYhxvHxuMrREKkjQ9Hjg0HbpYsVn87XeQLpFI91YLMZqthMmmqg6B6peHxsv1Ixf9TxV+fiEEWVR7MCOjTXfWxr7J1YXURZOCSJtTD14ioyxJwD83wDOMsb+CQBSUQiiwcSpA3/t+Z11Hih2hlUNLJPsI2rXFhVhvgclznHmxjR+8TcuY+Dt2tbmr7xzW9ndCqiIHMJouqb97PlJZQep/r48fudru2Mdi1hBjRibG8EBXDcQdxw7o9w/h170khHV30PGppyjzMYKriiLds9iUlHm8bMZkuLYGbywd7PUo+LN47uR7e6qm0T6vTdMfD1kiImf/xqNWsrgeiW8dfOe9j1+f6B2oqbUpIF+L62iO6TlPJDMYL1QdJUT56A3jMwv7MyNaXR3WbAjOTPGJ59zIvnspIXs2TY2XsC8obgjvsV8zql2FFRxf+k7Cd6a/WMQ30VUcQeoNz3u78tjXXf9uq1X5nX7U3W26u/LK72ZSpzXdcHye78EO0xF9eD55ndvG2fSptUZUuUjeOFWQfvcTZKpGafL6UpiNRy/aQc5gmgUpo/yXwXgAjgJ4F8D+BGA5xs1qKTwRsy0CKIFxDEp7O/LV9sbC4O6ka/skq4cjI0XjGr7TfYLhAs3wLJhnhhf0LjRj1dGXcDneiVtq+xHrqc0mj4hMUf2E2duI7IuHrVwUnr6aK/SWDqu4XSSu6hI0x84tL1ObASWV5QFMuGw2XdxU2NxE28G3fehIzj5jCMWxZkotgPCA6fvW+82db/NEhK9Eo8stEYhw5hx1pxKqJ9dKCHFJBYtA4e2t6wkMHiehi5OweSwc44tLXdSsSnnaO8Xz7zyvUQm+5mljBo/queQv4Nd2IKO7h4WxWhYJVDLFmjimJonnTjLJuEnRyeMvhNLcu7j7nM1TfxXy/EnNekmiKQYlWhxzmd9f/5Bg8ZCEESAuCaFJqnI4kGrwm86KlJLdSUEPVkbnEMbGImJv398+4evRl6xL855yra9YWUOqjT9kSt3jYL8IMLsOWp5RU/WxifuYuIJueiOozLXLnGuLR3TlSNFwV8itnYpDaC/L1/TMlwgVpTF+U/bvygOMhNSoDKJ+MmjeZwYncDIlbvaUryXz0/ilXd+UOMZEZX7xdpW4usdGxaD8eQnbov3KFgM+Nzayu8vaTmdQFyDzfScWtedwa99sd4npRFwVH4fjp1pyL5KnGtbmXMAWwcvp/Z7T8JL+7agvy8fqywpDYLPT9Pnz6ePF6tm0mFeTQzA1p9x8JNH88pjTHrsIqMGQNWU3dJ8v7ryalnZ7EnFM0Xco05dmqr+XnOOjV/Z9RSu3XkQWvYXbCcPINHEN27JlMz/KUppchwvniit41ciq+X4G9FBjiCiYLRgzRj7lDH2ydL/5hljJcbYJ40eHEGsRKKkp+raoSclrNyqxHndCotqPC/t24L5kFa6PVlb2uoyzgNvU86RtnoV7bjDkK2kxH3wclREniitnh07g9ee34lywgDf79uiKhXQlRAA+ha8UfAfysycV71mdCvKgqilSDriZGQEs8j8q4xArQHvZ/Pq6uRSmScSd4BK+Zp/hbPoepiLsLLdjOlymQOfznvV/06C1cRaPP+usraF3/q15WwtXSZhWhRddUv3pOQcG5/MhwsVrRR3GCrizuv9vamOJeolVCi62LqULRYlcyBKpzBRXpvkGPc/s6GaRdiTtaWZq+JZZlLq5XolZWah7B6sy8AZeHuyRowtuhUfL39mxoVbBWkGZ7BkEEg+8Y36eZ3/kylxMjJW+8R/tRy/6reTZqxDEDqMBB7O+ZOc888t/W8tgGMAfq+xQ4uPZTWpiJwgIhI1PVWkSstKRVTbNxWPojxQ/SsssvFcu/NAOXHJ5xy8eXw3xn/zy9Jx6/x0ZPizgMRYgOiZC8HjT/Lg5QAu/+DjauaKjpyzLHQlfdgLcWnr4GXMPl6sC6ZNxECRoZX2PFtcM7pj3Pmb/1opHMYhn3Ok10DYsTGG0JIxQVIDZx12hqE4Vy8CNGtKnvVdvznHxpvH1b5UMZrO1dGTtZvW6QyoPY9zXrl67+3vy2PitS9XPJaaZUKTMsWg8XcbIu6T+4evpta1ijHgxX1bYt0/ZuY8DLw92bbf+Z9OP8LAoe34YPgwxn/zy8obwf0lY3wT8VCYsftRPSdUCzpeqWzkleN6JaVxdZrP3zifT6tUJqowsdon/qvl+Bu5OEsQJsR6qnHOxwAcTHksqVEut6eJJEHEqcvVmRj6iSoeRX2gikBGNh5V1gwDtGMGoPXT8W9HsKZr+bYlxqKa2OvYlHNqBLG5hUXYCdIJZuY8o/ISxpZTutMQNsRxF12vJugOEwMFQixrxNywUHS1GVWzC6Vqmvvpo72JPEryGr+LsGPzZxwBLVxN5I0Vc2yLYV23+nrzyhxvHt+NN4/vxro1XcoSjTRw7AwOf+GplplpA3LvkR/+w/8SL+3bEtu7itAzM+el6r3DOfDs0xtwbE8+1rXklTjWpCAuNwLXK+Hlc8vNAXSTY9N7Vta2ap6hqsxaQL7AdGxPPrJXjoygh82BHRtj3wviTJzTusdHjaNW+8R/tRx/1MVZgkgbIw8exthR358WgGfRfA9Mguh4dIaLQb+bqEStbR44tL2uJt+xM1jTZSm9bWSMjReU2TMmwU/RQBTxb7voenW172HBWnB8op20//hn5jxpOnnazMx5Nd/1sT35anvwtLAtVnMdqbw5GICTwltG49/RSFyvpPQPMsXOVI535Mpd5eQxzHvE/1tZ36Jz0cjsoAxjOP5Lm/Hs0xuU59srcXzzu7dRDvHSSgLDctbYqUtTLQ8kZNfL6/2V0q1tg5dbPj4iHCHSxf2uTJ5BrcLv9aJ6Zg8c2i71OpMx55VrsmrCuocF/fz2D1+NeghSSrzS9ODUpSkc/sJToV2rdLAYn4zqmScjijDh91XLZW2s6bLwyPVWXftscZyroX24iRcmQTQKI4EHtR2zFgF8iEpnLYIgIqALKvxZN0A04z4gem2z6kEL1Jsx6gKZkSt3lWUxJsFPnEArKFyFbWO9U/EvKM4tB1QyQcwrcSMT0qRGtuK7TipsqAiaGP/KrqekhqDiGApFF3aGwbZYQ0WGRuGVeOi5FKUJOuFC/FZWYvJGiXNcuFXA5R98rH1fGqvzKsTvplB08c3v3m7ovqLQ96138drzO+vuuWlMAonGkzQbQyxENOu7zjCG/+gJGz/9dMHo/eJ5d32wkjgvhOwMY3C9Ek5dmjLyX1Jt++Vzk9W/wybeaZ+jmTkPZ29MJ3qeinJLwDxukollUchHECZEdrV/McmxM3jj+O5VKQCQ8EEQjce0i9Z/0+iBEMRqwCSoiNtRwKTjln8VSQRwImgMYrrCoiuLMTmGuIGWyHrKZW08Dvls0a0PqFTlJyXOYWeY0mNABHaNEmeAdDohFYou9g9fxf2iC8tAsRBtnLPdXdXvfW5hsaldjRqJmAzpBDzxW2nmin6GMbywdzP+cPLjhmcNuV6p4d2idPjPejPEHX9nNx2iRA+ovWcd2LFR2ymJaA+S3qsO7NiIZ5/egIHzk6kL3LL7TYlzfDJfwkv7tuDyDz42Gre/RBpAnWCQhBLnGDg/CTBUn3uqxaZGdGEz2ZrumQxEj5vE+5J0cnv/o4dGcVKzOke9OnYbb928hxN/w8Ovv/I9vLB3c9XQnCCI1YVW4GGM/S40917O+f+Q+ogIImVkokarVg+CWTOqH1ecFUld+jZQv4qkyxaKssKiEpbyIcKS2L4sk2j28aLRZJfDPLgVK50mWT9eiUtFFttimFtYxMnRCePJYxzS2mywC1QYxTmvYua5xKtjt2NNcPNtmPkgzoEQ8MBrS6L8v5VmZm40S9xZbex/ZgO++uwWnBydMPo9+Sdc4n7VbtcwIecvP3HRlYlvlHzhVgHPPr0BI1/dlbpwr7r3ul4Jb928h/JSe3vG9M8y/0KNqaFyFGTClkyEaFUXtnXdXVi3pkv7m4waN+lawYdRKLo1z0ZdPGWSXZ00Tg0+q0ucV/8mkYcgVh9hT8T3AdwCsBbAFwH8+dL/dgNoj9xqgtAQ1Xi4GfhNilXtqeN0FAgzdYtj8GyCzjRvbLyA3afexYnRCeV3IAtsZC3Q02BmzqvuN8zgmKPSwtnfYcUrc8zMeeDQizvNMmhNu/sLB6rd18bGCxj9/r3I28jnnESGmTIsoGrAnMa59UocT6ztUv5W0urqZcKZG9Mk7jSAD//KRX9fHi/u22L8mftFt+aZQXQGXhlwQ7xkdAgfMOFF1ixKnIOjkmE675WrBueye8/s48WWmMAXln4TohmB7v6bpElB2CeLrhfaCIED2GrQQdRPmt2bVPFUWOcokzg1rEPqWzflz2rV6wRBrGy0swPO+R9wzv8AwC8COMA5/13O+e8C+M9QEXkIoq1plKiRFml3FNB13Irq0RNlnzJh6f2PHuLk6IR08iq+A1VgAwDH9jQmy0p892LcOsocyjavMnKOjQ+HD6PchFVOiwG/ffQLeCnCBNYE8R0MXZyKVa6w9WecRIaZAjGR6Mna+JxjozjnIZ9z8O2v7UpF5CnOecrfSn9fvmHXX7vRDCnSSUmIzDBm3PpTTEyffXqD8fZzWbsh2RFEZ1AouphN2E0RgHLhRodfZDq2J1/XUVA0FxgbLzS9pbR/gUaXwbNuTRd6sjYYKvftKL/6Lz2zIfS8zcx5AAu/n0RZyEtbzJfFU2FxXlicaiIAqb6XVmVcEQTRWkxNljcBeBLAw6W/n1h6jSDamkaJGmmRdkcBXZqvzqMnaXpwsKTLpLTnftFtiQDn/+77+/KplmI8cisZQpbCpyDn2KFp5qZwvjz+tEni1XLjL2ZSCSqfXNuFX9lV6a4SLCtMY/sWY8rOdWPjhVXjvdKMjmGPF8uwAIRJpWJarfp2S5wjYzFYZR66LQCRy21m5rwV4zlFxEP4vMQtwbVYMiPiQtHF6J/cwxNr6sNz8WwcOLQdA29Paj1pohLVYF948fhLmYNed2PjhZruXkK0kv3GPvwrF9cHD9aVkgfxShw/++RaDBzarvXPCZaXBbtYcY5qF6tje/K4dueBtmzelFy2PgMsLM4Li1NNPHxU3kjNyiYmCKK9MBV4hgGMM8auLf39twEMNWREBKEgjghhYjzcatLqKBDmsaPy6Am2C0/SyUuM46zB5HhTzmmJABf87pN20/DDoZ5UOnYGQ0d21gSc/uDXYpWMoSj7AprX+cVPfum7kw03rRXDoutJRZa0sivEOGXX+9DFqVT20Qk0ozyszCsmqeWQCanJlVMq86ZkHRGrm7i3sTQ8mr0SVwqN94uV0kPTtuh+VCJrnMYBZc6lXmtCeHj/o4c4e3O6eh6ztoXXnt+p9LwRTRP8govq2SbOQZh/jogjZF2s/Psd/f49jHx1F/r78tg/fDXRM1V13ejivLA41SROemHvZunz8oW9m8OGTBDECsQog5Jz/i8A7AXw3aX//fJS6RZBNIW4Xjppl0C1M2HZMKpSqmt3HqSaRaNqm+5HfAe62nQTEU6kguccu3pM+59Rl2TIWreL89LIha4MYzUeL2K/E699GR8OH8aHw4djTygatUJnMfUDopBwpTPDWFO9LsIQBtxA5V5DnjjpY5JtkM85Rr5SVHRAxMWxM1jX3Rx/rUaQy9rYP3w18j2KQS7uvLRvS7VENUppWS5rK4UHYUDsf6bNeWV849yENMNFIGK7C7cKGDi0PdSjMCxGEOfqxOiEdmHAK/OqqJ+0ZEtk8ar8cmT/JvOsC5r+y/C//np/L17at6UaD2QYw0v7tqwqg+Uwn6J2ppPHTrQnYV20dnDO7zDGvrj0knDr2sQY28Q5/9PGDo8gKsRtM5l2CVSQtDp0pbEdk1Ue2SqSahUsuD3TMYZl36zrzuC3fm1Z7NB1/tJl1uRzTl2L97HxAgbenlTu+8V9W+rGLI5LJrBkrIrnhz91PU4Lc39Wi+o8Ru3cJHwIGlVjL7Iu1lgskYGpjBLnVa+LtNsSx2VmzsPWwcutHsaqZuvPtF/3NWLlIDJVgOjle+3CZ/P6dvA5x8bjxXLdc1N1lz17Y7rqUzW3sGg8jpk5Dz1ZO1JJY5kDn82Hv99fiqaLD8Kybx+55iWXxSVhRsSaYe3gVXHAeseWZkS//9FDXP7Bx3XZQ6I9vX9bDBUPQr/pv+48CF7v78Xr/b1477338KMXnzM67pVClC6x7UYnj51oX8JKtL4B4OsAvi35Nw7goOR1gkidJKU8aZVABUnrphx1O1EFApNVLlkQ5F9pk43x5OgE3v/oYc0Kkc5/Znm73dIW6YWiiwxjNcHd6aO9OHVpqm58weDGpK2xnWF1hqtj4wV849yENK3ePxkInu84vj0iyAt6ypwYncDQxak6v5kw1tqZaleTRok8wu9AjDXtbROEn+s/ehj+JqJjWNNl4fFiuuJwXLK2Vb13t4sHXxx0gjgDMHRkJwBIn5syOIDfeOcH8Mo88j05jl+V6VqBKMMC9At0a7os5TMz6tqBP8bRPVNFp8izN6ZrhBnHzoCx+jJi1yvVvVcg+z45gGt3HlT/Dp6H9Y4NxiqLcyJWWu1CQNxF4Hagk8dOtC9agYdz/vWl/z/QnOEQhJx29NJJ66Yctp2gOeBn84vVoMAvBpmu8gRRxTH+12Vj5Fhe/RPjNDHADQbXskwecVynj/Zi/De/jFfHbuOtm/cqJquM1axuhZkyCrwSr5ad+YN82WiztlWTHST7PqP69rheqXoMQYquhwu3Cji2J4/v3Jw2CkxFcN3oLhmUUUEQRBzaRdwBgHmvnLoxcbvBsbxYEqVwN0qnSB1pLjaI2E61QGf63DdFJszIEDFVf18ezz69oU58UmVERz0rsjjJH2dRtkct7d5QRUcnj51oX4w8eBhjX2WMPbn0368yxt5hjPU1dmgEsUw7eumkdVPWbSfoPTQz59Wt+PjFIL/HTk/WxpouCydHJ7Q1vY8Utfz+11VjFAElIBeBZMhEOZ3INTZewIVbhWrgWOIcF24VqscTpa2xCIbE+VQFXXNeWVs7P3LlLr64ZX213l3nV+NHF/y6XgnX7jzA73xtN+xMfXieSdi6lyAIYrVShjxrMMMYGND2xt0mt3+GZUG+2TIWQ3qLDSaxXZTnvgkmQxe+hf4M5OuDB/HB8OHqgpCVkieeavGyFZ1HOwETn6J2pZPHTrQvRgIPgH/AOf+UMfa3ABwC8AcA/rfGDYsgalEZBLdyxSKtm7JuO6ZBjBBgRMDxxvHdmPfKKLpeqCm1av8WY9X3645J7NtE2GIADuzYqNxGkELRxalLU9qAJkqGiSgBM8F/zmQm39d/9LAa0JY5kMmEGweHGSIXltLSR76yq+Za78naKLWJVw1BEMRKocw53ji+G11tLqCb3P5b+YTgCBfJejQGy1nbihTbxclucOwM3jy+G28e3101cDb91hlQNaOWYZrBHMS2WN2Cjk7gomwPOe24CGxKJ4+daF9M26SLGdFhAP8r5/z/ZIwNNWZIxEogLfNhP43y0olL3JIooPb8rHds2BlWs7oothPWBlTgF2DGxgt4+dxkXaChKh9TGRWWOK/6xujMF/0dLcLEFg7gwq1CtazLvw3VZ3XtYgHz9uKOnYm84ucXkkxKwBjTmzDzkOCPofL9Ba91Mv8lCIJIH47ONVxuN3RPNwuQdv5iqDQ/COv2FIwpVd6BKoKdLKO2RA9buJMtRIWRc+yqZ5JpvLzesaXncbVnezS6oUoj6eSxE+2LqcBTYIz97wD+cwD/iDG2BubZP8QqY7XUCMe9KY+NFzBwfrJaalV0PViorG4V57ya7ZiY+QoxaGy8gKGLU9r2qbJVHjFelSikMgf07xuQC0UysUMmNIV1w5CxKedgbLygFXcYW069XtNlYa1tRTaGjJIhNDPnYV13BrMLCtPHkM+Lkjf/uRkbL8Tq3EUQBEEQ7UAZqHuIZW0Lv330C0YxUzCmBCply/7MVjvD0CXp+ujYGWlWkGnWS9jC3dh4IVJckZfEiiax8dh4AbOSxTbbYpTtgfZbBI5CJ4+daE9MBZ6vAfg7AP4x57zIGHsKwEDjhkV0MivBEV6VgSR7PdiqO4yhi1N1PjplVISID4YP17wuEz7sDMO67i48cpfFIMDM9Fe1ytPfl49sDhhs5SkTvFTiiPAX8r/3i1vWG3fREQGXru68J2tj3ltuF6sTvsKIIrDMLpTqMrKiEAw6R67cJXGHIAiCWFHMeWWcGJ3Ay+cmse/zPfjwr9xqN80S51UhRFWqXirzmgxe0fXxwI6NuHbnQV1nTqBWSFFlAfVkbWS7u4wX7qL43+QcO3LM6N+PLK54Ym1XS2LrqJn6jcjsJwhCjpHAwzmfY4z9JYC/BeDPASwu/T9B1NFJNcKyBw4g7+gka3EdlplUdD3sH75as32V0CB73TRLaP/w1VBxJ2wVyqTEyk+wlacYr39sqhTo9Y5dd451+845NtatqQ+4dCVsnJt1xTBB+AuYCi3rurtiC0pBEa4dfzcEQRBEPIT/S6d3KOzxCSRJskxLnNcs7ohMYhFj6Z7jwQzeQtGtdqTUxWtj4wV8Ni/JhskwvPb8zl/xWRAAACAASURBVEjCg+kz2rZYtSQrDlHL2BtJ1Ez91ZLZTxDtgpHAwxh7DcCzALYD+BcAbABnAOxv3NCITqUdW5rLUD1w1nRZ0gwkWYtrXWbS2HgBhRkXhWKmZvtRMUndNAkwVKtYgjhlUrL9hpWKMUTPpim6Hj6dX6yr1Vdda7aVLGNHBkdFaDLZbtx9O3YGB3ZsrBEFVTX3BEEQROcRxV+vXcnaFuZ9pVCNyjJ1vVJk8cgkXhu5crcukxqoLM7o4q1Xx25Xt22xSum3bmwZxlDmvGUZK43KmomSqW/iC0nZPQSRLqY+Or8G4AiAWQDgnN8H8GSjBkV0Np3iCK96QKkm06ruCCpxZeTKXZQlDzRVsw5dh4kwTMUzXTctf6eyuPsV/kI6QSLJKt+ZG9N4dWxZJBs4tF16E/PCzG5ikM85GDqyM9H3FAZD5Rj93bpI3CEIglg5rARTZxahI2VS4sQMqnitUHSxdfCyMhtGZF3LYqRXx27jzI3pmu6ZQb8fPxYDPueYOmGkj6z7pyr+i4pppn5YdzFRrt+ocRLEasVU4FnglfYvHAAYY+saNySi02nHluYyopa+qFpcq8QV1fbLHHVtMUVacFxkohpQMRkO4s/kCSLarJuKPMGW56pVsTQ5e3O6+t/9fXnzPqcJKRRdnBydaGg69JyBMtXezXwJgiCIMDrdV03VSKBdUMVrJqgEhrdu3jPeRta2kLEYZuY8rWgxNl7A/uGr2DZ4WSksCVTHpHpdl2WTFFXcG3xd5Z/kf38jx0kQqxVTgefcUhetHGPs7wP4NwD+eeOGRXQ6Qij4YPgwrg8ebDtxB1A/oHqytjQD6YW9myNlJqm2n2EVA17xUM7nHIx8ZVeicyQT1d48vlsZRYaJWyrBKEjQgyeJX4wqsykI56gJhhqsJ9XuW/JagjgytTEQBEEQRCfQ6EembTG8sHdzov3IBAZVFoofBuDD4cPoWbemzhA5uM2omSsv7N0c6XVdlo2JsKR7j2mmvi4mFO/vJN9OgugUjAQezvk/BvA2gAuo+PD8Juf8nzZyYATRaFQPqNee3ynNQHq9v9c4M2lsvIA5STtLYDlIKHFefcDFEXeCD19xTJtyDu4XXYxcuYucopxIJj75tzdy5S6O7QkfU/ABHNdnaV13JpJQI4KhgfOTxsJQozCI+QiCIAiCQOMXKbq7LLze35t4P8H4xiQrSMRAJqJF1MyV1/t78dK+LXXjuHbngVSgUcVjuaytFZbGxgvYfepdnBidUL7HNFNfFYNmGKu+3zQbiCAIc4yLQznnfwTgjwCAMZZhjL3IOT/bsJERRIMJ61AlE11MDI+D5s0CmVFg3PbxMoPogbcnAY5qiVSh6MK2WF3Lbtkqi2x7F24V4NiWtsaco9IpS5y3gUPbMXB+0rhMiwF4cd8WnL0xHfpeGY0uByMIgiAIojkwBnQxlujZLsrH8gadQfM5B3MLi9LS66DAsO/zPTXdvoL4YyuTZiNxMlde7+/Fs09vMOpIJWuc4dgZaYdRv7CkarYRjFfD4mFdpzJ/1rpqnO3m20kQnYQ2g4cx9jnG2CuMsd9jjH2ZVfjvAfwFgK81Z4gE0TgaUUqmqjlWhStx0lBl+/BKvC4o8soc67q7QldZVCtJjxfDPWH8Kzv9fXmMfHUXck64ETED8KVnNuCtm/eo7IggCIIgVjmcA+vWdKEna4MhWfOJsFJz22I4sGOjUoQICgwf/pU6VgvGVgOHttdlF1sMNduMm7limvmjyrJ5pGjcIDK/dZ45UeJV005lneLbSRCdRFgGz78EMAPgjwH8twAGAHQD+FXOeee3ASCIBhBVsDFJQw22kAxblfLzyPUw8dqXte/RGUKb4HolvHxuEsDyCpKu5boQd/50+pFRXXs7EbVlK0EQBEEQZhRdr5rd++zTGyJ3HRMLTP4s7ULRhcWWY5qcY2PoyE5jEWJsvKCMuxiA64MHa157/6OHdfFTmVdej5O54o8BoywWyrJsxPkIIsr7dUQpm1JtSyYwmWTHEwRhTpjA83nOeS8AMMb+OYD/D8AWzvmnDR8ZQbQBQWHFxC9HJcBkbQscLHIaqqx8KorIYPJAjioayShxjpOjEzgxOoEMY1rhhgO48RczbS/u2BmGX9rag3//Fw+rXjscyyaR7T16giAIgug8OIAzN6ZxJmL5tm0xDB1Z7kgaJhycVIhHol26iM8Gzk8qtyGLsVQdt87enMa1Ow+qMeWxPfmav2Uxpqrs32QcMnTCkkr88b/HFJMyNYIgGkOYwFOVWTnnJcbYByTuEKsFmbAiq3MOovKh8cocx//mXwt9mAeRpcwKkcG/BzvDajx4AHMBSWUILUMnLonXTYSbRok7OcfG48VyaDAUxLaAxXLgnFoMf+wTdwQk7BAEQRBE+5BhDCNfjdaRVLe4JWK+NV2W0hOIAdIYSxXfcI7q/oTXoawcyb+4aIUsmAHRxJcw/0mZmNSTtfHa8zsjndt29taJs3hLEJ1EmMCzizH2ydJ/MwDO0t8MAOecf66hoyOIFqKrc9Y9CPr78jh1aarOtM8rcVy786AulTcMVZorR6VW2f+AEuM2fWiZrgwJMqzSfvTCrUJkAaUZMKC6eqdbiZIh85Ke0xhMEwRBEASxjMWAp9YnzwiOQ4nzqg+NiHvCJvIyEcKP65W0sQ6HfMEvLIvZv/1gTBmMy3TbYUBN/Ld/+Cr+7uZP8U1f8wsZqsymYFmbOI5st3FPHum22klIibt4SxCdhPYXyzlXu5MRxAonTocDQVHSkcH0s0FUK0z5nFMnFslaZeoIM9QLUuIcZ29MY62t9WdPlfxSUGAi2HBUjunAjo3V14IZR+ShQxAEQRDp8/f2bsHr/b3YP3y1JSKP6Cg6dHGq6uXDff8WnMj39+Xx/kcP8dbNe7GyivOKcqMX9m42Li8rFN1qkwrAPC7zx4Cvjt3G2RvTlWPdHC5a6IQvWSZPXBGkHb114i7eEkQn0bxZWgDG2GbG2DXG2J8xxqYYY/9jq8ZCEDKidDgYGy9g//BVbBu8jP3DV5FTdH7Q1R4HtyHEGlknCF2r88KSCV+h6OLk6AS2BrbnJ47gxAFt6/S0EYHH9cGDymDKT6Ho4syN6Wpw6Q/Z8jkHX3pmA5j8o5FhbDnAS2ubBEEQBNFp2BZw7c4DbBu8HKnsO228Ekdxycg3KNkEu02NjRdw4VZBK+70ZG3YwZZYSxSKrjS+er2/Fy/t24IMq3wuwxiymoUx0YkUMIvL7EylA9j+4avYOngZZ4S440PWWQuQx4r+/QPmnbo6kSSLtwTRKUTPuUuPRQAvc87/lDH2JIBbjLE/4pz/sIVjIogqpvXDsnRP22IVTxwfjp2pPpCDqyYmKaNhaa4qrx7V9oB0zJVV2BkGr5QsVyZrW5HSqcPY+jMOvv/hTGoZPF/6/Aac/fu/XP371bHbOHtzus6zhyAIgiBWMl552V8mWKLeThSKLrYNXsamnIO5hcXQeIJz4Je29eD6jx4qtyfiK6C+vCnvK6FSxS9+8cTEc8crcXznxjTCltpkooVJBosqLlwJIgiZPxOrgZYJPJzzjwF8vPTfnzLG/gxAHgAJPERbkERY8cocOcdGd6ZUrZE+sGNjjXeNPygIe+CapLmGPXhlKahJBRMVGcbQZSUTeGyL4bePfqHmtWB9eFRUAVpcvv/BDPq+9S5m5ryaFqwEQRAEsdpp15JokbliQtH1QmMH1yvh1KUpzHvlOu8cEeudPtqLY3vyytIt8T7TUjGTPGqZaBGWwaIr9Y8rgrSTqXE7mz8TRFq0MoOnCmNsK4A+ADdbOxKCqEUlrPgfVqpH8SPXw/affxIfDD8HoGJ+pxJx0kgZNcnGCW4vqWCiosQ5XC9ZWLduTRfe/+ihNCjo78u3rMbfj1fm1ZVKEncIgiAIYpnV9FjUZS25Xgkvn5vEk2vV064MY6kutokOX0FxJZe1pWMV4s2pS1PKbcYRQdrN1LhdzZ8JIk0Yb3EtAWPsCQD/F4Df4py/I/n3rwP4+tKfe0y3e+3atXQGSBABiq6HwoyLcshvpztjIf8EwxNPPAEAuF14pH3vQql+PaY7Y2H7zz+Z2rh027v7k0+lY1DBwJCxgMUmKhsWY8j3OMg5tvZ8EuH8nAP8tPOzrYkVCl2fRLtC16Y5XRZraoxALF+fT6zpQs+6bqN41TS26s2vr/530fXw00fzWCiV0Z2x8HPr1yLn1PpPFl0PP37ogkukvijxLbEy+Oyzz6pzIiIdDhw4cItz/mzw9ZYKPIwxG8AfArjCOf8dg/cbD7bVwhWxcjHJHHHsDE4f7UXu0Z/jueee035O1GfLUkZPH+2NtKogVmoKRbcuNTpse9sGL2tX23KOjXVruurasjeixEuHOF8nz02Q100CXu5dxLdvt0USJ0HUQdcn0a7QtWlO1rYw18SmDCuRnGPjkesZZ0OJ69OxM1jTZVUNp1X0ZG289vzOamy4dfCy8r0fDh8GUJ+VI9uW6j0CBuCDpe0Rq4P33nuvOici0oExJhV4WvaEYowxAL8P4M9MxB2CaBd0ZVPCb0eke7733p9X/01X95tWyqi/pCxqzbOuxMu2GIaO7KwZ48iVu5h9HG5QmDaFoosToxNN3SdBEARBENEgcScZtsXglcpScSfM98/1SkbxWba7qyY2zDm2VBTyZ+eoWrnPzHlab0k/pn4+afv3jI0XMHRxqnqMQYGLIFYCrVyC2A/gvwJwmzEmZmu/wTn/XgvHRBChqISQfM7B9cGDys8FRZxc1gbnwMnRCYxcuYuBQ9u1n9fhz9wJdm4wfWgNHNqOk6MT0kCiu8uqeSAC5gaFBEEQBEEQhDk5x8anjxcxuyAXSdKqfAsuWg4d2YmB85PwfDvwL/IB+vgvzFsSMDc1Ttu/Z2y8UHdsM3MeBt6ejL1NgmhHWtlF6/9BJeGBWKG0k2t+VHRjT+LALzJskjy0gmMLducKdm4w2aZ4jyozphJgNDdThyAIgiAIYqXg2BnML5ZCy8sZKo0mwsqrwujJ2jWdvWQEM2lMMsozIa3cxedkQlCGsVD7Af+iZRBZR1hTRq7crRF3BF6Jx94mQbQjVERMNIR2c82PQtjY45ZT+YUZS/JwVD20/J/LZW18Nr9YfUAVii7O3phW1ma7XgknfBlCYWPMG3TiahaMgTx2CIIgCIJYEZw+2mtUYm7SFdUE0S1LxFMyb0bZ4qSqgyxQiUnDWrlvSuAtGebdA0TrMGv6ubjbJIh2hAQewoio2Tiy2tskqnszMRm77uEnI/jAUj0cC0UX+4evKrNzZK0tTTSQoEil+j5lD+RWQeIOQRAEQRArgXzOQX9fXpmZInDsDA7s2KhdvIuKiKc4EFrGr4v3RSwbRhJvyTDvHsDcv0f2OdW5j7tNgmhHSOAhQomTjaNSwjtBIW/E2E0eWEBldUU8fMKyc6IiRCoAGHh7El5pOQsoWH+s6sTVrji2BZfMHAmCIAiCaDPsDMPs40VsG7wMx7aU78swhmN78rh250Gs2Iuh0vJch7+M/8ToBIYuTmHoiLzzVTDeN4llc44duhiqE5HCYm1TSwQZA4e213nwAJXvJ+42CaIdUd9lCGIJXUaLCpUS3gkKeSPGbiIOycQU0we8qZnV/aKLU5emquKOwCtxnLo0BaDyQL4+eBD5nNMR4k4+52CtnWn1MAiCIAiCIOoolTmKS63OdZ3FSpzjwq1C7PIsDqAcMf256HoYOD9ZFV1k8b6ID8PGxYCqGfPYeAH7h69i2+Bl7B++irHxQvX1V965jULRBceyiCT+XRdr53NOaImXjv6+PEa+uqumI1hP1sbIV3a1fXUBQUSBMniIUOJktCQxIm41aY696HrYP3xVKZRkGEOZ80T11o6dqa74+LtoyeCQl3lB8nonZFsB1M2LIAiCIIj2JUrHK9crhZoYp41X5trSsZk5D2PjhdBxvbhvS2gmUJgNQlzvHlNMLBY6uUkMQQAk8BAGqMQHncoet/a2HUhr7GPjBRRmXBSK8uyS4ANr//BVY7FCZOyoxmZiUhfGeseWdnCwLWCxHK10y7EtPF4sp9bWkyAIgiAIYiVS4hyOnWmqH2JYWf7IlbuhotPr/b3V96pEnLBF4/6+PN7/6CHeunkPJc6rZWvNmj90cpMYghCQwEOEEjejJaoRcTuRxthHrtzF390sfxjKzO0O7NiIMzemjbf/wfBh7b+vta1IwQFjlQebGJOqjFtkF0fx59mwbk3HZAQRBEEQBEG0ClFC1EyBx6T1ua7TasYXNOpEHNXioVg0Hhsv4MKt5U5domzt2ac3NGVO0clNYghCQAIPEUonZ+O0kvtFF9hc/zoDcH3wYN3r1+48MN72el/9cJC42Tuco2aVQlXKVX0/gIzFUDJIyymEBAYEQRAEQRCrHdtimF1YrPFKFAtqUUu3TBfibIvVGQ8HEbH/N0YnIHMRemHvcsCby9rSGDKXtfHZ40Xp/sWicZoCS1hHMNm/dXKTGIIQkMBDGNHJ2TitorIa8Wnd6xZj2DZ4OXLnAD+6JgmmHbtk+B+iJoGEibgDVIKStNt+EgRBEARBrCQYAxYCjTA4ljO/oyzgmcRbOcfG0JGdePncpDbmEwLM+oB4YzHg7+3dUi3PGhsv4LN5iYiTYeAcdU0+AOCJtV2hsXBUgUVXagVA+W9xbCkIot2gLlqrEJWzPVFPknM1cGi7tF1lifPInQOCFDXZNUlXGcTn0zT4Eym2JO4QBEEQBNGp/OLPrmvo9oPijqBQdDFy5S6O7clrF/mikM85mHjty+jvy2tjvp5sJWv8lXdu14g7jp3B73xtd1XcASqLjLJsoHXdXXgkKc0CamPatDrZ6jKBdP82cGg7nEBn1k5pEkMQAhJ4Vhlh7Qk7kUYJVqbnSrX//r488j0O8jkHDLX1yQJ/u/mBQ9uN253rHnS68i0TcksP8rzhw3Rdt1mL8mbWkhMEQRAEQaTNj2fmq4JHHKwE4kyh6OLMjWmksf4mRAsRw6pgAA5/4Sm8fG5SKYoAy7GwqhRftImX4Y9p0xJYVIudhaKrHOP9oov+vjxOH+2txu75nINje/IYuXKXFsaJjoFKtFYZK808LInbfVgbRJNzFbb/nGPj+uBzAIBtg5el4wh2DjApYzqwY6PymGYX6lNjo/B46VgGDm3HwPlJbV22nWH4rV/rrel4QBAEQRAEsRJxvRLmF0tGvjUyWtlNVHjyiHIvAKElX7/ws+u0DUAKRRd933oXn80vxjofDMsxrYjL/a3iZU1JTFCVWoV9Bqi1pUi7qxa1YCeaAWXwrDJWmnmYToTRYZKdY3KuTl2aMt6/Sdrp6/29eOP4bm3WD6A2ZB65clda37ymyzLODprzytg/fBXvf/QQYR/qzljVcb+wd7NyvARBEARBECsBzgEwwO6gWVSGMby4b0u14cXL5yZxYnRCK+6s6bLw5385G7rtmTkvlrgDVASnC7cKeHXsdjUuB5ZbxccVQGSZQDpUWUJx5xkyVmIVBdGedNCtiUiDtGpb24W4gpXJDTvsXI2NF5SdpmT7N0077e/L4/rgQXwwfBhlRUZM1ON+vFiuyQoKk2EKRRdnb0xLxSI/swslnBidwF//5vdw5sY0ZfAQBEEQBLHi8UocT6xNVhLfLBw7gxf2bsaFW4UaASWMx4uyflnp43olfOfmdGpCCoBqqZUpp4/2SoWkNBfGTeYeUWwnyFOVUEElWqsMmQN/J5uH6dzudWmQuhu2+Fyh6Na1mPSfK91DRyYOmbSbD455vWOjKDGlU4lPqtaUQZYWn7SlYFGkGpUpIEEQBEEQxErEJN5qNT1ZG689vzNRh9VmoEoAiiKkyOL+vEGpVj7nKLOE0uyqFSYWRSkHS7t0jFhZkMCzyjARGToJlWB1YMdG7Y1PdcNe79g1n/MLIcE6YN1DRyWY6drNvzp2u8Z/p1B0YWcYLFb74LMzTLp9VWtKFSTJEARBEARBtB7bYnhibVeqotGbx3ejvy+PsfFCZD+adsEvpOgWblWCx7E9eVy4VVCKW2GL3FEWxsP8dcLEoig+qSvNU5VIFxJ4ViE6kaHTUAlWYTc+1Q2bsfpuT0LcuT54sPra2HgB1pIBXJCcY0c+v2PjBam5sqxEyitxnBidqLZzFPs6dWkqUg10RjF+giAIgiAIonksct6QjKDdp96VZoInJbj4qCMsY1z3Ob8Bs27hVhX3X7vzAKeP9lbnCbmsDc6BR65ntMhtujBuklETJhZFKQdbaZ6qRLqQwEN0PDLB6uTohPS9/o5VQP0NO+xzwPJNXCaOOHYGQ0d2Rj6GkSt3Iz/8/A8PIHqqMIk7BEEQBEEQrSftkKwna4d2yEpCFE9l07c6toV5b9kzUhgwP/v0BqWAc+rSFPr78lrBI+nCtsnnVeN7+dwkTo5OVOcZfrEpKBZFKQdLs3Ss3aBOY8khk2ViRWJikCy7eag+x4GqgZmqjjnDmNKkLYy4irvISoprQkcQBEEQBEGsLGbmvLb23Ani2BmstTN1YpCIc1UlZjNzHsbGCy1vIqOK40uc13TMAiqZPJtyDu4XXYxcuVs1RzZtxhL1vZ0EdRpLBxJ4iBWFcJQXBsl+xI1Pd/PQtVUsFF0MvD2pfMiUOY+tMCd5AN0vuqmlZFKTc4IgCIIgCKJZ5HMOTh/tRVHTmTbD1BGqsCxopeBhEseLjKPgHOTk6AReHbtd7fyVzzlgWD4vsrlFlPd2Emm2pV/NUIkWsWII1r+qDJL3D19V3jyEz45qtUDXNjyJSCOryzWFIx0/HfLkIQiCIAiCIJqFbbFqfK6KvVXlSAJRhgXUWi8c2LERI1fu1pRIpSGAyKoATON4mZ0CB3D2xjSefXpDpHKyleSpKiBvoXSgDB5ixSBTff0GySYt0gFUTZijkHSVIKjE92Rt2JZ5Pk2YMGOypTLnyK+A2l2CIAiCIAii/fHKvJqdocqin328iJ6srdyGY1ems/19eVwfPIgPhg9j4NB2XLhVSL3UR1UFAKAmjtdlHMngAGWpINxigzCDBB5ixWCq+pr48/jNi8NI4r2jItvdheO/tDnyA0JGT9bGl57ZEPo+x7ZSV8hti2Fdt7zkjSAIgiAIgljdFIoutg1exsiVuzi2J18n5hRdT9tIZM4r1wk3jSr1CevSKwSmF/Zuln5eiFEyKEtl5XoLNRsSeIgVg6nqG3bzUJkoq/B77wgPoG2Dl7F/+Kpxa0rZisCFWwW8sHez0hPIlHmvjB9+/Gno++Z8nQvSIMMYvDLH7ELnmPwRBEEQBEEQzUXEvmdvTMdqFx8UblRiSaHoJsriMV1MvnbngfR9a+2MMqueslRWrrdQsyEPHmLFIKt/lam+qhbpYSVcKoKZP2L/haKLwkwJY+OF2O0Vr915gNNHe3FC0b7dBNcraQWrnGPj0byXeotO8vMhCIIgCIJYnazrzkRe5IsbOYrYXfjj6LYjsvT9sblpa27T9uSquURxzsOL+7bg7I3pmjH6G8Gs9hbhK9FbqNlQBg+xYojqPi/SKP3+PACQU9T5MqDOFycs86fMeWg66Ktjt5XmcYWii/c/etgwb5wMYxg6sjN1cYcgCIIgCIJYvbhNzODelHNqsuF1BEu1orTmNi0h0lUVvN7fizeO766brwCgFuFEKlAGD2FEXEW52Up0GqqvSuxY79gYOrIzcuaPLiPo1bHbOHNjWjueMzem8XNPdpsNPiIlzvHKO7dhMaBMIg9BEARBEASRAuUm7YcB1Y5ZphYL/thclUV/YnQCQxenwFgl80bE/aeP9oZ26wqrKpDNV1Rdfk+MTlRbwVNmC2ECCTxEKLLSI1l6Y1qfazWPFL45j1xPKyCZpm0KxsYLoeKO4KefLhi9Lw6uV4JjW3C9Zj2KCYIgCIIgCCI5HMDo9+/Bi7BS6Y/NdQuxfi9NMY85fbQX1wcPAlDPdU4f7a0TgsIEGt04OmUORbQHVKJFhBLXib5RDvZRCJoem6Q5xm3RJ0vbtBiTOr9H7dTVaEjcIQiCIAiCINqZDJN3Z40i7tgZVvW72T98NZLvT3AeM3RxyqirVtAOQkbYPMP1Shi6OBVhtMRqhQQeIpQ4pUdJPpcWUWpq/cRt0SfzAMr3ONIbetROXQRBEARBEASxWqnYCSTvzrpY4nj/o4dGfj0y/IbOqm65/rmO6WKzbP4RpOh65MlDhEICDxFK3IyWuJ9Li7gZRElb9M0+XqwKSh8r2jE2S+QiCIIgCIIgiE6nzON32fLDAZy9MR17oVXMY3TziWCHXZPFZv/8Q0czKyGIzoQ8eIhQTNuPp/W5tEiSQRTHrHlsvICB85M1aaKLZY6Btyer2xSo/HoIgiAIgiAIgmgcOqHItpi25OvAjo0AoI3jdR12/SVcQcT8Y2y8gBOjE9JtN3uR2LRhDrV4bx8og4eoQZZGGDejJWkmTFKanUE0cuWu9IHglepbpZukYbYDjereRRAEQRAEQRDtRhlAzrGV/37tzgMAFT8gFWEddgtFV1uu1d+XR09WPoZmVUIA5hlIcW0xiMZAGTxElbCuV3GEmTTalsdFl0HUCJVZp6gH/03sS4whl7UxMyev420ljezeRRAEQRAEQRDtRKnM8en8ovLfRUxf4uosn92n3sXQkZ3ajP1C0cXA+fosf8Frz+9MvRLCP//JZW1wXukSrJoLmWYgRc1UIhoLCTxElXb/cUYVZYIiyqacgwM7NuLUpakaMSVK23exrfWODcaA4tzyTVF3E9+Uc6TjF20WAWDr4OVI54MgCIIgCIIgiHTRiTfrl7J7ejSLs0XXw4nRCazrzmhLvrwyx9DFKWW51vsfPcR3bk5DfHyxVMKpS1M4OToReYE6uJBvMhcytbtodWMdohYq0SKqtPOPM27qn79F4cCh7bhwqyC9GYeZLwf3X3Q9zMx5NWM5sGMjbKs+XdPOMBzYsbFu/CdHJ7DVIssBWQAAIABJREFUVwoXZqpGEARBEARBEETrYKwyL/hMk+UjmF0owStzOLZ6yq3qxDU2XsDon9yDXxvyyqibf5iWQYV18JXNhUztLlrdWIeohQQeoko7/zjjdsQK24af+0sdr/YPX8XWwct45pXvVQWYoYtToTfFa3ceYOSru2rqdrsshpGv7MK1Ow/qPi/u14Wii4G3J/Fw9rHxsaQBY6h6IxEEQRAEQRAEoWdmrpKdozNiDuJ65cj7GblyF15Jv48ocyGTBfvge2SeobIyMdP3Ec2BSrSIKq3ueqUjjeyisPeud+ya4xfpmabdru4X3TrPoffeew9Fg214JR56E08bzoE3j+8GAKVTP0EQBEEQBEEQjUFlpmw6xzF9n0kH3+CivszuQlYWZvo+ojmQwENUaecfp+qmpPK2kY1Zd2Nz7AwYgzZLx2SMQYquh1f+7e3Y22w0QxenMLsQnmJKEARBEARBEES6cI5q12I/JoKMeJ/JXEi2kO9Htagva5ij2l87zBkJKtEiAvg9a64PHmybH6oq9U/mbaOqRx04tF3qkZNzbJw+2otigi5WbGn7QX76aD6RaNRoiq7X9MwhgiAIgiAIgugE1M3Q06HoetK5y8Ch7bAz+r1HmQv19+Vx+mgv8jkHDJXMoZxjV+0aTh/tNZr3UUv09ocyeIiOIJhdJLpYnbkxXfdebeevwH3SzjAMHdmJ/r48Rq7c1SrlDMu+OUFUry+UyiAdlSAIgiAIgiA6j2Ysg8rmLuK/f+OdH2BuycOHAXBsC65XrmbOmHRBDmbcvHF8d+xF/HbvukyQwEN0ECL1L9jmT4asHlVmVuaVOF4+NwlAn7ro2JnQTJyB85M4dWkKxTkPuawNzoFf/wX5e3OOjXVrunC/6CKXtfHZ/GIks7Y0sDOMsncIgiAIgiAIosWoFpm5b3WaL/3tF2hOKnw0xVwoOG9StUQ3pZ27LhMVKLWA6DjCumEBcj8c1Y2nxHn1RidSFwEgwyo3VJG2GIZX5tXWhTNznrLtoWNnMHRkJ64PHsQbx3cj293VdHGHARj5Sm3HL4IgCIIgCIIg0kVINPmcA6aouspI/kGXLfPq2G0888r3lBlG65di/LBOxKKD8LalzsFhpVbt3HWZqEAZPETHEaYQq0zCdGZl4kan8x06dWkKMwl8eoDKjV0YkZlkIjUKjmXVnjpoEQRBEARBEET65Bwbv7LrKVy78wD3l3xrZJQ4x/7hqzUGyap5S6HoSm0q/Hz6eBG7T72rXHC+X3RjZfe0c9dlogJl8BAdh04h1pmEyYya/YQJR689vzPU7EwHA2oEJJNMpEaRYaxaj0sQBEEQBEEQRPp4pTIu3CpUTYl1+A2Lx8YLiQyeS2WuFHeAynwqLLtHRtCsOYpBM9EcKIOH6DhUXjk5x9a2dRevv3xuEiVef4sNSy0M+3wYwe23slZVlKW1c4cvgiAIgiAIguhkZheixdquV4o91zBFZNyE+feooJbo7Q1l8BAdh1COe7K1/jFF18PA+Un0fetdZR1pf18e3/7aLmnLdZPUwv6+PMoxbri2xTC3sFgzrrRqVXOOHSuziMQdgiAIgiAIgmgvGinu+DNuyE9nZUICD9GR9Pflke2uT0DzGx370xyDn02SWqi66eUcu7rNnqxdNTDOOTbAUDeuAzs2wrZqhZng32EwAL+y66nm9HAkCIIgCIIgCGJFILOvID+dzodKtIiOxaTESdSRCvFG+M7cL7rYlHNq2gyaojIXGzqys24/APDp/GKdEu96Jbxz68f13bNYRRDS1cz63ooX923BtTsPmt6FiyAIgiAIgiCIzkJmpOyfG+nsLppJcM7WLuPqBEjgIToWXVcsP0IIiuMULyPsZlizn83qNMs5r1z3mlfi+GReLe6s685gbqFUs89tg5eNx04QBEEQBEEQxOrFvwDejn46ac3ZVisk8BAdi8psOcj6pVIplVP8idEJjFy5W6cM65Rj3c0waXcsXTJOmS9n7ZwcncDQxanY+yEIgiAIgiAIYvUhq4Rol6wZXXcvEnjCIYGH6FiCmTTrHRufzHt1AsnswiLGxgvakq6gMpxEOW5kdyzXK+HMjenq3yalXARBEARBEARBEIKgp2g7Zc2o5lKt7EDcSZDJMtHR9PflcX3wID4YPoyJ175czdbx45U4Rq7cDXWEF8owoFaOXz43qezQJSDneYIgCIIgCIIgGo0dczZfKLo18xld1kyzoe5eySCBh1hRFOfkGS33i67UKV72Pv//Bylxru3QBcgd6aM3MScIgiAIgiAIgtDA4s8y/POZdsqaoe5eySCBh2grxsYL2D98NTRLRoVO8fW3Rw/7vIlCrFK1+/vy+OKW9TWvUY8rgiAIgiAIgiDSxCslm2WI+Uwjs2bGxgu4+5NPjed3/jkbA5DPOTh9tJf8dwwhDx6ibUij9lPVwlwovsIcObgvwdySX8/Aoe0YeHsy9Kbp79AlvIByWRszikwigiAIgiAIgiCIdkF0JWaoXZR27AwO7NiI/cNX64yXTQ2ZxZzrv9tRBodlPL9rx+5enQIJPETbkIZjelgL8+D7hi5O1RgVz8x5eOWd2zi2J2+UdsMY8OrYbVy4VaiOncQdgiAIgiAIgiA6CY5lkSefc3Bgx8aaOY4QZ97/6KH0daBetGlER6x26fbVrpDAQwBojx9KIaXaT5XiKzvGdWu66jpRuV4Jb928hxIPV3jKHDh7Yzp2CVZQKW8WFtO3YycIgiAIgiAIYnUhxJ3rgwexf/iqVJyRzZNkos2rY7dTm98JZBUfA29PYujiFB65Hgk+IA8eAss/lELRDTUQbuQYVBZhadV+yo5RddMxEXcEcXUSx87gjeO7W2LAXObxXfcJgiAIgiAIgliZmDSd0X0OqIg7Z25MK/cRd34nywjyShxF12vZPLbdoCke0RZt8Uau3JUKJQxIxTFddYwZhfO86vW0yDl21SysVS3/vHJLdksQBEEQBEEQRJsS1nRGNU/yv/+tm/e0+xC+p1Eb7Jhk/rSqvXu7QAIP0bS2eLofsGpfHOYGyzp0CrSsDd8LezeHtlT3E1UOery4rK4c2LEx4qcJgiAIgiAIgiCSEZzD+JvTqOYon9+YDW1jHlYNMTPnYeD8JAbenoxURWK6MN6K9u7tQksFHsbY32GM3WWM/QfG2GArx7KaUf1QLMZitysPElYGphpDsKV53Dbquu3L2vC93t9b9/pL+7Yg59h123DsDF7ct6XmvWGCj1CWx8YLGP2+XuEO8tK+LejJ1o+DIAiCIAiCIAjChIzF6uYwx/bkMXLlLrYNXlZm4fyHv5zFsT15ZRtz0/mZV+Z1HYvDsm8GDm03WoRvVYVEO9Ayk2XGWAbA/wLgvwDwYwB/whi7yDn/YavGtFqRtRYHlpXXOO3Kg4Q5qIe1NweStVHXbV9lyix7/fX+XiND6q2Dl7XjASrK8tDFKXgR3Y4/ePAZdeoiCIIgCIIgCKJKBAtRAMBiiePMH09j03oH3/7qbgDAb3x3eb5UVmyQA7j6wwf4d//TwZrXS0vTrP/5X90FD1hBlMtYei287qHwcB6Li4F9Lg3l8N/IY9EDvv1H/y8+LrrIZW18Nr9YM59y7AxOHtwOz4t+Tvz7avfPqWA87S2a7pixXwYwxDk/tPT3KwDAOT+t/sxf58DvGW2/p6cHle3F9VJppvVtvH0lPTavVMbjxTLKnFdHoL4aGCwGPLEmqiZY2fIn84vKd3xubdfyeLwyygAsMKyxLXRZy0lms48XpTcaizGsW9OFsPO46DteizGs6bLQlVEnsXkljgXf+7u7LNgZ/z7U+5t9XEKZc6zJAI9rdK2k11XUvltNvP6b/ltr/99ovM81Z1+2JXyY4nzX0T9SYeWdx+Q079h43GOL9dtOdh67LGAxkk9YJ1wjzT+PkWnqd90Jv9H6fZl1oeyAayT2MzsOnXCNrIx7vzRKpPgspc/F3Rc5ohCNgt3inD8bfLWVbdLzAPx5Xz8GsDf4JsbY1wF8vfLXDgBPGG388eNu319xZyPxPsdYnM/F/Uy8MXLwSiclhuX7FVsKXKRBNQdjHIuL0TNHGONYm1GPs7Qk91oAaiugeM1YujXbKJfFuNTvsVhw+6pjrZyfyj4DYy0DrOYGL9/fWhsolzksBqwNPg9iXR8Aa/J13NwG7k0cY8ec/8buy2KAXX17885j7Ptqm57HVD7XtGdGfOKd//jn0WwSncL+Yl/HcYm+v46493fAeYz7ueD5N782m3n+Y+6qqddWBzwzVsB5zDCgJH1Lk58ZTX2utc/5T58Y96ymxWcMGYuhVC4vfbbyd8YCFhbr56i11yavbqOiSvreyxi6LFa915bKHJxzMFbZthWrEQ5HmXMslnntsBiW9iXbZvvrBx9/LH+9lQKP0ZnknP8zAP8MABhjHNhvtPHZ2dZkJnUK+4ev/v/svW+MHNd57vmcrqkha0YSexgzttQmJca5S8bEiByRibgmghV574p3wUiYkLZ4ZQlYBJsNFti9WPFqJ3cUe03KUC5nMdClPiwQLBDsl0jrHdl05lrhXdC5IJkPDOhY9AxNUCFhOJIotuSEMadpaabJ6emu/dA8zerqc06dqq7+O88PUGLWVFed+n/Oc973eZUlwqXnje5v5yf3NSy3IZxeBVTD54L5ms20OWm7dOx49YcoFBvFrDj7emzyFF4eXcHrl9N5zOLG7hBiIs17k3SCXphtTg7vT9Kt8N4k3QzvT9IOPNfBoZ05nLyYV47tADSM+yYeL+OToc04e/Vmnc0FAKX1RRpjxyDtHEe2CyGOKJd38g1wA8DGwL+/CODjDrVl1WGqnHXi8I5IP5y4yAcxyrvGhI1PTxQ2/jmzc3mluAPEc2SvimWfWq8fRVUbp8hDCCGEEEJIv5Ok39/qsULWc3Hs2W1Gf1UpmATHXLmRMv7n/25UuU3VeDDKvzUu7aoa3Q10UuD5MYB/IYTYDCAP4N8A+HoH27OqeCTrKVXMR7JeKmKMCp2ZcZzfx21XUNBZ57lYXF6pubXrTJpNzu06R3aVcDSxfwvyf38x9nGaaJe4MzzoYKlUTt30ixBCCCGEEBJNEnHnhd2b8OaF69p1cvfGKaoCOzYMrxnA+FgOR2bmlX/PF4rYM3WmNiY6cXgHxsdyOHfuXKz9pC3ImMa+/UbHBB7f91eEEP8LgNMAHAD/t+/7VzrVntVGVDRMs2JMq4jTrnBonyoqR6UEm14ce7duqL20skMufL+63aBaLoWj4wdH75Uzj+UU2hUsLsd/4RNCCCGEEEI6gw9g16Pr8Z0ffVSrhhwmODk+ffoa8oVirKgfOU7SCSYC960+gpPp2TgHYth+UkEmjUyQXqGjtt6+7/9n3/f/K9/3v+T7/p92si2rjfGxHI4fHEUu60GgquYmzWnsVlShfSrCgo7uxTHkZnDyYh75QhE+gIWlUk00Cr8UpXCkS/UihBBCCCGEkDR55fuXsfs3RpR/2/Ol9bWx3vhYDucn9+GDqQM4cXhHzYc1E2G5J8dJE/u3wHPrq9GohCI5JoqLavvNCDKrYewroQtXD2PjJ2OiW6N00sI2hC8s6OgU3jVuBgtL9oLNx4Uiyhuj9fDoEvWEEEIIIYQQYqZYKuPKx5/ixd2bapE8jhB4/smNeG1c74GjMzYOIoC6bA+g3jpDFXEDyDHZcKzjaIVlSL+PfSUUeHqU8AOo85NpdRvS9ulJE9OLJsjS8gpm5/J1ijbQ+EJ5SZNratq/jcmyD8DNVMsEltS1LQkhhBBCCCEkkkKxhDcvXK/57UjxJuiNoxq3mbIfpL9P8DdhwURXqSppWtVqEWTShgJPj5K2s3hcukFgMjE7l8fS8krDcjcj4DoCS6X7vjgLS6WGtgdfKFLIioMMIfzkqp3JcqniI+u5GF4zYCVKdSNZz8WGBwfxs39a7HRTCCGEEEIIWdXI8dm7H96qK2meLxTx0sw8jv3gCo49u6025jFlP0iz5DDBCf+hQUfxy6qHKfDLhvW7MUCgH+ioBw9JTqdLvZkEpk4jxadwOlXWczH9te0YGV7T8Btd2+W2bEQXmWoVzOl8OOvBdSKSWe9xu1jqaaOvXxVLFHcIIYQQQgjpEoqlMr7zo4+UkTmFYnWSe3YuD0AfaZMLVFkOEhwn+dAXaTl79aZyfSlAyf2TdKDA06PoHsB2lXrrtMBkQhdeKMv6xWm7rVFz7l4ZwA+mDuD85L7aSzDruZj+6vaacZlJ6skOubVIojSIMklLm96rFUYIIYQQQkh/o6uoBdRPcsc1No5b0KabAwT6CQo8PUrazuJx6bTAZCJKwInT9ijBynMdvHF4B85P7gNQzT3dPHkKe6bO1NRo6VKfy3paI2XXESgslaxekrZUfLOgRAghhBBCCFndyPFO3EpTcQvadHOAQD9BgadH6XSpt04LTCaiBJw4bTcJVsFzrgo5PDIzj48LxZqpmTHNy29NFS1aNhNCCCGEEEJ0BMc7cmL6/VBWQtTvdATHWN0cINBPUODpYeI8gK3YdycFJhNRAk6ctuu2JaN2ghW3wtE3PoBfLi7j3709bxR3HCFQqlCKIYQQQgghhDSHjOB3RHQsfzMT9KpxkusIZD1XOcbq5gCBfoJVtEhiurV0na7MeZK22mxrdi5vFHBM2o3nOqmmZRFCCCGEEEJWLz6q4kpU6lOuiTESEH/MleYYjeihwENWHXFLvJuELLmtJMiX6vTpaz1bGp0QQgghhBDSGQTUlgxSQNGNMQSQirgSd8K/WwME+gmmaJG+I6oEX5oO7rbu8WFyWa+W4qUKV0yLIZePOCGEEEIIIf1IRpOGJaNjXEf9dx9g9ao+haM/0ndECThpOrgn+U041zToCZQmnuvgPxx8HC/u3mSVg0sIIYQQQgjpHVQl0INjjeFBfcIOMwj6E6Zokb7C5IeTLxSxefIUMkIoX4YqB/fZuXwtT3Sd50IIoLBUqqniptBHiesIDA8O4HaxpM01lf8+MjOfSuWrYE7t+FgOux5dj2M/uIJCsZTC1gkhhBBCCCHdgiMEKr5fG2sAqLOk0P2G9B8UeEjfYOOH40OtdAtUBaA9U2dqwkjYqycojsi0ryc2rYsUeKa/ut0q13T69LVUxB0hqu17aWYer75zBQcefxgzf/cRK3URQgghhBDSh1R8H+9PHaj9e8/UmUgbCdWYiPQ+FHhI3xDXD8e5F8kTNCcLGi5Hba9YKuPCPyxE7sfWSCxJupeK4Lt6YamENy9cT2W7hBBCCCGEkO4jnIlgM65whMDsXJ6mx30GBR7SkwRTp2QoYlyBRKrWYe1a+vXYbM9G+X5s8hQAYGTIxdFntmlfojbpXoQQQgghhJD+RAA4cXgHAGDie5dQKkePNcL+noDduKLs+8ZKwqQ3ocBDeoKwF87i8krthSejbtZ5bmoeM1GlBZOwsFTCSzPzeGlmHiNDLnwfuF0s1bx9FpZK2lKHhBBCCCGEkP7GR73Y8vLbl4wTylnPxbFnGyeQJ/ZvifTgAe5PbFPg6R9YRYt0PeGy54ViqUHNLpbKEAKplRuXUUGtKl++sFRCoViqHc/CUlWYorhDCCGEEEJI/zEy5Fqt99jkKYx9+4cAgNef224cjwyvGVCKM8EqvQIwVutNyyaCdAcUeEjbmZ3LY8/UGWyePIU9U2cwO5c3rm/rrVNYKuH4wdGm2yfDHMMvxqznYmTIhQCQ6QLTedcR6IJmEEIIIYQQQgzksh6GDCXLwywslTDxvUsAYBzfmLINxsdyOD+5D+9PHcD5yX1akUdVSZj0LkzRIk2j8sPRhfmFK1MFTY0BKLdjqyo/kvUwPpbDSzPz2nUcTYl0SS7UfllmPIz01dHRqlSrjABkMazhwQGWPSeEEEIIIaSLEaimTB0xjFFUlMo+pk9fw/nJfZg+fU0p5gjA2ihZlbal8u8hvQ0jeEhThNOnpGCji8pRReMUS2V84y8va7djoyoHX05ZTx3+mPVcPP/kRu02pLgzffqadXSRCjcjkGlBiI/rCDji/nYLxRIjeAghhBBCCOlifFTHQOs0YxQTcqJ7Yv8WZb9fbtsGVdrW8YOj9N/pMxjBQ5pCJ9jozLp00TiLy40pWHI7OpMwGc0Sjro59uw2THz3EkqV+zE0bkbUDMh0ZcOlqBSMLpr47iX8+5M/xd2VCoCqSv7C7k3IagydBYAH1g7UPHWaIeu5GF4zUItoWry70rBPevYQQgghhBDS3eQLRbiOgJsRdWMUz3WwZiCjjcqXE92mLIU4Hjq67ATSPzCChzSF7oWiWx43x/PjQrGmNocjcyp+vV+OZHwsh+mvba9Tp6e/tr22ji7/1BGiQUQqVfyauANUBZU3L1zHtkcehBuK0nEzAicO70AhBXHHcx1seHCwLqLJlI6li1oihBBCCCGEdJ5S2ccDawcaImiOPbutYVwBVKP3g+lT9NAhNlDgIU2he6HolsfN8Qyq1sNrGgPOZJRPmLCpWFAAUlXH8lzH6M0T5sI/LGhFpKylQz5QddOX4oxMv8plPXxxZC1+9k+LVttwhMD80afxwdQBvLh7k/W+CSGEEEIIWQ24jmjLhGhGAJ6rH2IXlkoNYxQ5OR1s38iQi+mvbrcaw9BDhwRhihZpirhmXeNjORz7wRVtelNQYglvJ260kA75ogwbOuvMy1SUfV8b4mirEwkAc996GrNzebz6zpVaWtfi3RXkC/ZRQEFh6uzVm9a/I4QQQgghZDVQKvsQojq+sKnOa4vrCAwPDuB2sYRHsh72bt2Akxf1Hp468ccmdUo3hmHKFQlCgYc0RZIXzbFntylFoUM7czh79aZ2O49kPaUAo4oWiqrspXuJqrx+dOyZOqM81tuWla0yQuCbs5cx8+OPUCrfF2niVsYKqv1xxS5CCCGEEEJWAwtLJbxxeEdtjJDEy3JkyMXQ4IB2jLFn6oxxLFEMWD8kgR46JAoKPKRp4r5okqrPttFCplLspn3Iv7389iWrdC253Xc/vIWzV28iXyjCEcL6Y1H2fa3hcxwChbW0IhghhBBCCCGrGUeIunHLnqkzsfrNriNw9JltxvFE1GRrDEcIQhJBgYd0hCTqs60wFLeyl2oftpE8xVIZb124XhN1dMKQmxFY8f2WvNSDps4T+7doHfYJIYQQQghZrYT76bpKvSpGhlytuBPMHMgIETlRrMsCICQNKPCQjhKVShXGRhhq1qsnKCTZqPpRmk3Wc3Hs2W040qTwMpARWKk07i1o6mzyOHKEQMX3rT48YVxHoFzxodg9IYQQQgghXU/Wc7Fn6kzduOP4wVFt9H4u6+H85D7jNsOZA3GyAABzdgEhSaDAQzpG0lSqKOJ49eiQQtKXXvnPscWQMIvLK8Z2RZH1XAyvGdD+dmGphMcmT2F40IHrZLQePs8/uRGvjY9idi4fO8pnIFMVeAghhBBCyOrFEQJOBlgu91a/0M0ILC6v1PrJ+UIRE9+9hExGPfFpW51KlTkAVM+TaQxhm10AxJ8QJ6sbCjykYzSTSmUibmUvE82KO0DVtX/69DXs3bohtudO+GNkYnG5DEAfYvqdH32Ety5cjyV0SYql5gzhCCGEEEJIbzMy5ML34xcE6TQj96LdF5bq212q+FCFpw8POvjT3x+1Go/oJmDLvo8Ppg4YJ1bzhWJDRBFQb0chq3KlPSFO+hcKPCQ2aanIaZU9D9OuEoJRynyQfKEYKe6oKoktLa80fIySIttKE2ZCCCGEEBKXtPqk7eZOqRKrNPqdUsV63KAbDzj3qqBMn76m/a3A/X55vlDExPcuAf494enesqDXpySNCXHSv1DgIbFIM60qjVQqHe0oIVhJ2TH5zkoZb164jlzWw4nDOzA+lsPmyVOp7oMQQgghhJA0kaXD84UiBKL9KdtNsVSONTEbJ4Jft65cbpq4Dv+ypEh707Wk2Qlx0r9kOt0A0luY0qriMrF/CzzXqVuWNJWqVeQ0YlMu66UiRAWR3weZEzz27R923QeSEEIIIYSQIIWlEs5P7sMHUwdw4vCOjrVDGP5W9v2GcYcOGX0TxexcXrtPOYZIe7wgadV2Se9DgYfEIs20qvGxHI4fHEUu60Gg+iI8ftAu37VdmEQo1d9cR8Bzm3+sShVfGwbruQ5e3L0Jbsbu40MIIYQQQkirCFd01U2QthrTxKgcZ8hxR9ZzteLM809utNrf9Olryn0KoDZhrRtLjATOWRThdnbbhDjpLpiiRWKRdlqVTSqVjedPq9zlbfx8TH/7v/7fd5puQxBHCBzamcNr46PY9ej6upLoawYyuLtCM2RCCCGEENI+ZEXX3L2+8MT+LZj43iVlylGYkSEXBx5/GGev3kS+UIxMpcp6LuaPPl3X91/nuUbjZymIBMcds3N5THz3Us3vRrLnS+vx2vhobR1TP183we3j/hhCN5YA0FAUxnVEnQePbHvYo1M3zmG1LQJQ4CExSbNClQ02nj+tKrcuMYlQ4Q/F9OlrODIzX3upPrh2AEB6okvZ9/Hmhes49dNPcPSZbZg/+nTdvmmgTAghhBBCgowMuW0xSJZ98OMHR+FmhJXAs7BUwpsXriPruXjjngfljld/qBRsBIBjz24DUN8H3zN1RivwOEIoMwSmT19rEHcA4INfVvvSNuML3cR3OILJNJZQCT9JRJpWj4dI70CBp4P0osrargpVEptS6q0qtx4H3Uv13365BMAu3zcOC0ul2ksbaJwBIIQQQgghRIome6bOtGUisFgq4+W3L8UyKgaqpddf+f5lvPvhLa1YE4yMCWKyinj9ue3KyH/duZDbshlfNDvxrRN+koxfumE8RLoDCjwdopdV1nZUqJLYeP60qtx6HHQv1bJiZiAtgubWFHcIIYQQQkiQXNar9dn3bt2ANy9cb8t+44o7kmKpjO/86CPt33Xmx7pImuFBRynuBCdJVdsC7MYX7Z74NtEN4yHSHVDg6RBUWe2VAig+AAAgAElEQVSw8fyxWUcXLRU3ikq3fqdenkzJIoQQQgghKmQkyexc3iicqHAzQKkD1o4mcajs+5idyzf01XWeP8srlYb1VWMwSTD6xtZ3tJ0T3ybS9kklvQuraHWI1aqyzs7lsWfqDDZPnsKeqTOYncsb17cppR61jlTq84UifNyPlvrm7GXl8nCbZJsfmzyFIzPzyvX76eU5wOpchBBCCCE9z/Tpa7X+bpyomjcO78D013ZYlRVPu9cYVaJc1VcfH8theLAxbqFU8WvR7hLTWCvo1WMzBukmeq29pHVQ4OkQOkGgn4SCMDqhxSTy2JRSj1pHFy31nR99pI2iUrUZaCy/KNffu3VDwweu2Q+eIwQEqsZ4aZRetyHruVhpYVoZIYQQQghpD/lCEW9duB47lV9Gpcj+tQ4B4IXdmyJFmTg8/+RGuIbJxnBfXXJb49sTFnR0Y61gOhtgNwbpJnqtvaR1MEWrQ7S7GlU3kDQtzSb00bSOTqnXzWQE1zeFcUryhaIyp9kkk7hOdGWBiu/j/akDtX8/NnnKuH6zuBmBX91pfYUFQgghhBDSHuJO2w0P3o8Ckf1rnUFzdsjFyYv52J47QtOukSEXr42PYtej6/En3/8pljQ5Yqq+vW2KUpwxWLekX9nSa+0lrYERPB1iNaqsnUpL0yn1JqM2SavaNjw4YJwRCbcDaCy5mCYC1TBWBu8QQgghhKxOnIzAn/7+aN2y2bk8Fu+uNKzruQ58367Qh5MRyHpubczzwu5NynSio89sq/3bN8TCq/r2tilKq3EMRlYXFHg6yPhYDucn9+H9qQM4P7kPAGL50/QanUpL073wn39yY+SHoFVtu10sRUZrhf8+sX8LXMc+BNa05pCbgUA1JcvJiNizO4QQQgghpDew6T3msh5e/1p9SXFpVRAuWz4y5OL4wVFtWlSYB9cMYP7o0zhxeAcA4K0L17HWzdSJPlH2ChJTtI2tcBMeg1HcIf0EU7TaiKliUy+XTbelU2lpphKGux5db6yipWqzLqw0Do9kPWX+sGRkyG247vLfR96eR1QkrCMEnn9yI05ezDec7+DHbuzbP2xpKXdCCCGEkNWIEIjsr5lwMwKlFPpobkbg8O9sxNmrN5EvFBv6seG+YRCd0DJ0z9A4I4RVetbtYqlhrLOwVILnOjhxeEfDvk1VYsNtjVsRt1V0SzsIocDTJqIEnNVQNt0ktCQhzotUl5MaXC63d2RmvmF706evIV8owrn3IctlPSwtr2BhKZlnzd6tG/CWwrdH4vvA5slTeCTrYe/WDTh79WbtOF94chPeunBdKzIFP9RRAlbS9hNCCCGEEDVSVAlPtNny4u5N2PXoerz89qXY/jZhHlg7gNfG76ddxek/66wK5DjGtm1yYtN2rONohCMB1PXV927dUHeOOzVBvhom6knvQIGnTUS91FZL2fS0zL++OXu5TuRo9kVq82Ke+N6lmjFyvlBERpjNkk3hsGev3tSawQGohcKGDZzzhSJOXswbI4iCMxvyfAfFq+nT1xIJa7msh49vF5uajSKEEEII6Weynotjz26rTbS9NDMfextSkDmS4LdhFpZK2DN1ptb3s+mLy36jqctnK1y5GYGJ/Vu0x6Ia6+iEI1mFF7hfIUxX4badwspqmKgnvQM9eNpElICzGsumJ2V2Lm98oSfB9GIGgFffudIg5FT86kdrZMitLZOijjSQ0/Fxoaj0BrLJkS6WylqD6HCJR8Bcnj7rucrthHEzAkvLKxR3CCGEEEI0vLh7E+aPPl3XF4tbQFwANR/OtMYBwb5fFMF+YxKC/eKs52L6nq9PnLGObWERXbe03RPkq2WinvQGFHjaRNRLzdb5ncA4o5D0RRr1YtalMi2VKrgTKOHo4/51e218FAMZ9WfdR/U4Du3M1ZnB2eonqpkN3f1iEq+OPbsNrqaN97ebAQTTuQghhBBCTJy9erPu36Y+654vrVeKP7KPCKjHB0mxmQidncvj5bcvJUorA6p92blvPY0Ppg7gg6kDdWJXnLFOs8fdjDA2O5ePXfSGE/Wkm6DA0yaiXmos2WePScRJ+iJt5sVsivx5OOtpP1Ay3Wpi/5aai3/SUuhZz1Wazu2ZOqOdgZHn8YG19zM1XcUb4U6pok1DI4QQQgghVcJ9VFOf9SfXb0dOWIbHB2m3L4iM3Enq+RM1MR23ylV43WBkUJDweWlmgtwU9W6CE/Wkm6AHT5uwMRhOy5+m39F51wg0lha3JarCV9ZzG0pEmpAf0Krw8uWaSXOYcH6uzFGO+2kdXjOgLGtpmoHxgYa88EAwUt16hBBCCCHETHhicJ2h/xjVRwv75uDesqSpU6r2BTGVJtfhCIGK71sXTokz1gmvq+rbeq6DQztzdcVImingktRLJ+1CMoQ0AwWeNkIBJx10pctf2L0p8fmNejEfe3YbJr57qa5cpZsRGF4zoPxwZ4TA5slTmNxRwefXAecn92Hz5CmlWBKcTRkfyyUy4wvPyCT5SBNCCCGEkOTkC8U6YUZjmWi9rYaCH4o+MFBNyQjO0bkZAQjURWCrIkqCFbWSTOhVfB/vTx1I8Mv4tENEacZLh+M80i1Q4CFdi66MY6te8KoXc7AN6zwXQgCFpVKtNONfXfpEuS0Z3rpcrtQ+zrrIo+BsyuxcHgLxo2bCMzLtMnXL3jsn9OchhBBCCKkXZgqW/SNdWfBiqYyX374E4H4/9d0PbzUUG3EcgYcGBwCsIHevXwyY+8o20d6ybQ95A8q+ni4iKE4p9jhEiSjN7temr05It0OBh3QlUWXLm1HJbV/+4TYUiiV4roMTh3cAgPKjKAQaKk3J0M6oNDDAbManQzUjkx1y2yK6SMGLEEIIIYRUkcKMbZ+u4vvaCb6y79f1gc9evdmwnozUGc2tw7994anaclNf2Sba23MdHD9YLdke1YeVRPXhW8U3Zy/XCV9J9mvTVyek26HAQ7qSpDmwUcT56ESVTld9FHW+dB8XilaRR7aRNxlRLdMOAGsGGp2R21XOfGGpVA0/plEPIYQQQkiNOGbFMkJE568T7APr+oqFYgmFon1OWFSf0xECh3bWT6jaTJC2qg9vYnYu3xDVFN6vzQQvvXRIP0CBh3QlzeTAmojz0dHtK4m5nfxwR0Ue6UJDg2Q9F3dXKnWRRWGR6nYMQ+hmaZeYRAghhBDSDvZ8aT0++GWxKUNjW4IRIqaUqVoBD0OU9j/evmO936g+Z9n3cfJiHrseXa+NnleJJq3qw5swRcB/XCjGmuCllw7pdVgmnXQlccqWy3LgmydPYc/UGWMpQ9uPzuxcHpkEzngjQ662TKJNO1VlFsPbEkJdmv2lmfnadpkrTAghhBBSjyMEBKqR0Cb+9ue3sHfrBmOfLK32yFLh42M5HNppngScncvjszsr2nWWy4pyqBr2bt0QWXo9GLkeRldSPKspZ97KvqlJPHok60VG5XeCOOMXQuJAgYd0JSqhQ+f+r/q46F6SNsKR3KYqtNb0IRQAjj6zDccPjiKX9SAADDqZutzlqHbKj7tzT1zKCMBzMxAAclkPxw+OGj1v5Hb3bt1gaClq2yeEEEIIWQ0IAK8/tx0nDu/AOk8tQkh8AG9euI41A5lIMagZKr5fixaZncvj5EV1/1X2gadPX6ur6Bpm0LEb2sl92QRh68QTnWji+7Dqw6eJrn8vgI5FFZmIO34hJA4UeEhXMj6WqxNKpLgR1ycnjI1wpDOdc4Qwfgh93A/rPD+5D+9PHcCWLzyI8bGctp0vv32pTrmXH1wpLlW/4QInDu/A+cl9GB/LRc6AFEtlnL16EyOaGZRc1kOlx/KqcoxIIoQQQlY1jhDavo3EzQg4GkXmhd2bAFQn3GwLURSKJRj0lKYJ9ulM/U/ZBzYJEp7r4PPr1lrt18ZgWdXGILq23C6WrPrwaaLq3wtUr7mp79ypiPdujCgi/UNHPHiEENMAngGwDODnAP7A9/1CJ9pCuhebHNi4inwzRscV30fOkK9sEiF025RCTr5QxMR3L6Hs+w0dibBHkMrhX7W/E4d3aCsBTJ++1pa88rSY2L8Ff/L9n2KpZB96TAghhJD+QFZzemlmXruOIwQeWKsu5z0y5OK18VHsmTpjLWykiedmAAhjdSZT/1P2AXW+OVIEyt7+mbYNQb+cOJrV0vIKNk+eaugzm0qKt9vHJqp/323Vsbotooj0F50yWf5rAK/4vr8ihPg/ALwC4N93qC2kh9F9XHT5v4BaOAp+9DJCKNOz5Mdi4nuXauUoJW5GGD8SNubJppBb+cKX7SyWynA07ZT7033sAGDxrj5/uxs59oMrFHcIIYSQVcjwoAPXyeCIQdwBqkKILo1dLk9rAO06AvDNfbcgd0oVnDi8wzjBaBJMJDqhQkbInDunFnjCJsNxkIJZ2Ji420QTk6jUbdWxbK41IUnpiMDj+/4PA/+8AOCrnWgHicampGAn0Qkun91Zwexc3qqt4Y+eSjSRHyy5vVffuVL74GU9F8ee3Wbcl03UjQlprBdup5sRgEDd8Qc/ruGPXTMf+DAjQy4KS6WmK6S/cXgHjv3gCgqayl8C0P6NEEIIIf3N4nIZQHS/xVRqXP7NZsJNh4zidoRAqexjZMiF79v1UWyiWmwEkzhChc3kpQkBGMuOd5toEkU3VcfqNnGM9BfC77AXhxDiHQAzvu+/qfn7HwH4o3v/3Gm73bNnz6bQutVNoVhCfqFY59eSEQK5EQ/ZCHO6dvLeJ79CWTGDMuhksOULD0b+/tovPlVWHRAQ8OFj0Mng8+vWJjrmzz77DA888ACA6vn8x9t3YlU4AO6fc91vnYyAIwSWyxUMZKo+QeWKut26Y03CoJPBSsVv2s9nNLcOQHVW7ZeLy2k0jVjweQ/4R0YCky6F9yfpVnhvdi+/NjwIAMq+xK8ND+KRrIdCsYSPbi0pfz/oZFDxfawo+pQDGYF1ntuwbSEEMgLKfqgkTt852FdM0v+U/U5VH97EoJPBg2sH8Omdldq+Tf1F2XcjyWn2WvcawTERSYe9e/de9H1/V3h5ywQeIcR/AfAFxZ++4fv+f7q3zjcA7AJw0LdoiBDCurGdFq76gT1TZ5SzHLmsh/OT+zrQIjWbJ08po0gEgPenDrT89ybOnTuHp556KvEsiiMEXn9uO8bHcpHtVEXneK6DQztzOHv1Zuyc6yikhWGz23xx9ya8Nl6tNBY8T+s8l5E7LeTl0RW8frlTWbqEmOH9SboV3ptmMgItNSU2YUpdB6r914n9W/Duh7fw1oXrdf0XmeYEoCEy3HUEDv/2xobf2BLs57Qa2e/U9eHDmPr0aYwDuj0TgLQPeW+S9BBCKAWeln2hfN//VxEN+u8B/B6Af2kj7pD2E8cAzOYF3qqXfLN5rK3Og7VJAVMhxZnp09dwZGbe6A0E6B35k3ZIHCHwkKc2KwQACCCNJ/fNC9fxlz/J409/f7QWPjs7l8fLb19qfuOEEEIIaRudEneA6P6V9JA5fnAUux5db+yTymIUMh3rOz/6KPGE1tmrN7V/a1Xf2MZrKColqNk0onD/N+zhQwhpDZ2qovWvUTVV/m9831fHSZKOYyt82LzAW/mSb/YD1Mo82EKxhJdPX4qd9+wIgUM7czh5MW8UhgSAvVs3ANB/zJN2SJ5/ciOAqgCj3G6KnbjF5TKOzMzjpZl5ZD0Xi8srsc8ZIYQQQtIj67m4u1JGsY+KHEgPmfOT+yINeZNMzqnQ9c/i9o3jiEGmalsV37cSk5r12DGVAqfAQ0jr6FSM6f8JYA2AvxZCAMAF3/f/pw61hWiwFT5sXuCtfMk3+wFq9ve6D+7sXB75hSLKvhPreGSYsOqchfEBzPz4I/zVpU+aTpWSoc0CwNCggzcvXK+lYbUD2f64aVk2pVMJIYQQEo+7K5W+EnckNtEtNn0wW3QR4XH6xnHFoKhqW7Y0Y0zMUuCEdIZOVdH6zU7sl8TDVviweYG3+iXfrDN+0t+rPrgvzczj1XeuwPeB/+E39bKLnEXJ3qvCcLtYqjvHtoJFqew37VUj86nl8VQrVjTvr9MqwjNQhBBCCEmXYqkc6WvTi9ik4KfVP9VFhM/O5bUeOap9x50o7USFq/CEp85LcV0fGwkT0g3QJY4YsRE+bFK5Wu1z0yl0Mzxa35oAzz+5UWu6NzuXV5anbAWy8yF9b3qhI1fx/ZqxtKnEOiGEEEKSU/Z9eK6TWjRLp7FNwdeJEzKy+ZGsh71bN2Dmxx/VGTI7GYEH1ww0TNoFkZNpOlR94yQTpe0sC66a8HQdgQyAcAzY4vIKZufyTNMipEVkOt0A0vtM7N8Cz61PQwp/QG3W6UWameE59dNPtH+bPn2t5eKOQDVyR1aNeOX7l3tC3AGqwtfYt3+Iie9eorhDCCGEtAjZT+iH8s3yWGyEBaHJUR8adPBI1sPHhSLOXr2Jw7+9EbmsV+tTvf617Zg/+jTenzqg9fkxpX/p+sa6CdFumShVHVOp7EOV618q+5g+fS2V/c7O5bFn6gw2T57CnqkzmJ3Lp7JdQnoZRvCQprEJA+1EqGg70EUm2WCK8jEJR2nMpIVLXO6ZOtNzs3M2UVKEEEIISc7S8goAYP7o09ZRs81GILcigjluqfKCpo+xuFzG4nK1j5YvFHHyYj62r42pj/fEpnWxPHXSnihNWtVLd0y6qmpppMCxShchaijwkFSwCQNtZ6hou1B9cIMMZOxtioMfVV1J9Ny9j61cLzvk4rM7KyjFqEuq6hDQ8I4QQgghYRaWSrUql7msp41sCdKMOOO5Dg7tzGHm7z4y9m2iJrvCItHJi3nsenS9dT/UdgIvqmBIWBQbGXK16V8A8Lc/v6VMX2rHRGkzgompapeqP5tG5BGrdBGihgIPIU0gPyCqGS3PdfBwdhBZT22CPORmsGfqDD4uFLHuXmlwmcet+hhKYSYslAWFoexQtdOgy7QSAA7tbBTamolEIoQQQkj/IrsUreon5O6lPAVFi12Prq8TM/Zu3YCzV2/WrTd9+pq1qBAc+IejVFTbjprAC2Iqgz7x3Ut1QtXCUgmOYfLPB4zGya0ULpoRTHQRRod25nDyYr4lkUes0kWIGgo8hDSJ/OCqwlqzt3+GY8/+i4YPfEZUc5Blx0Q3kxOuFmXzwQ/PwATxAZy9erNheZyODCGEEELukxH6VJReoV2FHcKEU8YlOjFD9rWOzMxjnefCdUSdybEpsufjQlEZpfLmheu1dWTUyvGDozh+cLSuX7d4d0XZXzOVQVdFIZUrvvGe6ZRA0YxgYoowCot1aUUe9WsBF0KahQIPIQGS5h4D6s7IuXM/U370dJ2EMLJaVBzGx3J498NbdR2WIKoPdbCN/RjJkwHwkCEkmhBCCEmCTJ1+9Z0rib3hXty9CW9duN4RgQUAXEfg8G9vxNmrNxP1AZKKQ3EjOcLiTKFYgpsRGBlyUVgqRUb2PJL1jAbHEhm1IoWnYJS0mxF1oo3pGEzCSMXXn7c0BIok/dlmBROdKNeqyKN2+RIR0mtQ4CHkHq00awt/3DZPnrL6XZKP/OxcHicv6qsIBLep6gAcmZk3dtRGhqqVNKI6sq4jMDw40BWiSgX6KClCCCEkCWHj3pdm5hNt580L1zHoCCyXOyPxDA8O1I5jdi5vfRwCqPUdXn77UmQlTlUJcQC1dPUoIUJZqaniY2hwAHPferpuuW7gf8Ty2FTRPgtLJbiOQNZzjWXQJab099y91LCwsJeGQJG0P9trgkm/FnAhpFko8BByj3aatdl63iT5qNqW39R1AEzmf0C1skRUFzQX+MjumTrTlVFBMkc/R/8hQgghCZCTKdK/pRk6Je4A9RMg42M5q0pZ4dQqG1HowTUDmD96X4iJK0TYphCZBv62kcq6aJ9S2cdw6Dh0TOzf0pCiD1QnwFqZvpS0P9uLgkk/FnAhpFko8JCeoZn0KRvaadZm43kzMuQmOj5Te4OlPHUdgLVuxpjDbtsFfffDW6mkfNkKMSNDbqzweDnT2E3iTjZCXFszkMHdlUobW0QIIY14bgbFEt9FxVK5o6lVgF16lDQx1q3nCNFQsCGcihREFdVhM1lyO/R9iytExEkh0g38bfpfUdE+tv1CVSGOkSEXR5/ZVvtbKwSKZr10KJgQ0ttQ4CE9QSvTpyTtNGsLe96EO2ie6+DoM9sSbVt3HLmsV3eudB/6wlIJJw7vaEqcCZsWJsHNCEx/bXtdm03RQEm9D7qJxeUV498p7hBCOs3woIOl5bK2/PFqo11nYCAjsKIQXF7YvQnf+dFH2mshgNqE2GOa9PCy7ytTkYJCnhCA79+P0AXqU6v2bt2AmR9/VGd4HCbcn9L1Q1Tf+dm5PBbvNn4j46YQqaJUVFW0TNE+cfqFnRBMaD5MyOqGAg/pCdqRPpUk9zg447XOcyEE6oz+sob9BT/6pugkm3KewXNgexymDoBsW7vSq2QpTXlc6zwXyytlvDQzj5dm5jEy5OLA4w8rO3f9hKljTAgh3cDicvXb0ipxp1PVnLqdzz+0Fnu3bqiJOY4Q2P0bIzh79abxWgTLbuuibBwhlKlIK4Fvku/X9yXCk24nL+arUT+a75gAsHfrhrplun6IQLXvE+wHqaJuwtEwttiKLr3mSSPp1XYTQtKBAg/pCqLSr9qRPhU391hVzUFSK7P5Fcd637pyoDblPIPttz0Omw5AK8uny5BxlaAVzllfWCo1HRFECCGk+2mVuNOMcNQNotPHhSJ2Pbq+NhHy4NoB/N0HC1YTA7KvpPvu26Zky4k1+b/DfzPho+pZtOvR9bXvva6wQ1CUAvTegkODA8ZS6s2m9PeiJw3Qu+0mhKQDBR7ScWzSr9oVbhonlDaq1GaxVMYnhWXr6hBJ9iH3E45ksjkOWU49OBt4aGeuYTuyHWlG8gRDxsNMn76mzftPY79f+dJ6/OT67ZaIVoQQQroTz81gKYFvkCMEnn9yI2b+7qOGb9OeNn5PskOudlIpCtlX0g38bUyVJc30BYICkWyD7msfnMCLM8mn61O+++EtY/Szjl71pOnVdhNCmocCD+k4NulX3RhuahM9tFLxa52hJL5BthFK4fVsZq9kOXUZ2l32/drsGtDYAUxT5JGzc6r9tMLUWrLWdfC1XZvwtV2wKukKAENuBj4aw9cJIURHN0R8kHqSiDue6+D4wWr58Jkff9Tw9/c++bQuvTiTwJdIpiibolQ914HvR0fJ6H4b7CuFB/6zc/lI/7c0kX2hqGMJTuDFmeTT9SmDZtit8HEkhJBuIdPpBhBiMzMzPpbD8YOjyGU9CFTTe4IVoTpBkuih4OxVmvsIridnr/L3ZsZkR2Z2Ll/3G10n6NV3rih/v3frBnhufcqZ6whtmzw3g5yh/XK74f2s81yrY06CPL7xsRxef2473Iy+/ZL/cPDx2r0HVAduhLQbw6NGuhCKO/2B7GdMn76mTIVaWCrh5MU8JvZvwftTB1CJKe6MDLk4fnAUr42PYmRI/e1zhMDxg6MNFahMOEJY95VefedK2/3fosQdVbp4uP+hm+TT9SlN6WaEENJPUOAhHUcnYoSXj4/lcH5yH04c3gEAODIzjz1TZxqEi3ah6nDYECdCxWYf4U6OKSLKph0LSyXl789evdkgsk1/dTte3L2pQfSozno+jvOT+7Qij8rUsVgqY3nFfoYyyZh3Yal0/56J2EDWc2uznfJYOHAjnYD+26Rf6CWtUgojpujVYqmMYz+4gj1TZ2J/H4IeMkef2ab83j+4thpsH2dSqeL7eH/qAM5P7jOKO7Nz+a6qQKkTpeJM8sU5T62MGCaEkE7BFC3SceKkX7WjXLotSf1p4kb+rHUztePNei5+b/vDxjxyXVvCy3Uhzzo+LhSVOd3y3zovn7imjnHC6H0kS4WQYlfUrOXvbX+47t/tqCjWLTDFhBAShSMEKr4f63vSa+8Vm0mkQrEUyxNHEo5UBqoRNUHRpVAs4ZXvX8ahnTmcvJi3StOy7Wd0IoLF0aSx5bIezk/u0/6umcpXuu8Zy4YTQvoRRvCQjhNnZsY2OqVdBCM7bIjjGyTFrGBH7+5KBbseXY/zk/u0s3OOUM+PhpfrQp6zmhQpXUdI5+UjO8W662t7zkzksh5eUEQQRfFxoWg1c3f26s3a/56dy/fUzHMzCABDg/Gj0wghqwfPdfD6c9trUbXdhnxfaz6JVjw2eQpHZuZTaY+KcEry+FgOQ4ONc6+qKNqs58JRpBm7GWHdz2h3BIvnOnj+yY3W6VZJGB/L4dDOXK3P4wiBr3xpfUv3SQgh3QQjeEhXYDsz045y6UnQRan82nAGueyaRFW0bMynw8zO5bUGj+HlumoaAGIZWtu0U3d9X2qi4yzbND6Ww65H19ciqXSzg0GkWBU145wvFGtV0DJC9NzMc1J8AIvLNJUmpJVkPRdCoCtSZIYHHWSHBmvfgr1bN+CvLn2ijUrx3AyOHxzFux/eqjOv7SZ8VCcBJvZvwb97ex5JizO28tgWl1cwO5ev+z6a+jk2kcMPrFWXDlcRN5LXhCkyF6je78ee3RYZ9dssqkmnn1y/XWeGzbLhhJB+hgIP6SnaVS49LjqxJHv7Zzg/+VSibcYVs2TEj45wxExUpa2oKlxR7VFdp/A+hwedxEJCUG5RVQU5MjOv7JjLEu0AMPHdS8aS7CJwHHEro+hwMwIPrB1AYalkrLgylLCkLyGk+xEA5o8+bXxXtZOl5TKufPt+eowcJOsRXS3uSPKFYjUCp0vDL0tlv2HSxtTPCaepqyjEEAxVk1Nx8NwM7pQqVtU2765Uv2ffnL1cd98EK3imIbjoJp3OXr1pTAEjhJB+gQIP6SnaXS7dpty4RBWlcu7czxLvW9fJ01WZUnVqJK5TH7Id5WVkG1FlaqdAtSMnZ8zWeS4Wl1dqvjf5QhEWRay0LJUqWv+l6dPXtIOOF3ZvwvhYrppCZth/Gh40I0MuFpZKteCFsR8AACAASURBVKgiRwiUKj6GBgdw9JltABqjpcS9Nr42PorNk6e6evBECElGRoja9yXqGRf3XkbZIRef3VkxitKJEcDmyVN1A3XToL9YKuM7P/qoJ95Pfu3/tAbPzaCoEOMzAGwk+vAkic5DZu/WDZHXBbg/4WXTfwlPTsUt875+eE2DaKITjGQVy8JSSVvRyqbfEXVc3RrpTQgh7YIePKSnaGe5dNty461iYv8WZRlvGdIdxth5CfWm0vQymti/RamT+ADeunC9dv4KxVKDqXGz4xTZYdwzdQabJ0/VqqqZzsVr46MAoC17G2x/swwNDuCDqQN4/bnt8Fyn1nHOF4p4aWYer75zBYd25mrRVc69NLCzV29idi7f8cg0QkhrKPt+7fsShe8D708dwNy3nsb017ZjyE2/6+b7qPvO2bQrrajGXsZzHazVVLpcN+TW9VV0ZdBVFUMP7czVfVd9ACcv5iOvi+sILN5dqXkH2fRfpJfg+/e+VXEIf2tlH03HgkLc0W1Lhapf9tLMPMa+/cPasdlWZiWEkH6FAg/pOYKdkagSoM1gK4LMzuUbBIY0GB/L4YG1jUF2MqQ7jKnzUqr4OPaDK7V/pznDNT6W03bYmun+y06xzvRZsrBUaujEZjUd6WCaWjtm8+Q+dLOuC0slnLyYx96tGxoEoFe+f7m2vFk8N5PKdkj/kBHAi7s3aU3ZW4HrCLy4e1Pb9tftFEvlROffb3G+UdJ0nSjSMNaPolW3s9xs1nMxkBF1E0y6lKjCUqmur6Iqg66LQD579aYyysV0v4wMuYCPmm+SLkrGxPhYTitEqVD1O8bHcomutY0AY/qWSgFLV0CChsqEkNUCBR5CNNiIIM1E+dgIQ7qOo6pte7duMHb7C8USZueq1a0ymk5i0hmutDvuuayH96cOVKODYnbYi6UyFpZKDeci3MFrx2ye3IdJTJKpDiox8f/50fVUBlt3ShUcPzja1sF8L9NM6mAvMDLk4j8+twOvjY+i0sYojOHBgbrKdEnot2tT9n24jvmgggNumxQdiZu5/9tOP/oyTTjJtyJO232/+q7XRTk5oirOxHkXjgy5OHF4Bz6YOoD5o0/jtx5+qG6CyTZiJE4Esu6bUfZ9pXjxxuEdGBociEzfs5nYUAlRQOOAwSSaxK3SGfTGMxH1LZVpXjbnuVWTc4QQ0mn60oPHcThTTZrHxtA5SaUrINoDJ04b5PZOXsxHRsy8+s4V3ClVlKH1NjNcutx3nWdAVHtcRwA+6jqlsh02ZpIm/EAbctnGPP2J/Vsw8b1LxjQtiUD1nC/eXdFWlQkTLFUbValEl+qQltXGI1mvduzNVC5LE5tqZ52iFRYnKtLweUqyz7lvPV0b3LRz/7eLJdy2fH50PLTWxfCagUR+Id1KqexrTdVdR9T8uoB4kYcVX6CwVKq9/wBz9SUTI0MufL96DZOccRl5GtfU180IHP6djXjzwnXrfWm96DIC01/bXvNgs23H0KC5KpXJMyeMrb+d7pshr6XqO2xTzt1mYsNUYTOOJ6FuGzrfuWbOi0Q+H1Hn2bYP1iri+DsSQkhc+lLg8fugw0c6j42hc9JUJ1thyNZU2nZWV1eO1xGiNsOl63ioOkTSR+boM9tw/OBo3e/2bt2Akxfzde0KVpCK6jTumTqjPCZHCFR832qQIcWdoAlk8PhsyHr3B5TZIRduRliZnAZL1TZbqaQZgvfL+FiuawSe15/bnniwmYRmKra1gqznWouFaeKjcXDTLuKKpCpuF0uYP/o0gOpxdMv93CzFUgVvHN4BwDyIjlPWOpzyefzgKM5P7ot9/aUoKNkzdSbRcxss8/3qO1esysM/sLb5qK/gtuT+x8dyePfDW7VS3SaivhVyW8HKUNIzx6YylOqba/r268SLqHsjTpqSbh9xRAiTyJJU3Ij6ltpG5iadnEuDTotLhJD+py8FnkqFpYVJ8+hmoJJE2ISxFYbCbcjem0U9MjNfmw0dH8s17SdT8X2tiCM7HlG578HBw/Tpa3jrwnWs81ysdTN1go5Np3F2Tm8mWfF9vD91wHqQoUqpizN7vLh8f0C6sFSC6whkPRe3iyVjhzo4eJHHd+wHV1o+qHcdgeHBgVr7wue81ZEztts/MjOP7JBrXWmmWbJDg7jy7X14bPJUG/YWzd2VijZqo5Xksl6sNJ+08FwHe7duwMyPP2pqO8F36/hYDt/4y8uxhTsZkbd36wacvXqzJSLj8KCD4nLZ+t72UX3HRvnKJRWLg4PX4HdFVjM0adYZIRoqIrqOsIp+DCKvnWxDUNjQbamwVIpV9tuE3M7sXD7Wu9hGNNB55iSN5j1+cLRh0iRKCDFF0qqiWDsVRRKnSqfqt4D6WxpHwOpkpa1OikuEkNVBXwo8hKRFVEckadn2OMJQsDOsE19sZnU918GagYyyUyv3q+t4vPz2JeOgPWjeGGxjoViC5zo4cXiH9jyGO5lRg0DZ1on9W6xm72U54vGxXKyBbS7rYWl5pWGWuVT28emdldq/dSVyAdT2C9zvmJranMt6xsEOUPWjCF8KUyc+TCvFHc91cGhnriFyS4UPfURZK5DPR7dE8nQymssmlSNNRoZcHH1mW2TluihUPh1xI3ZlBCAA7Hp0fa2q3jdnL8dKA1KhihaMIyREDS7luzLpvRP8Rsh3hI1YVPb9unNTKJbgZkSkMBREevAECX5fdYK9fN+nIcI9kvUSRS814w3TTDRv3CISNpNSkl6OIlEJhHEFqqSTc2nAMu6EkFbTlwKP57EUImkPcTpUQZIIQ6aOoGp7unQo035Nxo5RfFwoxp6ZUnUyTYOscLqRzeBJliOWbYzCc51autpmTbRHMPXBRPi4TRVMHCFqg8Oxb/9QK36ceC46jcPEyJDbEmElKC7tenR9pCjYbqSlqutkAHRe4OkE8lnMtuge0OH7yb1fgoR9Ombn8rEjoMJpS5KTF5szWA16bknkQNQ2asw0uEwjrS5sLPzqO1cSb69U8WuRjDZPebD6o+pdFfVNbPbY5bbiCmQyskrXbklSwUD3TNg+KyqRIygy6uiFKJIoAaeZSKCkk3Np0ElxiRCyOuhLgadUar+vAel9ks4GJelkJBGGTLM+cbenWy+Ov0OYR+5Fn8Rpe9zOdrgSxrFnt1lF8ciOq+745Kx+mucDaOykmwSm55/cWPvfR5/ZpjSAfjEwwLW958L39Z0WRI4EvSFk29798FbTERFpIr1nmjX57TWEqIpbMtIiXyjCzYhEKTZJKRRLqaQm7np0PfZMnandy4t3V6J/ZCAYediceJDB8YOPa59JG7+lJAK/ClOKZHD57Fy+aZGvUCzFiojLF4o4MjOPl2bmG6INbb5hOtE4yqw867k49uw2KyNiVVRSVHTL7FxeeS/aCAa662VT5auZKJxujyJpdYRR0sm5NOikuEQIWR30pcDz4IMPdroJpMfoRLhyXGEoatbHdnum9ZL6OwRnR+PMTMXtTIbbbRvFA1Sv6RuHdyg7VscPVtM0pk9fq/M3atYcOdxJ10VODA86tVQReVyyPTadz6CIs85zIUTVbyI75OKzOys1U+hWGRoXS2W8+s6VujYsLjc3+G4FJpGv3Xiug4xAauliTkagUqmaj2cEsGYggzulCjJoHEDK6ItP76w0HWXVLrPokSG34R2dBjbvoFzIr0cOym1SIoGqED3x3Ut15uwZAOuGXK0/WViYtTlemSKpE1aD76OoaELb+yLu/Su3qvrGmr5NupQyeczy2gTFHpkaCNx/t6tSXCWyqmNFsYIuukUXWSX3HXVv2IhxOkwp1UBrIo7SRjex1o4Io2YigJrdL9AZcYkQsjroS4Hnzp07nW4C6TF6IVy5HbM+8lij0muClaXCnZM4bUxjsH3s2W1WIowc2hw/OFpXwWXNQAbvfnirzjdGZ3QZtyxzeMb8sztq0eP3n1AbT9vce+EBRnCw3c40nIWlUm1/cQb8nutYCWhplBTPF4rIem6TW0lOWBgAoIzUisvwoIPllUot8azio+YLpbtfk5a7DpK7Nxhsh8BTWGq+vSpMHi9hTx0TpgjQcMUmRwg8/+RG7Hp0fe03wTQg1YSD7v5XRR/qBJ7gvWAStnb/xgjO//yW1XE3Q9xvrGlgrBJaCkulhghP3es7I4CBjND6qQHqc6aLrIoqrS7JGcqhR2FKqY6aoOqGKBLTxFq3Rxg1S6fEJULI6qAvBZ6HHnqo000gPUYvdCbaNesTFcbuuU4t3L3ZNkrDV5uBm25gHt6nLkpGeilM7N+CO4FOfKFYqitvK5Ezoa8/t702yFMNIkzCQ7CTPn36mra8ejPldDtRESktZOqEjT/LWjeDta6DhaVSU2JPJ0qTv7h7U12EVhjbZ0BHkiigR7IefnH7TuIIHjkYjEqRdDNAGoXCbFspI/JsPX9svMmiiIoAnZ3L4+TFfO1cl30fMz/+CDN/91FddJ2pYqGPxndN0C8siI1ooBPXs56LD36pPm+tqMAnv7HfnL3cIICpnhndwFh3zmwJiqI6VNEtpr6DTdp3M0KLaYIkSjzrhigS08Rat0QYEUJIL9KXAs/y8nKnm0B6jF7pTLRr1sfkVaMaUACN4oOpcpZEzmyrBJYgbkbg2LPbjNsJ7ktnaqozgtbtu+z7DZ4R4dK1pkHk3q0b6vato5lyup0Qd5IKLDqvIwANKSxhiqVKTZiTaWi6CKU0on3C7W5mYHv26k3t3+KkGabJ0nL89CwZBRe8flHRfq2uAj8y5GJo0C6aUEVQGF4zkMHtojplSmIrsgb9fVTnSBW1JX+je1fISnlRA3Ib0UC3zrFnt2kF/sq96LM0Uxw9N4Pf+t//vzpxRVbtev/mZ3jrf/yvrbbT6smY4PkrFEs1LyhdVOc6rzGlUBVV04zQEpVCHHVOOh1FYhLHTmjSqelTQwgh0fScwOM4Tt2/fd+HCPtcZLPtbBLpA7ohXLmb0J0Pk7iT1MPotfFR7Hp0fd0gd3jQgetED7Z06AYhJiNoHWHPiOMHR+vSNnTlfYH6yJwoMShpOd00Z9VtK2wF9zYy5ML3oyNjTPcPgPvqgcV+C8USPNdp2v/F5twF2520lHbUgNhk/JzLelhYvBu7WlQUpkiokZB3k2TAEZj+6va6a9jpSmm+D+X7IThw1p1/JyNqf1tYqt5TKmFaijrhVKkokVX+Pc45MgnHtiljsv3hVFTVOkFhYe/WDZg+fU0rjsp1ogT5OJju6/M/v4XZubzVu7+V3lpBk+bZuTzyC0XkC9W+qOraeq4DIRqNu3VCflKhJSqlutsmqMKYJta6IcKIEEJ6lUz0Kt2DEAIDAwN1/zmO07CMKVokLuNjORw/OIpc1oNAtSNtHIz2OXHPR9QMtg13V+539BeXy7i7UsGJwztwfnJf7OswsX8LPLdeDJaCna7Ta6EvNBzT7FwehSV9xGCxVMZLM/PYM3UGe7dugJvR7yWqM27yWwgfaxJyWQ9z33oabxzeUXfdX9y9yegH8dmdFfze9oeNbch6buT9E9eHplgqa8Udmy3JNJCoajWy3TLNJgkC1XtFh+7ay6ixNSlcX9WtJ9N+gggABx5/GA+sbZz/KZV9HPvBlYY2JiXrucr7xnRFwsdRKJYw8d1LyvM7PpbD+cl9+GDqAF7cval2rR0hMDzooBwSsFTvrG/OXsaRmfnaQFSVyqm7hxwhYkfYyYGs7v0VZHYujz1TZ7B58hT2TJ1pOAfhVNRXvn+5bh15ft6fOoCJ/Vtw8mJeK5J4roO9Wzfg5MW88fnyXAcv7t6UyjsJMJtBB1GdsySMDLl17783Du/A/NGn6wQHlQmzxBECh3bmUNAI5WlHGo2P5fD6c9ut7pduI+o+D96fSfoBhBCyWumpCB7f97GystKwrFKpnwH61a9+1c5mEdKXxJlVbNbDKG2Ta9PsnyolTFZieetH17UmnBJ5TLNzeWuD3HyhiJkff6SdybfpjJtm9Sf2b4lMlTER7lSrzrkuUqlU8XH26s0635NwZEhQvFPRCa8rmQYSRfBeSpoOJ/2f4hqe7t26ITJ1zQZTSfSwt4sP1BmOhykUS3VRFTaV5qpVverNtMW9bWU9F2vdTF01KZMH2JqBTINXSqni48jb8zgyM6+d6X9tfLTO02WzIY1TMjuXt4pWkSJr+PolrUZoiq6RxyjFFl3UZNx3qun+lu8Y3Tqq1MuggfQjWQ9LyyuJTN9t3w22BQKAalpYsVRRehpFVb76uFAENuq3XfZ9nLyY13rBtSKqplejXXq13YQQ0u30lMAjI3iCVCoVZDL1gUiM4CFx6USZ9G7CxgzSRLMeRq0wuVYJFTIKI9ipFwAO7czhtfFR/NWlTyJTfuQxxY060a1r8jUKsnfrBqUgsXfrhlieI2FsSz2brkW+UKyZ7WZE1bA0SJRYp7t/0vbSiUvQ2Nt0/C/u3mQURYDqOZK+HaoqS0DjQOfYD67EEndkOpluW6p7W3WOo1L/gtfSJhWqamBbrt0bwX3KdLtgalQ1auPThu2YUvJkU23f3bp7zkc1aue18VFjulIQGbVx9urNBm+eOGlDwfdA8P2l+j7pjOHltYn7To1615rMtCu+j/enDtQtC79/4xrUS+T7NvyNkmXrw8+TSRwMv+uSfPeq7Wm8N4MUS2WsGcgoRb9WRdV02k8nKb3abkII6WZ6SuAB0BCto4rgKZXaXyWF9Da9UCa9FczO5et8GoDq4OHIzDze/fCWsfJPkGY9jHSDrYwQ2Dx5KrWZPZ3BsjTBNXmhAPXHlFbUScX3rapnfedHHyn/JttuM9AOkhECbwQG1abBzuxc3rpEvE6PyBeK2mupun8EgK98aT0++GVRGRXkuQ7WupmWlYLPADj27LbaedEduQCw69H1tYgF3bkXuO/FoxIhwiLP9OlrsfyFwkJh+J569Z0rqp8ZDcZ1SLFKXsfgIC1YDSmMvDdMwgRQvR/yf3+xbh1pABxVtUu1PRWmyCMppNo+4zJqQyXU2ooauYDvSJg4xvCyzXHfqSaRNep9YiPkq0TMx37Nw9/+/Jb2WOT7ViVwBcXu4PMUx78oibigujdV3C6W8MLuTXWVwQ7tpJhBCCGk9fSUB4/rusjlcnX/fe5zn2tYtmvXrk43lfQYvVAmPW1kp1lXUvytC9eNviFBmvEwmp3LY/HuivJvZd+Hj/sdeNv26Lwpoq6zaaASPqa0Qu2jtiM9QHQD7uAxhT1HdOSyHnIjXp2A88r3LyNfKDacb/m3NMx0dddyfCyHQztzdd4rPoCfXL+Nif1b8MHUAZwIeQMdPziKo89sS83rI0jWc/EfD+8AgNp5MR2TFBPOT+7Dni+t164XROXnFL4Gtniug9ef22583uIKYbmsh5EhV/t33TP52vgoXn9uu5WnVZDwfZwb8ZTvE1ObdNtTId9ZOr7zo49iPeMq/x7Ve/EFhT9NlBge5zsk26zzpAm+U4/MzOOxe+/IvVs3NKxvE2ETR8gPe/785Prthu0PDzoN19wmPVKef1v/oiBRXkbhYwjem1oPL1EVCuV7U4qAtt8wQgghJCk9FcFTKpWQz9d/HFVVtN599912Nov0Ab1SJj1Is2lVUZ3mKN+QMElmQ1Vh+0D8NJ/guVjnuVhcXqmlRNnM7gYHRbbVwyb2b1F68GRQrTa0bJG+ZTPwiPIACd+jwYo/YdxAFaRz584pI7gkwQFr2qXYVdfy7NWbxsgO3f2l8lRqhmDFnD1TZ6yOPejL9Lc/v2W9r+DAPanHj0wxBKBNAQP0FcMEgLWGVBJT2p/umbRNbQoSvo+znovzk0/V7ucjM/OYPn0NBx5/GDM//igyPdI2qkQXEVT2/eozHsMDSSXEqO7bsD9N1LvbNoUx7KUF3I+YUUXgBauBnbyYb0gzsxEZkxYj0N3v2aFBXPl2faSNrcD1caEY29clSXq2vDdVv5eo9PDVEBVMCCGk8/SUwKMzWQ4LPIVCoZ3NIn1Ap8ukxxVr0vAMsuk0hw1H0zZD1HXydeMpVZvD50KV1hKc3TVdZ5vBQTAFRaBq+ipNhD03g5WKbyXuAMBa1xxEGTVQDt+jusGGpFT2awOMQrGEib82m0Sb7hGB5koTf1woYnYur/WGsWkDoBaGVEiBQ/7/3D0fj1M//aRO4JLVhmz2LQn6MsURNoIiRNJoQR/AqZ9+YjTcBfQpVz6g9I8J3vOm1LOguCWfm6hzYBImgqjecycv5nH4tzca/bIEkN67O0Yoku2EQFwxXPfeirpuwf3oTKUlxVIZZ6/erEtj0hmrh48ljM23Ik7UrO17Zt09z6w45zdJenahWKoTU4PXISqVtZ+jggkhhHQHPSXwZDIZDA0N1S0rl8twnPpw3N/4jd9oZ7NIH9DJag5JxJo0PINsOs1Bg8tWmFDH7eyqBlC2kQ+q2d11ngshUIsOCHqKqPjm7OU67wcf1QpRL+7ehNfGR60GREEWlkrG82g6Pypz5lffuRJ5LqSwcuNWEaWyOb1Jnm+dl0fUseYMv1/nuVbRERkh6qo2hYnjk6IylD579WZDBJN8lmyeEVtfpihRoxmxzBSBNT5WLfFuSrcJD+yDyOdBd28/kvUihcUgriNw+Lc3GoUJie49d/bqTQyvGdAbLiMdc/w4RuqtNtCV7UnbCD9I+P6NqpCmSpez/VbEiZq1qdQGAIvLK8Z3hYq46dmzc3nkF4rIF6rvTik6yndxlJDWzVHB3UorJpcIIaSf6SkPHt/3US6X6/6rVCoNy+7evdvpppIeJOgPcH5yX9s6ECaxRkcankE6jwaJmxFYWl7B5slTePntS7HbaIOus5v1XGsfhbhRFvI6nzi8A3dXKlhYKln7/OiMjuXyJLOzpvOoOz8CaPBcmZ3LW/msZIdcvPL9y/Aj4izk+TZ5eUSRLxSV3h6e60AIWKW+lH0fr3z/Mr45e1npkxFnwCR9R745e7m2zPQsqY7ddQSynqv0mjJdrxd2bzJ6VE3s3xLbtyYKeWxRkUU2963J28RWZB0edDD91e14bXzU6l1rujamNudi3BO6dXNZz7gP032QJtIfRlaHOnF4R6LvU9T7Hmi8f6WHkErIcR2Bo89sa1hu+z2L45Wj8jIaUkQ/ygjFOOieWd3y6dPXUAm9+4LHZ3oftTMquF8w+cMRQghR01MCD1CtohX13/LycqebSYg1ScSauJ1SFeFOc9ZzMTLk1v43BGrih43BbxJ0nfxjz26zNm22OWZVxzqJsKY7D3J50tlZ3cy66vxIsUDlexKF5zrw/WhPHSHue2uE7xOtqagG6e0RvpaFGKa/xVIZb124ruzk7926oUEY8VwHb9wzZQ4TNhA3PUuqgeX0V7dj/ujTNaPY6dPXaqKTzqj2hXsRXiZRY3wsZ5XepTrWYDn38DEA0c+prV+N7pmMilzKZT28cXgHrnz7X8eOOtEtN4lpcQbRJqFBtw9HiLr7oFUTArNzeUx871LdfT/xvUvKwW2UUXDw+gHq+0gnrsx96+na8xR8DuJEHYaXxzXmD0/AFEsV5Xpxv0k64WvpXjSQ7fblct32RobclomA/UyS7zQhhKx2eipFa82aNdi8eXPdssXFRQwPD9ct+8pXvtLOZhHSFEkMntPyDNKlI+2ZOmNVornZcPOo1AObzrDqXLgZgQfWDqCwVKrbpo1PSFRalErkkaKHbSqB7vdh4qRmRA1spHnwEYsy0wOZ+vbE8fIIUyyV8eaF67UKQmev3sSRmXnrsusSlQHzq+9cwZ1Spe5v0nR4fCynPdaggbju/pHRa7pzrvOHifJFMZGLSKMRAH7z14fxDzeX6kov73p0vfF9YErPsXlvhFMkThzeYZVuoypNHYeo95yqBHlY/IxK74h6xmxN11vBq+9caUgRK5V9vPrOlYZjtEmLCj7HcdNebH1t4nzPkhjzJ9mPCbn/sBeYLn22uv1PtfttNp2O6Uj1rMYKp4QQ0iw9JfC4rouHH364btmtW7ewfn19WdpcbvV+DPuJ1dLRSSLW2HQimzl/Np2ntMLNTZ18m2Ow7VDb+oSYBgjPP7mxzoMnuDzcljh+Kiaho9mBlWR4zQDGx3JWbQuaMcfdj458oVh37tIou65KSfNR9ZQBzG2V97jKl2lxeaW2bd1gWTez/FeXPsH80acTHU+UQOgD+Nk/Ldb+LUsv73p0PY4fHK17BvZu3VCrPrXOc+E6okEsCFYM02EjHrTKpN7m2Y56B8YVPuLuP7ivZr5Xqt/rUi7Dy5N4sjUjrphoV8GCNPcj34vhSQ3VOZzYvwX5v79Yt154v0nPbau87nqZXqxwSgghnaanBJ67d+/iH/7hH+qW3blzp6Fq1he/+MV2Nou0gNXU0Uk64xcljDRz/nSdKkcIVHy/1kbAXJq5GeIcg02H2sYnJGqA8Nr4KADUqmg5QuD5JzfWlgfbohKUdEa3cTxDdESJA8EUgup5XFGuF14/7n5agckgWEXwWI/MzCt/GxwgBO8fVfSaaqCnOz+FYim20WuQtW6mdm5tjlu2LZgmpKos52YERobchqg2FUGxQRVpFT4faZgA6zA921HPfRpm9Dbvlmbft6bf29BNUQ6tvBdauZ84qWWzv3gPuayT+vGlcb/2G52ucEoIIb1ITwk8ZPWw2jo6ac+mNnv+dJ2qYGpCq0W4tO8Bm5LfNh3118ZH6wQdHaoByN6tG+rKWQPpRkIBwMtvX1JGxwwNOjUxLjvkwskICECbKqWbIZX7efWdK1amzknIei6G1wzUzttjv+bhb39+q6EK1ZqBjDKVMJgu8e6Ht/DWhetWZbkB+4GeKTooyT2qEgRtRa1w21TPTqniY2hwAHPfMkcXhduhi7TKF4rYM3WmrvJct72b2yV8NPuu0v1eJ/CFPZd092JUBbpW0a57Ic39xIkUyXouzk8+lcp+g7Tjfu21yOh2CYaEENJP9JTAMzAwgM997nN1y371q1/hoYceOlNAIwAAG+hJREFUqlv2hS98oZ3NIi2gm2Yke5Fmz59takQrRbi074FW+YSYUA1Adj26vmWd1VrKzPcuNaTjLC6XsbhcPf6FpRJ8v1qRB1D7jESJTnc0JqfS/8hW/FGVDw+mDUnBQeWzE+U9A1QFuTjn3HagN7F/C17SePwkuUdtK1GpCLetmWcnTju6PbKyXekdzb6rdOv5qD5PwWpzbkbg2LP11at0UXWyAh3Qndenm+iGSJFW36+9GhndjeIxIYR0Mz0l8AwPD2PXrl11y27cuNGQkrV9+/Z2Nou0AOZdN0ca5y+qU9VqEU53DNkhN1Fa2N6tG6wjOVo5y9lsZ9XGNDZsGKqi4vu11B4g3gypTgRwhMD017bXUtRUQlMQz3UiTYlV+5I+OzKSysanyfac2w70xsdy2iimJO+ppM+Nqm3NPP9x25GGqKu6p7OJt3afdg3am33fmsRnWanNxodMFb3Xz5GvadINkSKtvl9XW2Q0IYSsVnpK4Pn000/xN3/zN3XLFhcX8fOf/7xumRACX//619vZNJIy3TCb1su04/y1WoRTVjdyBD67E22AG2Z2Lo+TF/Paakvhdbt1ltO2bbctKqAB9UbDcY5NJwJUfL9+OyFtJyOAh9a6uF00+8DEqXaW9uxunIHe0We2pfac6Z6nkSEXvyquaKu3qSo6NfP8JzHRzheKxopjJnT39PGvNJaajku7Bu3Nvm9Nv7e9v8fH9FXjGPlqR6cjRVp9vzIymhBCVgc9JfBs3rwZf/EXf1G37N13322I6glX2iK9RzfMpvUy7Th/rRaRVMeweHfFygA3jCkKxGbdbpnltG2b7SA9qRhnI+5Nn75Wl1oCABW/Ws3LVGUqjWpnzRJnUA2k85zpnqejz1TTceKU626mXUlNtH0kE0N19/Q/3k7H3yl4LaVweGRmPvG1MkXQJb0P0rqP2hH52mseLr1GK0UmRkYTQsjqoKcEnhs3buCP//iP65apyqTv27cP3/jGN9rZNNICOj2b1uu0+vy1Q0QKH8PmyVPK9aJmIOPMXHbzLKdt22wG6RkhEotxNuJe0vMYt9pZpwecaT1ntr5XtseZtF3hdghRFeZsiSuG6u6H5bLa4ykpaUTmRW2jmfsgjfuo1aJ7N0c3kmgYGU0IIauDnhJ4Pve5z+EP/uAP6pa99957+PKXv1y3LPxvQkhraLcIp5uB9IG6ij62v1PNXJoq0iRNQ0kL2+NQiQV7t26o87rJjZQTH4ONGJF0tjhKAAqm1rViwNlJwcj0PLXzWQtHvUR5KYWJI4bq7pNBJ2O9DRvSiMzr5ug+oPWiu+3xd1p0JWoYGU0IIauDnhJ47t69i/fff79u2SeffALPqx8wbNiwoZ3NIoS0CVNkimlwH2fm0lSRJmo/rSbOcUQJAufOnWuqLVHbTzpbHJVeFkyt0w04j/3gSqJBDCMUGjENCvdMnWk65UN3n3x+3WDzjQ+QRmReN0f3SVopBNocP5+h7oaR0YQQ0v/0lMCzZs0abN68uW5ZsVhsWEaBh5D06KbZ2OBgUzWw1M2mx5m5DK+bEaJrKtPEnYHtdDSKrq2mdtmkl8kBpW7AWSiWal5NcQaY3R6h0Sl0g8IoEc/m/tPdJ9nbP0v1GNLwH1ntHia23lt8hgghhJDO0VMCz2effYbz58/XLbtx4wYWFhbqlmUyGTzxxBPtbBohfUk3zsbKwebmyVPKCku6QX+cmcvgukl9f1qF7XF0w7VTtdXWx0Qn4gH3B5S2ZtK2A8xeiNDoJqJEPNv7T3WfnDuXrsCThv/IavcwaaX3Vhp002QEIYQQ0il6SuD53Oc+hz/8wz+sW8YqWoS0jm6ejW3XbHqvztp367WzaZcc8KsqaglUxYI9U2ewd+sGnLyYt6r4ZDPA7NVr3Ul0gmO33X9p+I+sdg+TVnpvNUs3CNqEEEJIN9BRgUcI8b8BmAawwff9f45a/5//+Z/x53/+53XLbty4gfn5+bplv/u7v4uvf/3raTaVkFVJK2Zj05plbdds+t6tG/DWhet10UK9MGuf9NrFuT5JrmWcdoWjeQRQuw75QhEnL+ZxaGeuzjx6aXkFC0uNJbZtBpjtjNCwOXfdEpHQ6uvciv2rSMN/JMk2uuU6pkGrvLeapdsERUIIIaRTdEzgEUJsBPDfArhu+xtG8BDSXkwVpWbn8okGOmnNsrZ6Nn12Lo9jP7hS83KRBKs4tZpmBoZJZtLjXJ+k1zJuu+SAUmXoWyyVcfbqTZyf3KdtF9A4wNSd13ZFaNicu26JSGjXdU57/91Cr7c/Lp2KcmJ6JSGEEFKlkxE8JwD8MYD/1ME2ENJSCsUS9kyd6dmZW1NFqSSDlLRnWVtVEUQlEkiCVZxaSbMDwyQz6XGuT9JrmXSG33YAFzXAtPEAavUzanPuuiUiod3XOa39dwu93v4kdKJSE9MrCSGEkCrC91U2pS3eqRDPAviXvu//r0KIDwDs0qVoCSH+CMAfAYDjODvDFbIqlQoymUzdsscffxyvvPJKK5pOiDWFYgml4hJ+EehzZoRAbsRD1nM717CYFIol3LhVhK+wNB50MtjyhQett3U5f1v7t9HcukTtawXXfvEplssV4zqtbq+uDXHOeaFYwj/evoPlcgWDTgafX7e2du999tlneOCBB+rWj3N9mrmWpnbpSON8pLmdZrA5d93yrLT7Okvk/dkt5yEp7Wx/M+e71ykUS8gvFFEJ9Glb9b1VvTsJ6RZ4f5Juhfdm+uzdu/ei7/u7wstbJvAIIf4LgC8o/vQNAH8C4Gnf929HCTxBfv3Xf90/dOhQ3bIbN27gi1/8Yt0yevCQbmDP1Bn8m42f4vXL9YFyuaxXl1LSC+gqVgkA708dsN6OKs0G6L5zojteSTvam9Y513Hu3Dk89dRTdcviXJ92X0td6tXxg6OxogVM1/aNwzvaEnlgc+7SOL9peL906pmV92evvDNUzM7l8fLbl1BW9LPSbr/q+XAdgeHBAdwulnoygjQu7fI6Ur07CekWeH+SboX3ZvoIIZQCT8tStHzf/1eahowC2AzgkhACAL4I4CdCiN/xff8Xpm3Sg4f0Eh8XisBGzfIeI63w914pM2wqv92u9nYi5SDO9Wn3tUzL28N0bdvljWJz7po9v2l5v3T6me30/pMiz79K3GlF+1WpYKWyX/MQ63fvH6AzqWGEEEJIt5GJXiVdfN+/7Pv+r/u+/5jv+48BuAHgiShxh5BOMjuXx56pM9g8eQp7ps5gdi4f+RvdQLwXPQEm9m+B5zp1y5IMUsbHcjh+cBS5rAeB6ix23AiMdqA6XgAYGXLb1t60znkc4lwf07pJnhfb9p2f3If3pw7g/OS+xNXXVNcWuO+N0mpsznOzz4rJ+yXttraSTu8/KarzDwCOEC1pv83EQbvub0IIIYR0jo6WSY8Ly6STTpB0Jnxi/xbk//5i3bJemHlWkTR6IqpakVyn24yoO1UJphvaEGcWXLVut1cNkm14aWZe+fd2RdjZnOdmIhLSrCrU6ciITu8/CbrzXPH9lhyLKTItSC9GkBJCCCHEno4LPPeieKzYtGkT/uzP/qxuGfP5SKtJWgVlfCyH2V+8h1zW6SrxIilxB1m9VApaRTcMKruhDXHphapB42M5TJ++1tdVd1hVqLO0+/zrKh62a/+EEEII6Q46LvDE4datW3jzzTfrlr333nu4ceNG3bIvf/nLeOKJJ9rZNNLHNDMTnvVcnJ98KuUW9Qa9VAqapIcuisAmuqCdqAbEAtV27pk609NiLNC73jX9Qqc9qrJDLj67s4JS5b4HEK8/IYQQ0v/0lMBDSCfgTHgybISxNNNISHfgCKE0lnWqpvpdQ3BAnC8UIYBada1uiiRLStwUv3ZVIFotdCLFUpX+ymtKCCGErC56SuBZu3Ytfuu3fqtu2eLiYsOyL3xBVZ2dkGRwJjwZNsIYxbP+QyXumJZ3EjkgVpXi7odIMtsUv25OlexlOp1i2en9E0IIIaT9tL2KFiG9Rq9Wcek0NlWgOlEpirSWnEac0y3vBlZ7JFlaFbcIIYQQQkhn6akIHkI6BWdC42OTotAN1apIuvRixNtqjyRb7QIXIYQQQki/0FMCz9DQEHbu3Fm37NNPP21YRgjpDlpdCpp0H70o2vWiKJUmq13gIoQQQgjpF3pK4CGE9Cc0A01ON567XhPtelGUSpPVLnARQgghhPQLFHgIIR2FBq/J4blLj14TpdJktQtchBBCCCH9AgUeQkhHMRm8coBphueOpMVqFrgIIYQQQvqFnhJ4bt26hTfffLNu2XvvvYcbN27ULfvyl7+MJ554op1NI4QkhAavyeG5I4QQQgghhEh6SuBZv349Xnzxxbpl586dw1NPPdWZBhFCmoYGr8nhuSOEEPL/t3f/sXWd5QHHv4/tJHacn8gOTpw6zdaJDfAoBtE2zSY6mEI31BCmIcY2Tds0Cal0GRpsMKT9hQTT0DbGGBOCVdqgQ1pHEetWCm3iUpaSkiZNsyS0iZIu1InT6/xw/DOOr9/9cX/02nGapkDOPb7fj2Sde97znvc+9+ok9zzPPee9kiRVNGUdgKTLfWPfALd/egcbP/Zf3P7pHXxj30DWIf3UfHTL62hb1DyrzQleXxnfO0mSJEkVubqCR2oEjTZxrhO8vnq+d9mrx18xkyRJUmOywCPVmUacONcJXl8937vsNFoxVpIkSfUtVwWe8fFxnnrqqVltzz77LMuXL5/VtnbtWtatW3c9Q5N+Ypw4V8qHRizGSpIkqX45B49UZ640Qa4T50r1xWKsJEmS6kmuruBZunQpb3nLW2a1jYyMXNYm5dlHt7xu1m0f4MS5Uj2q118xc14gSZKkxuQVPFKdec+bu/nUe3vpXtVGAN2r2vjUe3tN0KQ6U4+/YlaZF2jg/ASJl+YFWsi/xCdJkqSSXF3BIzUKJ86V6l89/oqZ8wJJkiQ1rlwVeJxkWZJUT+qtGOu8QJIkSY0rVwUe5+CRJOnK6nVeIEmSJP30OQePJEkLRD3OCyRJkqTrI1dX8EiSpCurx3mBJEmSdH1Y4JEkaQGpt3mBJEmSdH14i5YkSZIkSVLOWeCRJEmSJEnKOQs8kiRJkiRJOWeBR5IkSZIkKecs8EiSJEmSJOWcBR5JkiRJkqScs8AjSZIkSZKUcxZ4JEmSJEmScs4CjyRJkiRJUs5Z4JEkSZIkSco5CzySJEmSJEk5Z4FHkiRJkiQp51qyDqARnTx5knXr1r3i9Wsd71r3q91/btvc5d69e+nr67tiX+Cy11JRad+7dy9dXV2z2mvHGBwcpKura1b/vr6+6lgHDhygs7OTrq4uDhw4QG9v76z2vr4+Hn74YXp7e3nggQfYtm1bdczKsr+/H4Djx49z5513VmOpjAnQ29vLJz/5STZv3sz3vvc9li9fzvbt27n33nsZGBhg69atHD16tLrvwYMH2bx5M/fddx8f+MAHAHj00Uc5ePAg/f39dHZ2UigUuPnmm3niiSe45557+NznPkdPTw8Azz33HKtXr2ZwcJCVK1cCMDw8TFdXFxMTE+zbt4+tW7cCsGfPHqampti0aROPPPII27dv5+DBgxQKBQYHBzl9+jQ9PT0cPnyYzs5OABYvXgzAkiVL6O3t5cEHH+SOO+7g2LFjHDlyhKVLl9Ld3c2RI0eq/QuFAmvXrmV8fJxiscjY2BgAK1as4MKFC7S0tDA5OcmyZcuYnp6mqamJ0dFRWlpamJmZ4dKlS0QEy5YtY2RkhLa2NiYmJmhtbSWlxPT0NMVikcWLFzM1NXUNR68kSZLyrqmpiUWLFnHx4kWam5spFovVbS0tLUxPTwOl89LKeeXMzAytra3MzMyQUiKlxJo1azh16hQpJaB0vhsRNDc3MzY2xmtf+1qKxSITExO0tLTQ2trKhQsXWL16NcVikfHxcbq6upienmZkZITFixfT3d3N2NgYIyMjtLa2smjRItauXcvQ0BDr16+np6eHxx57jBdffJG2tja6uroYGxujvb2dNWvWMDw8zKZNmwAYGRnhxIkTs877Ae644w5WrVpFf38/27Zt49y5c9XH+/fvp6enh4ceeog3vOENDA4O0t7ezubNm6vbAG677TYKhQI7duygp6enut7Z2ckTTzzBTTfdRG9vL/39/Zw7d666fcuWLdU8q5KfVfI94LL8q7e394p5HjBvzljJ7Sr9Xy5nnG99vr5X2+dqXm3unBcWeDJw6tSpWQfV1davdbxr3a92/7ltc5eHDh2qFnjm6wNc9loqKu2HDh2q/udbaa8d4/Dhw6SUZvXv6+urjvXkk0+yceNGUko8+eSTdHR0zGrv6+urtu/cuZNbb721OmZl+fjjjwOl/1w3bNhQjaUyJkBHRwf9/f2klHjsscdob2/nfe97Hzt27ODUqVOsXbuW/fv3V/etvK7du3dzww03AKXi1PDwMLt27WLVqlWcP3+es2fP8swzz3DLLbewe/dujh07Vn2v2traqh8iAJOTkyxfvpxLly5x5syZamHq+eefZ2ZmhqmpKY4fP87OnTs5dOgQ58+fZ2RkhMnJSQqFAsPDw5w5cwYofYACNDc3c+bMGQYGBvjud7/L0NAQo6OjNDc3UygUGB0drfafmZnhxIkTsz5sASYmJmatnzt3btZ6bf+UEiMjI7P2m5ycnNXf4o4kSVLjmZmZ4eLFiwCXnW9Wijvw0rliJYeYey5ZW9wBqmNWnD59etb68PBwdZzKfhMTE6SUKBaLRATnzp2rfhnZ1NRERHDy5EkmJiYYGBjg2LFjHD16lEuXLtHU1MTQ0BDT09O0tLTQ3t7O5ORkNc6xsTEKhcKs8/7K61m9ejW7du2io6ODQqFQfbxnzx42bNjA7t27OX36NENDQ7S1tZFSqm4DWLlyJcePH2fHjh1s2LChur5x40Z27tzJ2bNn6ejo4PHHH6dQKFS3b9mypZpnVfKYSr4HXJZ/dXR0XDHPA+bNGSu53fr166+aM863Pl/fq+1zNa82d84Lb9GSJEmSJEnKOQs8kiRJkiRJOWeBR5IkSZIkKecs8EiSJEmSJOWcBR5JkiRJkqScs8AjSZIkSZKUcxZ4JEmSJEmScs4CjyRJkiRJUs5FSinrGF6xiCgA/zenuQMYyiCcH8dSYPwa1q91vGvdr3b/uW1zl68Bzr5MX7j8tTCn/TXA5Jz22jFay9tr+5+tGWsFMFXuswK4MKf9LNBVbu8CBmvGrCw7yvssAc7UxFIZk/L+NwKjwDJgBjgBdAOL5sREeexRYBVwvty2HJgA2oEi0Fx+jjbgRWANMF3uu6j8HM3lJZSKsEUggJaa921JeXmx/Lzny8vm8l9lv2Zg7j/yVH6fWsvLFl4q9s5g4VeSJEmqnENHzXrlXLlI6Rx+yZztFcVyv8q5exOlc+7a834o5TtFSrnCcLlP5fFSSufqy3jpnH2GUr5R2QalPGAxpRxkqmZ9qtw2Timv6SiPUdk+yEt5ViU/q+R7cHn+dYEr53mV1zI3Z6zkdk3l9pfLGedbn6/v1fa5mlebO9ebDSmlzrmNuSrwzCci9qSU3pp1HNJ8PD5Vrzw2Vc88PlWvPDZVzzw+Va88Nq8fv6mXJEmSJEnKOQs8kiRJkiRJObcQCjxfzDoA6WV4fKpeeWyqnnl8ql55bKqeeXyqXnlsXie5n4NHkiRJkiSp0S2EK3gkSZIkSZIamgUeSZIkSZKknFtQBZ6I+EhEpIjoyDoWCSAi/joifhgRz0TEAxGxKuuYpIh4V0Q8GxFHI+JjWccjAUTEDRGxMyIOR8TBiNiedUxSrYhojoh9EfFg1rFItSJiVUTcXz7nPBwRt2Udk1QRER8uf67/b0T8W0S0Zh3TQrZgCjwRcQPwq8CJrGORanwHeGNK6ReB54CPZxyPGlxENAOfB+4EXg/8VkS8PtuoJACmgT9NKf0CcCtwt8em6sx24HDWQUjz+CzwrZTSzwNvwuNUdSIiuoE/Bt6aUnoj0Ay8P9uoFrYFU+AB/hb4M8BZo1U3UkrfTilNl1e/D6zPMh4JeBtwNKV0LKU0BXwN2JpxTBIppVMppb3lxyOUEpTubKOSSiJiPfDrwJeyjkWqFRErgF8GvgyQUppKKZ3PNipplhagLSJagKXAyYzjWdAWRIEnIu4CBlJK+7OORXoZfwA8lHUQanjdwI9q1l/AJFp1JiJuBN4M7M42Eqnq7yh9kTiTdSDSHD8DFIB7y7cQfiki2rMOSgJIKQ0An6F0l80pYDil9O1so1rYclPgiYhHyvftzf3bCnwC+MusY1RjusqxWenzCUq3H3w1u0glAGKeNq98VN2IiGXAfwB/klK6kHU8UkS8G3gxpfRU1rFI82gB+oAvpJTeDIwBzq+nuhARqyldKb4RWAe0R8TvZBvVwtaSdQCvVErpnfO1R0QvpQNmf0RA6RaYvRHxtpTS4HUMUQ3qSsdmRUT8HvBu4B0pJRNpZe0F4Iaa9fV4qazqREQsolTc+WpK6etZxyOV3Q7cFRG/BrQCKyLiKyklkxTVgxeAF1JKlSse78cCj+rHO4HjKaUCQER8HdgEfCXTqBaw3FzBcyUppQMppTUppRtTSjdS+k+uz+KO6kFEvAv4c+CulNJ41vFIwA+An4uIjRGxmNJEd9/MOCaJKH1L82XgcErpb7KOR6pIKX08pbS+fJ75fmCHxR3Vi3LO86OIeF256R3AoQxDkmqdAG6NiKXlz/l34CTgP1W5uYJHyql/AJYA3ylfYfb9lNIHsw1JjSylNB0RHwIepvRLBv+cUjqYcVgSlK6S+F3gQEQ8XW77i5TSf2cYkyTlwT3AV8tf3BwDfj/jeCQAUkq7I+J+YC+l6Sr2AV/MNqqFLbxjRJIkSZIkKd9yf4uWJEmSJElSo7PAI0mSJEmSlHMWeCRJkiRJknLOAo8kSZIkSVLOWeCRJEmSJEnKOQs8kiSpIUVEMSKervm7MSLeGhF/X97+9ojYVNP/PRHx+lfxPKM/ybglSZLm05J1AJIkSRmZSCndPKfteWBP+fHbgVFgV3n9PcCDwKHrEZwkSdK1iJRS1jFIkiRddxExmlJaNqft7cBHgA8B3weKQAHYDjwADJf/fqO8y+eBTmAc+KOU0g8jYiNwH6Uv0r4FfHju80iSJP2keQWPJElqVG0R8XT58fGU0rbKhpTS8xHxT8BoSukzABHxTeDBlNL95fVHgQ+mlI5ExC3APwK/AnwW+EJK6V8i4u7r+YIkSVLjssAjSZIa1Xy3aL0iEbEM2AT8e0RUmpeUl7fz0hU+/wr81Y8TpCRJ0ithgUeSJOnaNQHnX6ZA5D3wkiTpuvJXtCRJkuY3Aiyfbz2ldAE4HhG/CRAlbyr3+x/g/eXHv32dYpUkSQ3OAo8kSdL8/hPYVv4J9V8CvgZ8NCL2RcTPUire/GFE7AcOAlvL+20H7o6IHwArswhckiQ1Hn9FS5IkSZIkKee8gkeSJEmSJCnnLPBIkiRJkiTlnAUeSZIkSZKknLPAI0mSJEmSlHMWeCRJkiRJknLOAo8kSZIkSVLOWeCRJEmSJEnKuf8HDZa/4DLmh5IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
The variable importance plot shows the relative importance of the most important variables in the model." + ], + "text/markdown": [ + "\n", + "> The variable importance plot shows the relative importance of the most important variables in the model." + ], + "text/plain": [ + "\n", + "> The variable importance plot shows the relative importance of the most important variables in the model." + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHgAAAKACAYAAADn488NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZxlZ1kn8N8TmiRAEwIkJmFtJUFkR0ABASsoDhKWYKIQEEEdoijD4AIyjmhEwSAMIooywSXIvsgmYRUoVtkSQgJCYCQdgRj2EDoEgeSZP84puanc6q5eqqtP1/f7+dSn7j3rc86951bd333f91Z3BwAAAIDpOmC9CwAAAABg9wh4AAAAACZOwAMAAAAwcQIeAAAAgIkT8AAAAABMnIAHAAAAYOIEPADslqq6SVVtq6qrrWLZhar63Hbmn15Vf7xnK2RJVT26qr4wPl7XX+969jXjefmBFeY9sqres7drgo1sZ/4mVNXWqvrJta4JYF8m4AHYQKrqzVX15DnTH1hVF1XVpp3dZnf/e3dv7u7L90yVu6aquqqOXs8aluyLbzSq6upJnpnkp8bH6yt7YJtbq2rL+CbskTPTj6qq51XVhWNo8plxmVuM87eMj9e28ecLVfVXY42z2/52VR22bJ9nj+tu2d36lxvPy2f29HaTpKr+qKrOrarvVtUpO7nuwnjMT9jJ9U6pqhfu5PJdVY9dNv1x4/RTZupZMahdYduPr6qPVdU3qur8qnr8svlbquodVfXNqvrk7PVTVcdV1Xuq6uLxdep5VXXtmfk/V1XvG9ddnLPv21fVmeP8M6vq9svm/0BVvX6s7ctV9acz865XVa+uqkur6oKqeujMvIfNPIe3jdvvqrrjDs7FseOxfr2qtq6wzP8cz9OlVfWJqrr5zLrnjufiK2NtN5xZ76Cq+ruqumQ8V7+52nNRVY8Yp11SVZ+rqj/dlb8J+7IagtrLlz1uC8uWech4zi+tqn+rqnuM0xeWnl9V1Xu/eoAdE/AAbCynJ3l4VdWy6Q9P8qLu/u7ObGx/++d/d+3j5+OIJAcn+fjOrliDVf3PUEPLoPcluWaSeyS5dpIfTvLOJPdetvih3b05yW2S3DXJry+bf36Sk2a2fZsk19jZ+ldR89543P5fkickOWMX1n1Ekq+Ov9fap+bs5xfG6bujxu1cN8l9kjymqh4yM/8lST6S5PpJ/neSV1bV4eO86yT54yQ3SPJDSW6U5Okz6341ybOSnHqVnVYdmOS1SV447vv5SV47Tl+a/9Ykb09y5Ljt2VDsOUm+neH6eViSv66qWyVJd79oDAU3j8/jX0vymSRn7eBcXJrk75I8ft7MqvrvSX45yXFJNie5X5Ivj7P/Ncl/6+5Dx/Px6SR/PbP6KUmOSXLTJMcmeUJV3Wc15yLDNfu4JIcl+dEkP5Hkt3dwLFP0L7OPW3cvLs2oqnsneVqSX8zw2nXPDI8pwCQIeAA2ltckuV6GN95Jkqq6boY3EP8w3j+uqj4yfor72ZppbVDfa3nxy1X170nePjNt07jML46ffn6jhpYbv7K8iKr63fGT8q1V9bCViq2q+9XQYuPi8RP6267mIGtoifCKqnrhWMe5VXXzqvpfVfXF8bh+amb5xar6k6r64Pip+mur6noz8x9QVR8f61isqh+ambe1qn6nqs5JcmlVvSTJTZL80/jp8BPG5V4xfqL+9ap619KbxHHe6VX1nKo6Y6z3A1V1s5n5t6qqt1bVV2to7fK74/QDquqJ46fMX6mql8/WPbP+zZOcN969uKrePk6/W1V9aKzpQ1V1t2Xn5ClV9d4k30wyt+vSHL+R5JIkD+/uf+vBxd399939F/NW6O4vZniTfctls16QIRRY8oiMz9MdqarrV9U/jc/jD1XVH9dMF6vxOfvrVfXpDG+Sr9QKbFz/deP6H0xys/l7Wp3ufn53vzHJN3Zmvaq6ZpITM4Rfx1TVnWbmXaUlzfh8/MnxTf3vJnnw+Dz86Dj/BuNxfbWq/l9VPWrZLj+U5JpLz8/x9zXG6busu/+0u8/q7u9293kZgoYfG/dx8wwh4B9092Xd/Y9Jzk1ywrjui7v7Td39ze7+WpLnLa07zv/n7n55kgvn7HohyaYkz+ru/+zuZ2cIm+41zn9kkgu7+5ndfWl3f6u7zxnrutZYw5O6e1t3vyfJ6zIE4vM8Isk/dPd2W3d09we7+wWZExzUEKT+QZLf6O5/Ha+ff+vur47rfqG7Z4/z8iSzLRd/IckfdffXuvsTGc7VI1dzLrr7r7v73d397e7+fJIXZeY8r2R8zj2+qs6podXL31bVEVX1xvH17J9r+DuztPz2Xk/vUFVnjeu9LEMoPbuvXfqbsBP+MMmTu/v93X1Fd39+PBcAkyDgAdhAuvuyJC/Pld80/1yST3b3R8f7l47zD83wCfKjq+r4ZZv68QyfpP+3Obv5YobA6JAMn4L+WVX98Mz8IzN8QnzDDG+ITquqH1y+kXGdv0vyKxk+1f+/SV5XVQet8nDvnyEguG6GlgFvzvB374ZJnjxub9YvJPmlDJ+KfzfJs8c6bp6hdcHjkhye5A0ZwpsDZ9Y9KcO5OrS7T0ry70nuP346vNTd440ZPln/vgyf8L9o2f5PyvDm4roZWns8Zdz/tZP8c5I3jbUdneRt4zqPTXJ8hsfjBkm+lqHFwZV096eSLAVKh3b3vcYg6IzxOK+fofvWGXXlsXkenuTkDJ9kXzBnu1u6e2t3P7K7Tx8n/2SSV3f3FcuXX0lV3SDDc+n9y2a9P8khVfVDNYzx9OBcuXXF9jwnw3P5yAzPs3mtX47P0FJhebC0tP63khyV4XnxS6vc7552QpJtSV6R4Tn8C9tffNDdb0ry1CQvG5+HtxtnvSTJ5zI8X05M8tSq+ollq88Ga6sO1VarqipDyLzUmuxWST7T3bPh10fzvefscvfM6lui3SrJOctCl3Nmtn2XJFvHMOLLY+Bwm3HezZNcPl4/262rqm461rW75+pG48+tawiiz6+qP6yZFnQ1jHt2cZLLMrSw+dNx+nUzPK4fndnebL07OhfL7cx5PiFDC72bZ3jtfWOGgPGwDK+7jx1rXPH1dHxNfU2G59/1MjznT5g57t39m7DkDuNj/amqelJ978OJqyW5U5LDx/Dzc1X1l1V1jSTp7sXuXhhvL28FC7BPEPAAbDzPT/KzS/+0Zngj9/ylmeM/seeOn16ek+Gf8R9fto1Txk+7L1u+8e4+Y6blxjuTvCUzLYZGTxo/QX5nhpDh5+bU+agk/7e7P9Ddl3f385P8Z4Y3ZKvx7u5+89jt7BUZ3kyc2t3fSfLSJFuq6tCZ5V/Q3R/r7kuTPCnJz82ECmd091vHdZ+RoUXD3WbWfXZ3f3be+Zg5L3/X3d/o7v/M0I3idlV1nZlFXjV+sv/dDOHP0tgY90tyUXf/n7F1wTe6+wPjvF9J8r+7+3Mz2z2xVtfl6Lgkn+7uF4ytKl6S5JMZ3pwtOb27Pz7O/84qtpkMb+guWrozflp/8fiJ/FuWLfvl8Y3q5zOEMa+cs72lsOHeY307/DR9fNxOyNAi5Jvd/a+ZeY7P+JPu/uryx21m/d8fn+cfW2H9veERGUKay5O8OMlJNTNW0c6oqhsnuXuS3xmfS2cn+ZtctUXKC2f285CsPlRbrVMy/A/69+P9zUm+vmyZr2cIFq+khi40j0jy+6vc1462faMMx/jsDOHIGflet6VV15XhOfru7j5/lXWt5Ebj75/K0HXx2Azh7y8vLdDDuGeHZrjWfi/DdZGx3qUa59W7M+f5FzOEHc9YZd1/MbYu+nySdyf5QHd/ZHxdenWSO4zLbe/19C5Jrp6hhdF3uvuVuXLLsd39m5Ak70py6wxB+wkZzu1SV7kjxv2fmOFv1u3Hun9vJ7YPsK4EPAAbzNjN4EtJHljDNwbdOcMbxyRJVf1oDQOAfqmqvp7kVzO8kZj12ZW2X1U/XVXvH7uAXJzkvsvW/9oYoiy5IMMbq+VumuS3xnDg4nFbN15h2Xm+MHP7siRf7u8NBL30hn7zzDKzx3RBhn/0Dxv391+tV8aWKZ/N0BJo3rpXUVVXq6pTa+hKdUmSreOs2fNy0cztb87UduMk/7bCpm+a5NUz5+cTGbpsHLG9ekZXOq7RBdmJ41rBVzK0ekmSdPfrxjejv5HkwGXLHjbOu2aS92ZopbTcC5I8NEM3k9W2jjg8Q1eU2frnHctKxzdv/au0YFprYyBzbL7X2uu1GbqsHLeLm7xBkq8uaymz/DFPd/97hlZkT80QAu7K82CuqnpMhjDkuPHNfzK0UDpk2aKHZFl3tqq6S4bXqhOXtarZnh1t+7Ik7+nuN3b3tzMEDtfP0EJxVXWNrhSU74al16Y/7aFr49YMLVXuu3zBsdvW0jg6m8Z6l2qcV+9qz/PxGcYz+unu/nJWZ/nr7fL7S69n23s9vUGSzy9rYTR73e3u34R092e6+/zxA4xzM7TmPHGmzmQIq/5jPPZnZs65B9hXCXgANqZ/yPCG5OFJ3tLds/+MvzjDOBM37u7rJHluhnEaZs0dY2JsKv+PGd4kHTG+eX/DsvWvO45tseQmmT92xmeTPKW7D535uebY0mQt3HhZTd/JMLDphRneWCT5r+4lN86VW5IsPx/L7z80yQMzdF+6TpItS5tbRV2fzcrjv3w2w5uw2XN0cK9uzIgrHdfoJtn+ca3G25IcX6sclDn5r66Dpye5ay371qzuviDDYMv3TfKqVW7ySxm62d1oZtqN5yy30vEtrb/8ObG3PTzD/2r/VFUXZRiz5eB8r/vUpRnCsST/1fLo8Jn1lx/fhUmuVzPfQJWrPuZL/iHJb2UPds+qql9K8sQkP9Hds2MHfTzJDyyr63aZ6R5UVXfI8Lr0S939tqzex5Pcdrxul9x2ZtvnZOXnwaeSbKqqY1aqa6ztxzKEDPNaoO2s8zIM6rzaa29ThtYoh/QwPtF/jDUuma13R+ciNYzd9LwMXUzP3aUj2L7tvZ7+R5IbLqtv9rpbi78JnfF1eDx/n8uuve4B7BMEPAAb0z9kCBselat+6nztDJ/yf6uqfiRDOLFaByY5KOMb5Kr66QxdDZb7w3HMhXtk6IL0ijnLPC/Jr44tiqqqrlXDANDzukfsCT9fVbesYVDbJyd55dji5+VJjquqnxi7rPxWhm4B79vOtr6QKw9KfO1xna9keEP+1J2o6/VJjqzhq6oPqqprV9WPjvOem+Qp4/gfqarDq+qBq9zuG5LcvKoeWlWbqurBGcaief1O1DbPMzOMI/SCqrrZ+NhdO9/rcnYVYzD48AytmOZ9ffsvJ7nXspZfKxoft1clOaWqrlnD17OvauyaFda/ZXbzG6yq6upVdXCG/702VdXBYyCzPb+QYVym28/8nJDh+Xj9DAHEweN1cfUMXUlmxyP5QoauiAeMx/XZDM/bPxn3f9sM53b5eFBJ8rIM1+7Lt3NMBy/7WTGwrGEw9acmuXcv+yr6sTXO2Un+YNzOgzIED/84rnvrDK27/kd3/9OcbV9tPLebkhwwbmOpG9tihlZtjx2vn8eM098+/n5hkrvUMDD11TKMDfPlJJ8Yn2+vSvLk8fXnxzIEtS9YVsIjkvzjspZRK6phcPSDM7QSrLHeA8dz8c0M5/4J47V+owyv068f1/2ZqvrBcRuHZ7jePjK25kmG1/bfq6rrjs/7R2UIT3d4LqrqXhmeCyd09wdXcyy7YHuvp/+SIVh97Pia9DNJfmRm3d3+m1BDC9Mjxtu3yNAd97Uzi/x9kv9RVd9Xw5hGj8vuvyYC7DUCHoANaGz2/74k18rwqfisX8vwhuYbGca5WPEN3pztfiPDYJovzzDg70PnbP+icd6FGd5M/Gp3f3LZMunuD2d4c/KX4/L/L9/7Npi18IIMb4QuytBK4rFjHecl+fkkf5Hhjd/9M3y6/e3tbOtPMrzJuriqfjvDm64LMnxK/a+56mDCKxrP6b3H/V6U4Rufjh1n/3mG8/uW8fF6f4ZBg1ez3a9kCNd+K0Oo8oQk99uJLhkrbffLGcbE+FaS92To/nF2hpDr0csWv7iqtmUIIu6a5AHLumcsbfPfxufDznhMhtZSF2V4bF+S4Y3kzqy/eVz/9HxvvJhd9bwMXUBOyvA14Jdl5W9jWuqOtCXJc7r7opmf12W4Fk7q7q9nuF7/Jt8bx2i2ZcxScPqVqlr66u6Txu1emGFslD/o7rcu338P32b1z8vHJ5pxw/EYZn+2901jf5yh69OHavhWr21V9dyZ+Q/JMObL1zJ0Dzqxu780zvutDC2T/nZm3dlWNA8f9//XGcZOuSzD+c54nR6fISy7OMNg2ccvXb8z1/dzx30/MMPzcOn6/rUMY8R8McNz6NHdPdvi5eAMY4jtTPese441viFDC5XLMoxVtuQxGbpTXZgh9HhxhsGFk+G8vynDdXVukiuSPGhm3T/I0KXzgiTvTPL0Hgbc3uG5yBB2XCfJG2bO8xt34rh2aHuvp2MdP5Phdf5rGcbredXMunvib8JPJDmnqi7NcP5flSsH7n+UYdyfT2Xo8vqRjAPeA0xBzfk/CgA2lKpaTPLC7v6b9a6FtVFVT0tyZHfvVkscAIB9lRY8AMB+p6puUVW3Hbty/EiGrkivXu+6AADWioAHAJikqvr4TFeS2Z+HZegS9qoM3ZZenuT/5MpjbezqPu+xwj4vX2H6th1s77krrPfc7a23L9rB47Gh7E/noqpustJzu6rWY/Dx7aqqN65Q6++ud20Aa00XLQAAAICJ04IHAAAAYOI2rXcBG9Ghhx7aRx999HqXAfucSy+9NNe61rXWuwzY57g2YD7XBszn2oD59pdr48wzz/xydx++fLqAZx0cccQR+fCHd/bbXmH/t7i4mIWFhfUuA/Y5rg2Yz7UB87k2YL795dqoqgvmTddFCwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcQIeAAAAgIkT8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMQJeAAAAAAmTsADAAAAMHECHgAAAICJE/AAAAAATJyABwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcdXd613DhnPQUcf0UY941nqXAQAAABvG6fe5VhYWFta7jN1WVWd2952WT9eCBwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcQIeAAAAgIkT8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8q1BVj62qT1TVi9a7FgAAAIDlNq13ARPxa0l+urvPX5pQVZu6+7vrWBMAAABAEgHPDlXVc5P8QJLXVdVNkrwsyZYkX66qtyR5UJKDknx/khd39x+uV60AAADAxiTg2YHu/tWquk+SY5M8Jsn9k9y9uy+rqkcm+ZEkt07yzSQfqqozuvvDy7dTVScnOTlJDjzy6L1VPgAAAJBk27ZtWVxcXO8y1oyAZ+e9rrsvm7n/1u7+SpJU1auS3D3JVQKe7j4tyWlJctBRx/TeKBQAAAAYbN68OQsLC+tdxpoxyPLOu3TZ/eVhjfAGAAAA2KsEPLvv3lV1vaq6RpLjk7x3vQsCAAAANhZdtHbfe5K8IMnRGQZZvkr3LAAAAIC1JOBZhe7eMt48Zc7sL3b3Y/ZeNQAAAABXposWAAAAwMRpwbMbuvv0JKevcxkAAADABqcFDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMQJeAAAAAAmTsADAAAAMHECHgAAAICJE/AAAAAATNym9S5gI9pyyAE579Tj1rsM2OcsLi5mYWFhvcuAfY5rA+ZzbcB8rg2Yb3Fxcb1LWFNa8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4qq717uGDeego47pox7xrPUuAwAAANbN1lOP26v7W1xczMLCwl7d51qoqjO7+07Lp2vBAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMQJeAAAAAAmTsADAAAAMHECHgAAAICJE/AAAAAATJyABwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcQKePaiqTq+qE9e7DgAAAGBjEfAAAAAATNym9S5gX1NVT0tyQXf/1Xj/lCTfSHJkkp9O0kn+uLtfVlWV5C+S3CvJ+UlqXYoGAAAANjQBz1W9NMmzkvzVeP/nkjwtyX2S3C7JYUk+VFXvSnLXJD+Y5DZJjkjyr0n+bt5Gq+rkJCcnyYFHHr2G5QMAAMC+b3Fxca/ub9u2bXt9n3uTgGeZ7v5IVX1fVd0gyeFJvpbk9kle0t2XJ/lCVb0zyZ2T3HNm+oVV9fbtbPe0JKclyUFHHdNrfRwAAACwL1tYWNir+1tcXNzr+9ybBDzzvTLJiRm6Zb00yc22s6ywBgAAAFhXBlme76VJHpIh5HllkncleXBVXa2qDs/QcueD4/SHjNOPSnLsehUMAAAAbFxa8MzR3R+vqmsn+Xx3/0dVvTrDeDsfzdBi5wndfdE4/V5Jzk3yqSTvXLeiAQAAgA1LwLOC7r7NzO1O8vjxJ8umP2YvlwYAAABwJbpoAQAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMQJeAAAAAAmTsADAAAAMHECHgAAAICJE/AAAAAATJyABwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcZvWu4CNaMshB+S8U49b7zJgn7O4uJiFhYX1LgP2Oa4NmM+1AfO5NmBj0oIHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4jatdwEb0dZLrsiWJ56x3mXAvulNrg32jq2nHrfeJQAAwB6jBQ8AAADAxAl4AAAAACZOwAMAAAAwcQIeAAAAgIkT8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMRNPuCpqm07mH9oVf3azP0bVNUrx9u3r6r77sI+T6mq3975agEAAAD2vMkHPKtwaJL/Cni6+8LuPnG8e/skOx3wAAAAAOxL9puAp6o2V9Xbquqsqjq3qh44zjo1yc2q6uyqenpVbamqj1XVgUmenOTB47wHL2+ZMy63Zbz9v6vqvKr65yQ/OLPMzarqTVV1ZlW9u6pusdcOGgAAACDJpvUuYA/6VpIHdfclVXVYkvdX1euSPDHJrbv79kmyFNh097er6veT3Km7HzPOO2XehqvqjkkekuQOGc7ZWUnOHGefluRXu/vTVfWjSf4qyb3mbOPkJCcnyYFHHr0njheA3bC4uLjeJazatm3bJlUv7C2uDZjPtQHz7e/Xxv4U8FSSp1bVPZNckeSGSY7YQ9u+R5JXd/c3k2QMjlJVm5PcLckrqmpp2YPmbaC7T8sQBuWgo47pPVQXALtoYWFhvUtYtcXFxUnVC3uLawPmc23AfPv7tbE/BTwPS3J4kjt293eqamuSg3dyG9/Nlbutza4/L5Q5IMnFS62DAAAAANbDfjMGT5LrJPniGO4cm+Sm4/RvJLn2Cussn7c1yQ8nSVX9cJLvH6e/K8mDquoaVXXtJPdPku6+JMn5VfWz4zpVVbfbc4cEAAAAsGP7U8DzoiR3qqoPZ2jN88kk6e6vJHnvOGDy05et844kt1waZDnJPya5XlWdneTRST41buOsJC9Lcva4zLtntvGwJL9cVR9N8vEkDwwAAADAXjT5LlrdvXn8/eUkd11hmYcum3TrcfpXk9x52byfWmEbT0nylDnTz09yn52rGgAAAGDP2Z9a8AAAAABsSAIeAAAAgIkT8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMRtWu8CNqIthxyQ8049br3LgH3O4uJiFhYW1rsMAACAydGCBwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcQIeAAAAgIkT8AAAAABMnIAHAAAAYOIEPAAAAAATt2m9C9iItl5yRbY88Yz1LgP2TW9av2tj66nHrdu+AQAAdocWPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMQJeAAAAAAmTsADAAAAMHECHgAAAICJE/AAAAAATJyABwAAAGDiBDwAAAAAE7fPBzxVtW0NtvmAqnriePv4qrrlLmxjsarutKdrAwAAANhZ+3zAsxa6+3Xdfep49/gkOx3wAAAAAOwrJhPw1ODpVfWxqjq3qh48Tl8YW9O8sqo+WVUvqqoa5913nPaeqnp2Vb1+nP7IqvrLqrpbkgckeXpVnV1VN5ttmVNVh1XV1vH2NarqpVV1TlW9LMk1Zmr7qar6l6o6q6peUVWb9+7ZAQAAADayTetdwE74mSS3T3K7JIcl+VBVvWucd4ckt0pyYZL3Jvmxqvpwkv+b5J7dfX5VvWT5Brv7fVX1uiSv7+5XJsmYDc3z6CTf7O7bVtVtk5w1Ln9Ykt9L8pPdfWlV/U6S30zy5NmVq+rkJCcnyVc50NAAACAASURBVIFHHr2LpwBYS4uLi+tdAsy1bds2z0+Yw7UB87k2YL79/dqYUsBz9yQv6e7Lk3yhqt6Z5M5JLknywe7+XJJU1dlJtiTZluQz3X3+uP5LMgYsu+ieSZ6dJN19TlWdM06/S4YuXu8dw6EDk/zL8pW7+7QkpyXJQUcd07tRB7BGFhYW1rsEmGtxcdHzE+ZwbcB8rg2Yb3+/NqYU8KzYtCbJf87cvjzDcW1v+e35br7Xde3gZfPmBTOV5K3dfdIu7g8AAABgt0xmDJ4k70ry4Kq6WlUdnqFFzQe3s/wnk/xAVW0Z7z94heW+keTaM/e3JrnjePvEZft/WJJU1a2T3Hac/v4MXcKOHudds6puvorjAQAAANgjphTwvDrJOUk+muTtSZ7Q3RettHB3X5bk15K8qarek+QLSb4+Z9GXJnl8VX2kqm6W5BlJHl1V78sw1s+Sv06yeeya9YSM4VJ3fynJI5O8ZJz3/iS32J0DBQAAANgZ+3wXre7ePP7uJI8ff2bnLyZZnLn/mJnZ7+juW4zfqvWcJB8elzk9yenj7ffmql+TftuZ2783LndZkoesUOPbM4wHBAAAALDXTakFz6541Djo8seTXCfDt2oBAAAA7Ff2+RY8u6O7/yzJn613HQAAAABraX9vwQMAAACw3xPwAAAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMQJeAAAAAAmTsADAAAAMHECHgAAAICJE/AAAAAATJyABwAAAGDiBDwAAAAAEyfgAQAAAJi4TetdwEa05ZADct6px613GbDPWVxczMLCwnqXAQAAMDla8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4jatdwEb0dZLrsiWJ56x3mXAmth66nHrXQIAAMCGowUPAAAAwMQJeAAAAAAmTsADAAAAMHECHgAAAICJE/AAAAAATJyABwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcQIeAAAAgIkT8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXh2QlVtW8Uy79sbtQAAAAAsEfDsYd19t/WuAQAAANhYBDy7oKo2V9Xbquqsqjq3qh44M2+HrXwAAAAA9qTq7vWuYTKqalt3b66qTUmu2d2XVNVhSd6f5Jju7qVl5qx7cpKTk+TAI4++41GPeNbeLR72ktPvc61dXnfbtm3ZvPkqlw9seK4NmM+1AfO5NmC+/eXaOPbYY8/s7jstn75pPYrZD1SSp1bVPZNckeSGSY5IctFKK3T3aUlOS5KDjjpGqsZ+a2FhYZfXXVxc3K31YX/l2oD5XBswn2sD5tvfrw0Bz655WJLDk9yxu79TVVuTHLy+JQEAAAAblTF4ds11knxxDHeOTXLT9S4IAAAA2Li04Nk1L0ryT1X14SRnJ/nkOtcDAAAAbGACnp2wNHhyd385yV23twwAAADA3qKLFgAAAMDECXgAAAAAJk7AAwAAADBxOwx4quqIqvrbqnrjeP+WVfXLa18aAAAAAKuxmhY8pyd5c5IbjPc/leRxa1UQAAAAADtnNQHPYd398iRXJEl3fzfJ5WtaFQAAAACrtpqA59Kqun6STpKqukuSr69pVQAAAACs2qZVLPObSV6X5GZV9d4khyc5cU2rAgAAAGDVdhjwdPdZVfXjSX4wSSU5r7u/s+aVAQAAALAqKwY8VfUzK8y6eVWlu1+1RjUBAAAAsBO214Ln/tuZ10kEPAAAAAD7gBUDnu7+xb1ZCAAAAAC7ZoffolVV16+qZ1fVWVV1ZlX9+fitWgAAAADsA1bzNekvTfKlJCdk+PasLyV52VoWBQAAAMDqreZr0q/X3X80c/+Pq+r4tSoIAAAAgJ2zmoDnHVX1kCQvH++fmOSMtStp/7flkANy3qnHrXcZAAAAwH5ie1+T/o0M35ZVSX4zyQvHWQck2ZbkD9a8OgAAAAB2aHvfonXtvVkIAAAAALtmNV20UlXXTXJMkoOXpnX3u9aqKAAAAABWb4cBT1X99yT/M8mNkpyd5C5J/iXJvda2NAAAAABWYzVfk/4/k9w5yQXdfWySO2T4qnQAAAAA9gGrCXi+1d3fSpKqOqi7P5nkB9e2LAAAAABWazVj8Hyuqg5N8pokb62qryW5cG3LAgAAAGC1dhjwdPeDxpunVNU7klwnyZvWtCoAAAAAVm3FgKeqDunuS6rqejOTzx1/b07y1TWtDAAAAIBV2V4LnhcnuV+SM5N0klr2+wfWvLr91NZLrsiWJ56x3mWwQWw99bj1LgEAAIA1tmLA0933q6pK8uPd/e97sSYAAAAAdsJ2v0WruzvJq/dSLQAAAADsgtV8Tfr7q+rOa14JAAAAALtkNV+TfmySX6mqC5JcmnEMnu6+7ZpWBgAAAMCqrCbg+ek1rwIAAACAXbbDgKe7L0iSqvq+JAeveUUAAAAA7JQdjsFTVQ+oqk8nOT/JO5NsTfLGNa4LAAAAgFVazSDLf5TkLkk+1d3fn+Qnkrx3TasCAAAAYNVWE/B8p7u/kuSAqjqgu9+R5PZrXBcAAAAAq7SaQZYvrqrNSd6d5EVV9cUk313bsgAAAABYrRVb8FTVX1bVjyV5YJJvJnlckjcl+bck99875QEAAACwI9trwfPpJM9IclSSlyV5SXc/f69UBQAAAMCqrdiCp7v/vLvvmuTHk3w1yd9X1Seq6klVdfO9ViEAAAAA27XDQZa7+4Luflp33yHJQ5P8TJJPrHllAAAAAKzKDgOeqrp6Vd2/ql6U5I1JPpXkhDWvDAAAAIBVWXEMnqq6d5KTkhyX5INJXprk5O6+dC/VBgAAAMAqbG+Q5d9N8uIkv93dX91L9QAAAACwk1YMeLr72L1ZyHqqqsUMQdaH17sWAAAAgJ21wzF4AAAAANi3bbiAp6quVVVnVNVHq+pjVfXgZfNPqqpzx3lPm5m+rar+T1WdVVVvq6rDx+k3q6o3VdWZVfXuqrrF3j4mAAAAYGOr7l7vGvaqqjohyX26+1Hj/eskeW2S305yYZL3J7ljkq8leUuSZ3f3a6qqk/x8d7+oqn4/yfd192Oq6m1JfrW7P11VP5rkT7r7XnP2e3KSk5PkwCOPvuNRj3jW2h8sJDn9Ptda7xJWbdu2bdm8efN6lwH7HNcGzOfagPlcGzDf/nJtHHvssWd2952WT9/eIMv7q3OTPGNsnfP67n53VS3Nu3OSxe7+UpKMXw1/zySvSXJFkpeNy70wyauqanOSuyV5xcw2Dpq30+4+LclpSXLQUcdsrFSNdbWwsLDeJaza4uLipOqFvcW1AfO5NmA+1wbMt79fGxsu4OnuT1XVHZPcN8mfVNVbZmbXCqvN3VSGLm4Xd/ft92SNAAAAADtjI47Bc4Mk3+zuFyZ5RpIfnpn9gSQ/XlWHVdXVkpyU5J3jvAOSnDjefmiS93T3JUnOr6qfHbddVXW7vXEcAAAAAEs2XAueJLdJ8vSquiLJd5I8OkPQk+7+j6r6X0nekaE1zxu6+7XjepcmuVVVnZnk60mWBmd+WJK/rqrfS3L1JC9N8tG9dTAAAAAAGy7g6e43J3nzsskLM/NfnOTFK6z7pCRPWjbt/CT32bNVAgAAAKzehuuiBQAAALC/EfCsUndP/7vUAAAAgP2SgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMQJeAAAAAAmTsADAAAAMHECHgAAAICJE/AAAAAATJyABwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcZvWu4CNaMshB+S8U49b7zIAAACA/YQWPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8AAAAABO3ab0L2Ii2XnJFtjzxjPUug/3E1lOPW+8SAAAAWGda8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYOAEPAAAAwMQJeAAAAAAmTsADAAAAMHECHgAAAICJE/AAAAAATNyaBjxVdURVvbiqPlNVZ1bVv1TVg6pqoaq+XlVnjz//PC5/SlV9fmb62VV16MzyH6mq86rqXVV1vz1c6xuq6tA9uU0AAACAvWHTWm24qirJa5I8v7sfOk67aZIHJPlaknd397yQ5s+6+xnLtpXZ5avq9kleU1WXdffbli27qbu/u7P1dvd9d3YdAAAAgH3BWrbguVeSb3f3c5cmdPcF3f0Xu7vh7j47yZOTPCZJqur0qnpmVb0jydOq6lpV9XdV9aGx1c8Dx+WuWVUvr6pzquplVfWBqrrTOG9rVR023v7NqvrY+PO4cdqWqvpEVT2vqj5eVW+pqmuM8x5bVf86bvelu3t8AAAAADtjzVrwJLlVkrO2M/8eVXX2ePsV3f2U8fZvVNXPj7e/1t3HrrD+WUkeP3P/5kl+srsvr6qnJnl7d//S2O3qg2M3sEeP27xtVd06ydnLN1pVd0zyi0l+NEkl+UBVvTNDq6NjkpzU3Y+qqpcnOSHJC5M8Mcn3d/d/rtTNq6pOTnJykhx45NHbOS2wcxYXF9e7hD1m27Zt+9XxwJ7i2oD5XBswn2sD5tvfr421DHiupKqek+TuSb6dIZhZdRetlTa57P4ruvvy8fZPJXlAVf32eP/gJDcZ9//nSdLdH6uqc+Zs9+5JXt3dl451vyrJPZK8Lsn5Y+uhJDkzyZbx9jlJXlRVr8nQLe0quvu0JKclyUFHHdOrOD5YlYWFhfUuYY9ZXFzcr44H9hTXBszn2oD5XBsw3/5+baxlwPPxDC1ckiTd/etjF6gP76Ht3yHJJ2buXzpzu5Kc0N3nza4wjgu0I9tb5j9nbl+e5Brj7eOS3DPD+EJPqqpb7co4QAAAAAC7Yi3H4Hl7koOr6tEz0665JzZcVbdN8qQkz1lhkTcn+R9LgU5V3WGc/p4kPzdOu2WS28xZ911Jjh/H67lWkgclefd2ajkgyY27+x1JnpDk0CSbd/qgAAAAAHbRmrXg6e6uquOT/FlVPSHJlzK0svmdHaw6OwZPkhw//r5HVX0kQ0j0xSSPXf4NWjP+KMmzkpwzhjxbk9wvyV8lef7YNesjGbpWfX1Z3WdV1elJPjhO+pvu/khVbVlhX1dL8sKquk6G1j9/1t0X7+AYAQAAAPaYNR2Dp7v/I8lDVpi9OGf5U5KcMmfZrUmus539PHLZ/cuS/MqcRb+V5Oe7+1tVdbMkb0tywbjOlpn1n5nkmcu2uTXJrWfuz44TdPeVagMAAABYa3ttkOV9xDWTvKOqrp6htc2ju/vb61wTAAAAwG7ZUAFPd38jyZ3Wuw4AAACAPWktB1kGAAAAYC8Q8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAAAJk7AAwAAADBxAh4AAACAiRPwAAAAAEycgAcAAABg4gQ8AAAAABMn4AEAAACYuE3rXcBGtOWQA3LeqcetdxkAAADAfkILHgAAAICJE/AAAAAATJyABwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcQIeAAAAgIkT8AAAAABM3Kb1LmAj2nrJFdnyxDPWu4wNbeupx613CQAAALDHaMEDAAAAMHECHgAAAICJE/AAAAAATJyABwAAAGDiBDwAAAAAEyfgAQAAAJg4AQ8AAADAxAl4AAAAACZOwAMAAAAwcQIeAAAAgIkT8AAAAABMnIAHAAAAYOIEPAAAAAATJ+ABAAAAmDgBDwAAAMDECXgAAAD+f3v3HqzbWdcH/PtNDoRLgIihiogehAiGSIAEFBrgBLRcYkVbGG6jQKkpclM7tkCtSgt0klKrVQw0MjRQAmEIEMALoA6bSzRcEpOccAkwJIojU0DBcEDCJU//2Ovo6/Y9yU44e79n7fP5zOw57/ustZ71W+/ev9n7/Z611gswcwIeAAAAgJnb1oCn7Qva/uJBmuspbT/X9tKFr+Pb7m57xcHYx02oad8q9gsAAAAc3natuoBv0evHGM9aHGi7ezWlAAAAAKzGlp/B0/aX2l7Z9o+S3H0a+5m2H2x7Wds3tr1V29u0vartzaZ1btv26rY3a/ucth9pe3nb827Evne3fW/bS6avB07je9q+p+2bp3lf3vaItke2PaftFW33tv2Faf27tn1724un+e4xjd+l7Z9Ox/LCg/7iAQAAAGzClp7B0/akJI9Pcp9pX5ckuTjJm8YYvzOt86IkTxtj/FbbtSSnJblg2u6NY4yvt31ekruMMa5te8zCLh7X9pSF5w/YUMJnk/zoGOOrbY9L8rokJ0/L7p/k+CR/nuTtSf5VkquS3GmMccJU2/59nZ3k6WOMT7T9oSRnJXlokv+V5GVjjFe3feYNvBanJzk9SW7+nXe73teNrbe2trbqElhi3759vjewhN6A5fQGLKc3YLmd3htbfYnWg5K8eYzxlSRp+9Zp/IQp2DkmydFJ3jGNvyLJf8x6wPPUJD8zjV+e5Ny2F0zL9lt2idbi05sleWnbeyf5ZpLvX1j2gTHGp6ZtXpfklCR/nOT72v5Wkt9L8s62Ryd5YJI3LMx91PTvP0/yr6fH/zfJmQd6IcYYZ2c9KMpRdzxuHGg9tseePXtWXQJLrK2t+d7AEnoDltMbsJzegOV2em9sx02Wl4UZ5yR51hjjB5P8lyS3SJIxxoVJdrd9SJIjxxj7b5Z8WpLfTnJSkovbbjaY+oUk/y/JiVk/c+fm11PXGGN8YVp3Lckzsx44HZHki2OMey98/cANHB8AAADAttnqgOc9SX6y7S3b3ibJv5zGb5PkM9P9dp60YZtXZ/1Sqv+TJG2PSHLnMca7sn52z/6zfjbjdkk+M8a4LslPJTlyYdn9p3voHJHkcUne1/bYJEeMMd6Y5JeT3HeMcU2Sq9o+dqqnbU+c5rgw65eSZclxAAAAAGyLLQ14xhiXJHl9kkuTvDHJe6dFv5zk/Un+MMnHNmx2bpJvy3rIk6yHMq9puzfJnyX59THGF6dlj9vwMekP3DDXWUme3PairF+e9eWFZX+a5IwkV2T93jtvTnKnJGttL836WUbPn9Z9UpKntb0syYeTPHoa/7kkz2z7wayHSQAAAADbbss/Jn2M8eIkL16y6GUH2OSUJOfvD3HGGF+fxjbOe07WQ5hlTpjW+USSey2MP3/h8VfGGI/bsN1lSe67ZF9XJXnEAcYXb+x8xgHqAQAAANgyWx7w3BjTzY0fmeRRq64FAAAAYC4OqYBnjPHsbdrPWtZvpAwAAAAwe9vxKVoAAAAAbCEBDwAAAMDMCXgAAAAAZk7AAwAAADBzAh4AAACAmRPwAAAAAMycgAcAAABg5gQ8AAAAADMn4AEAAACYOQEPAAAAwMwJeAAAAABmTsADAAAAMHMCHgAAAICZ27XqAg5Hu297RK4847RVlwEAAADsEM7gAQAAAJg5AQ8AAADAzAl4AAAAAGZOwAMAAAAwcwIeAAAAgJkT8AAAAADMnIAHAAAAYOYEPAAAAAAzJ+ABAAAAmLldqy7gcHT1Nddl9/N+b9VlHLauPuO0VZcAAAAAB5UzeAAAAABmTsADAAAAMHMCHgAAAICZE/AAAAAAzJyABwAAAGDmBDwAAAAAMyfgAQAAAJg5AQ8AAADAzAl4AAAAAGZOwAMAAAAwcwIeAAAAgJkT8AAAAADMnIAHAAAAYOYEPAAAAAAzJ+ABAAAAmDkBDwAAAMDMCXgAAAAAZm7HBzxtd7e9Ysn4K9oev4qaAAAAAA6mXasuYFXGGP921TUAAAAAHAw7/gyeya62r2p7edvz296q7Vrbk5Ok7RPa7m17Rdsz92/Udl/bM9te3PaP2t5/2u5TbX98WufIti9p+8Fp/n+3qoMEAAAADk8dY6y6hi3VdneSq5KcMsa4sO0rk3wkyY8l+cUkf5XkoiQnJflCkncm+c0xxgVtR5JHjTH+oO2bk9w6yWlJjk/yqjHGvduenuSfjTFe1PaoJBcmeewY46oNdZye5PQkufl33u2kOz75N7b60DmAcx5x61WXwAHs27cvRx999KrLgEOO3oDl9AYspzdguZ3SG6eeeurFY4yTN44fLpdofXqMceH0+DVJnrOw7H5J1sYYn0uStucmeXCSC5J8Lcnbp/X2Jrl2jPH1tnuT7J7G/0WSe7V9zPT8dkmOy3qo9PfGGGcnOTtJjrrjcTs7VTvE7dmzZ9UlcABra2u+P7CE3oDl9AYspzdguZ3eG4dLwLMxUFl83uvZ7uvjH05xui7JtUkyxriu7f7XrkmePcZ4x0GpFAAAAOBGOlzuwfM9bR8wPX5CkvctLHt/koe0PbbtkdPyd9+Iud+R5Gfb3ixJ2n5/W9cAAQAAANvmcAl4PprkyW0vT3L7JC/bv2CM8Zkkz0/yriSXJblkjPGWGzH3K7J+T59Lpo9j/985fM6MAgAAAA4BOz6IGGNcnfWbIm+0Z2Gd1yZ57ZJtj154/IJly8YY1yX5T9MXAAAAwLY7XM7gAQAAANixBDwAAAAAMyfgAQAAAJg5AQ8AAADAzAl4AAAAAGZOwAMAAAAwcwIeAAAAgJkT8AAAAADMnIAHAAAAYOYEPAAAAAAzJ+ABAAAAmDkBDwAAAMDMCXgAAAAAZk7AAwAAADBzAh4AAACAmRPwAAAAAMzcrlUXcDjafdsjcuUZp626DAAAAGCHcAYPAAAAwMwJeAAAAABmTsADAAAAMHMCHgAAAICZE/AAAAAAzJyABwAAAGDmBDwAAAAAMyfgAQAAAJg5AQ8AAADAzO1adQGHo6uvuS67n/d7qy7jsHL1GaetugQAAADYMs7gAQAAAJg5AQ8AAADAzAl4AAAAAGZOwAMAAAAwcwIeAAAAgJkT8AAAAADMnIAHAAAAYOYEPAAAAAAzJ+ABAAAAmDkBDwAAAMDMCXgAAAAAZk7AAwAAADBzAh4AAACAmRPwAAAAAMycgAcAAABg5gQ8AAAAADMn4AEAAACYuZUHPG2PafuM6fF3tT3/IM37graj7d0Wxn5hGjv5Js75E22PX3i+dlPnAgAAADhYVh7wJDkmyTOSZIzxV2OMxxzEufcmefzC88ck+ci3MN9PJDn+BtcCAAAA2EaHQsBzRpK7tr207RvaXpEkbZ/S9oK2b2t7Vdtntf33bf+s7UVtbz+td9e2b297cdv3tr3HwtwXJHn0tN73JfnbJJ/bv7DtE9rubXtF2zMXxve1fXHby6Z9fUfbByb58SQvmWq967T6Y9t+oO3H2z5oK18oAAAAgGV2rbqAJM9LcsIY495tdyf53YVlJyS5T5JbJPlkkueOMe7T9teT/HSS30hydpKnjzE+0faHkpyV5KHT9tck+XTbE7Ie9Lw+yVOT9cvBkpyZ5KQkX0jyzrY/Mca4IMmtk1w0xviltv89yc+MMV7U9q1JfneMcf40R5LsGmPcv+2jkvxqkh9ZdpBtT09yepLc/DvvtmwVttDa2tqqS2AT9u3b53sFS+gNWE5vwHJ6A5bb6b1xKAQ81+ddY4wvJflS279N8rZpfG+Se7U9OskDk7xhCluS5KgNc5yX9cu0Hp7kYZkCniT3S7I2xvhckrQ9N8mDs37Wz9fyD0HTxUl+9HpqfNPCersPtNIY4+ysh1E56o7HjeuZjy2wZ8+eVZfAJqytrflewRJ6A5bTG7Cc3oDldnpvHOoBz7ULj69beH5d1ms/IskXxxj3vp453pbkJUk+NMa4ZiEI6oE3ydfHGPtDmG/m+l+naze5HgAAAMCWOBTuwfOlJLe5KRuOMa5JclXbxyZJ1524YZ2/S/LcJC/esPn7kzyk7bFtj0zyhCTv3qpaAQAAALbKygOeMcZfJ7lwurnyS27CFE9K8rS2lyX5cKabKm/Yx3ljjEs2jH0myfOTvCvJZUkuGWO85Qb2dV6S/zDd6PmuN7AuAAAAwLY4JC4pGmM8ccnYOUnOWXi+e9myMcZVSR6xZPsXHGBfexYevzbJa5esc/TC4/OTnD89vjD/+GPSF+f6fK7nHjwAAAAAW2XlZ/AAAAAA8K0R8AAAAADMnIAHAAAAYOYEPAAAAAAzJ+ABAAAAmDkBDwAAAMDMCXgAAAAAZk7AAwAAADBzAh4AAACAmRPwAAAAAMycgAcAAABg5gQ8AAAAADMn4AEAAACYOQEPAAAAwMwJeAAAAABmbteqCzgc7b7tEbnyjNNWXQYAAACwQziDBwAAAGDmBDwAAAAAMyfgAQAAAJg5AQ8AAADAzAl4AAAAAGZOwAMAAAAwcwIeAAAAgJkT8AAAAADMnIAHAAAAYOYEPAAAAAAzJ+ABAAAAmDkBDwAAAMDMCXgAAAAAZk7AAwAAADBzAh4AAACAmRPwAAAAAMycgAcAAABg5gQ8AAAAADMn4AEAAACYOQEPAAAAwMwJeAAAAABmTsADAAAAMHMCHgAAAICZE/AAAAAAzJyABwAAAGDmBDwAAAAAMyfgAQAAAJg5AQ8AAADAzAl4AAAAAGZOwAMAAAAwcwIeAAAAgJnrGGPVNRx22n4pyZWrrgMOQccm+fyqi4BDkN6A5fQGLKc3YLmd0hvfO8a4w8bBXauohFw5xjh51UXAoabth/QG/FN6A5bTG7Cc3oDldnpvuEQLAAAAYOYEPAAAAAAzJ+BZjbNXXQAcovQGLKc3YDm9AcvpDVhuR/eGmywDAAAAzJwzeAAAAABmTsADAAAAMHMCni3S9hFtr2z7ybbPW7K8bX9zWn552/uuok7YbpvojSdNPXF52z9pe+Iq6oTtdkO9qEWjqAAAB+tJREFUsbDe/dp+s+1jtrM+WJXN9EbbPW0vbfvhtu/e7hphFTbxN9Xt2r6t7WVTbzx1FXXCdmv7yrafbXvFAZbv2PfiAp4t0PbIJL+d5JFJjk/yhLbHb1jtkUmOm75OT/KybS0SVmCTvXFVkoeMMe6V5IXZ4TdCg2TTvbF/vTOTvGN7K4TV2ExvtD0myVlJfnyMcc8kj932QmGbbfL3xjOTfGSMcWKSPUl+re3Nt7VQWI1zkjziepbv2PfiAp6tcf8knxxjfGqM8bUk5yV59IZ1Hp3k1WPdRUmOaXvH7S4UttkN9sYY40/GGF+Ynl6U5Lu3uUZYhc383kiSZyd5Y5LPbmdxsEKb6Y0nJnnTGOMvkmSMoT84HGymN0aS27RtkqOT/E2Sb2xvmbD9xhjvyfrP+4Hs2PfiAp6tcackn154/pfT2I1dB3aaG/tz/7Qkf7ClFcGh4QZ7o+2dkvxkkpdvY12wapv5vfH9Sb6t7Vrbi9v+9LZVB6uzmd54aZIfSPJXSfYm+bkxxnXbUx4c0nbse/Fdqy5gh+qSsY2fR7+ZdWCn2fTPfdtTsx7wnLKlFcGhYTO98RtJnjvG+Ob6f8bCYWEzvbEryUlJHpbklkn+tO1FY4yPb3VxsEKb6Y2HJ7k0yUOT3DXJH7Z97xjjmq0uDg5xO/a9uIBna/xlkjsvPP/urCfnN3Yd2Gk29XPf9l5JXpHkkWOMv96m2mCVNtMbJyc5bwp3jk3yqLbfGGNcsD0lwkps9m+qz48xvpzky23fk+TEJAIedrLN9MZTk5wxxhhJPtn2qiT3SPKB7SkRDlk79r24S7S2xgeTHNf2LtONzB6f5K0b1nlrkp+e7uD9w0n+dozxme0uFLbZDfZG2+9J8qYkP+V/XzmM3GBvjDHuMsbYPcbYneT8JM8Q7nAY2MzfVG9J8qC2u9reKskPJfnoNtcJ220zvfEXWT+zLW2/I8ndk3xqW6uEQ9OOfS/uDJ4tMMb4RttnZf1TTo5M8soxxofbPn1a/vIkv5/kUUk+meQrWU/YYUfbZG/8SpJvT3LWdKbCN8YYJ6+qZtgOm+wNOOxspjfGGB9t+/Yklye5LskrxhhLPxoXdopN/t54YZJz2u7N+iUpzx1jfH5lRcM2afu6rH9y3LFt/zLJrya5WbLz34t3/Yw9AAAAAObKJVoAAAAAMyfgAQAAAJg5AQ8AAADAzAl4AAAAAGZOwAMAAAAwcwIeAGBHaLvW9uEbxn6+7Vk3cp7fb3vMDayz7wDj57R9zI3Y1wva/uKNqe9b1fYpbb9rO/cJAGw9AQ8AsFO8LsnjN4w9fhq/QV13xBjjUWOMLx706g4BbY9M8pQkAh4A2GEEPADATnF+kh9re1SStN2d9SDjfW2PbvvHbS9pu7fto/ev0/aj01k+lyS5c9ur2x47Lb+g7cVtP9z29MWdtf21ab4/bnuHjcW0Pantu6ft39H2jtdX/HQG0q+3fc9U0/3avqntJ9q+aKHej7V9VdvL257f9lbTsoe1/bPp+F658Dpc3fZX2r4vyROSnJzk3LaXtr3ltOyDba9oe3bbLtRzZtsPtP142wdN40e2/R/Tfi5v++ybcrwAwMEl4AEAdoQxxl8n+UCSR0xDj0/y+jHGSPLVJD85xrhvklOT/Nr+ICPJ3ZO8eoxxnzHGn2+Y9t+MMU7KeijynLbfPo3fOskl03zvTvKrixu1vVmS30rymGn7VyZ58SYO42tjjAcneXmStyR5ZpITkjxlYd93T3L2GONeSa5J8oy2t0hyTpLHjTF+MMmuJD+7MO9XxxinjDFek+RDSZ40xrj3GOPvkrx0jHG/McYJSW6Z5McWtts1xrh/kp9fOMbTk9wlyX2mGs79Fo4XADhIBDwAwE6yeJnW4uVZTfLf2l6e5I+S3CnJd0zL/nyMcdEB5ntO28uSXJTkzkmOm8avS/L66fFrkpyyYbu7Zz2Y+cO2lyb5z0m+exP1v3X6d2+SD48xPjPGuDbJp6b9J8mnxxgXbtj33ZNcNcb4+DT+qiQPXpj39TmwU9u+v+3eJA9Ncs+FZW+a/r04ye7p8Y8kefkY4xtJMsb4m2/heAGAg2TXqgsAADiILkjyP9veN8ktxxiXTONPSnKHJCeNMb7e9uokt5iWfXnZRG33ZD3MeMAY4ytt1xa22Whs3DzrAc0DbmT9107/XrfweP/z/X+3bdzXmPZ3fQ50jLdIclaSk8cYn277gvzjY9xfwzcX9t8lNdzU4wUADhJn8AAAO8YYY1+StaxfIrR4c+XbJfnsFO6cmuR7NzHd7ZJ8YQp37pHkhxeWHZFk/6dlPTHJ+zZse2WSO7R9QLJ+yVbbe+bg+J7982b9njrvS/KxJLvb3m0a/6msXzq2zJeS3GZ6vD/M+Xzbo/MPx3R93pnk6W13JUnb22drjxcA2AQBDwCw07wuyYlJzlsYOzfJyW0/lPWzeT62iXnenmTXdFnXC7N+mdZ+X05yz7YXZ/2ypv+6uOEY42tZD0vOnC7xujTJA2/a4fwTH03y5Kmu2yd52Rjjq0memuQN06VW12X9Pj7LnJPk5dOlVNcm+Z2sXxJ2QZIPbmL/r0jyF0kun47tiVt8vADAJnT9voMAABzqpk8G+93phsgAAH/PGTwAAAAAM+cMHgAAAICZcwYPAAAAwMwJeAAAAABmTsADAAAAMHMCHgAAAICZE/AAAAAAzNz/B8QYLVJQ3OUJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
Variable importance heatmap shows variable importance across multiple models. Some models in H2O return variable importance for one-hot (binary indicator) encoded versions of categorical columns (e.g. Deep Learning, XGBoost). In order for the variable importance of categorical columns to be compared across all model types we compute a summarization of the the variable importance across all one-hot encoded features and return a single variable importance for the original categorical feature. By default, the models and variables are ordered by their similarity." + ], + "text/markdown": [ + "\n", + "> Variable importance heatmap shows variable importance across multiple models. Some models in H2O return variable importance for one-hot (binary indicator) encoded versions of categorical columns (e.g. Deep Learning, XGBoost). In order for the variable importance of categorical columns to be compared across all model types we compute a summarization of the the variable importance across all one-hot encoded features and return a single variable importance for the original categorical feature. By default, the models and variables are ordered by their similarity." + ], + "text/plain": [ + "\n", + "> Variable importance heatmap shows variable importance across multiple models. Some models in H2O return variable importance for one-hot (binary indicator) encoded versions of categorical columns (e.g. Deep Learning, XGBoost). In order for the variable importance of categorical columns to be compared across all model types we compute a summarization of the the variable importance across all one-hot encoded features and return a single variable importance for the original categorical feature. By default, the models and variables are ordered by their similarity." + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg4AAAJmCAYAAAA0HAgOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZhdRbn2/+/dnU5CBhMgKDKGSRQiBAhwUEBQ5IAT4Iui8oJRFAGRox4HjtPBgSMIrzgbIz+MICKTeBCRQZApTEEIhDALQRAEwpCBzOnn98eqDSs7u7t31tqd3rv3/bmuffUaqmrVWt1JV1fVqkcRgZmZmVk9Oga6AmZmZtY63HAwMzOzurnhYGZmZnVzw8HMzMzq5oaDmZmZ1c0NBzMzM6ubGw7WNiRtJmmhpM460u4j6clezk+T9J3G1tDMrPm54WBNSdKVkr5V4/hBkv4lacialhkR/4iIURGxsjG1LEZSSNp6IOtQIWmOpP0Guh55PTXaJF0n6RMNKH+ypJvKlmPWrtxwsGY1DThCkqqOHwGcGxEr1qSwIg2NwczPw8yKcsPBmtUfgPWAvSoHJK0LvAc4O+2/W9JdkuZLekLSSbm049Nf9kdJ+gdwbe7YkJTmY5Lul7RA0qOSPlVdCUlfkTQ3/WV+eE+VlfQeSTMlvSTpZkk71HOTkk6SdKGk36R6zJL0Bkn/JenZdF/759JfJ+m7km6XNE/S/0paL3f+fZJmp3pcJ+lNuXNzJH1Z0j3Ay5LOAzYD/piGcL6U0l2YenXmSbpB0va5MqZJ+qmkP6X63iZpq9z57SVdLekFSc9I+ko63iHpREl/l/S8pAvy9S6it2eeu9YCSfdJOiQdfxMwBdgj3fNLufv6maQ/p+PTJW0o6QeSXpT0gKSd+io/nZuc8v84PcMHJL2jzL2aNRM3HKwpRcRi4ALgyNzhDwIPRMTdaf/ldH4s8G7gWEkHVxX1NuBNwL/XuMyzZA2R1wAfA86QtHPu/IbAOGBj4KPAVEnbVheS8pwFfApYH/gFcKmkYXXe7nuBc4B1gbuAK8n+bW4MfCuVl3ck8HFgI2AF8KNUjzcA5wGfBTYALidrFAzN5f0w2bMaGxEfBv4BvDcN4XwvpfkzsA3wWuBO4Nyq638Y+Gaq7yPAyen6o4G/AFekum0NXJPynAAcTPb92Ah4Efhpnc9nNXU887+TNTrHpLr+RtLrI+J+4BjglnTPY3PFfhD4Gtn3fClwS7r/ccBFwPdzaWuWnzu/O/BoyvvfwO/LNpTMmkZE+ONPU36APYF5wDppfzrwuV7S/wA4I22PBwLYMne+cmxID/n/APxH2t6H7JfyyNz5C4Cvp+1pwHfS9s+Bb1eV9SDwth6uE8DWafsk4OrcufcCC4HOtD86pR+b9q8DTsml3w5YBnQCXwcuyJ3rAP4J7JP25wAfr6rLHGC/Xp7p2HT9Mbn7PjN3/l1kjTnIGhR39VDO/cA7cvuvB5bX+l6kZ98NvFT1WQF8ouAznwkclLYnAzdVnZ8G/DK3/xng/tz+m4GXenlO1eU/BSh3/nbgiIH+N+WPP434uMfBmlZE3AQ8BxwkaUtgV+C3lfOSdpf0V0nPSZpH9pfkuKpinuipfEkHSro1dau/RPZLMJ//xYh4Obf/ONlfy9U2B/4zdZm/lMratIe0tTyT214MzI1XJ3AuTl9H5dLk7+lxoCvVe6O0D0BEdKe0G/eQdzWSOiWdkrrh55M1LGDV5/Kv3PaiXN02JftLvJbNgUtyz+d+YCXwuh7SPxURY/MfID+hsddnLunI3DDGS8AEVv/ZqFb9fajef+V7UEf5/4yIfATBnn52zFqOGw7W7M4m65o/ArgqIvL/mf8WuBTYNCLGkI1dV0+mrBn+NXVpXwycDrwu/WK6vCr/upJG5vY3I/tLstoTwMlVv+hGRMR5dd/lmtm0qk7LgbmpbptXTkhSSvvPXPrq51G9/xHgIGA/sm748ZXi6qjXE8BWvZw7sOoZDY+If/aQvp5r1XzmkjYHfgkcD6yfvrf35u6hVEjgOsoH2Dg9/4qefnbMWo4bDtbszib7JfZJ4NdV50YDL0TEEkm7kf3Sq9dQYBhZj8YKSQcC+9dI901JQyXtRTYf4sIaaX4JHJN6QCRppLKJm6PXoD5r4v9K2k7SCLI5EBelHooLgHdLeoekLuA/ycbqb+6lrGeALXP7o1Oe54ERwP+sQb0uAzaU9FlJwySNlrR7OjcFODn90kXSBpIOWoOyq/X2zEeSNQ6eS9f6GFmPQMUzwCZVcz/WRF/lQzY/5ARJXZI+QDbP5vKC1zNrKm44WFOLiDlkv/hGkvUu5B0HfEvSAuAbZL846y13AdmEvQvIJup9pEb5/0rnniKbIHhMRDxQo6w7yBo2P0npHyEb5+4v55CNyf8LGE52H0TEg8D/BX5M1gPxXrKJj8t6Keu7wNdSl/sXyBpqj5P1UtwH3FpvpdIzfWe67r+Ah4F90+kfkj3fq9L361ayCYSF9PbMI+I+4P+RTW58hmx+wvRc9muB2cC/JM0tcO2+yge4jWyC6VyyyaOHRsTza3ots2akVYfhzKyZSboO+E1EnDnQdbHaJE0mm8S550DXxaw/uMfBzMzM6uaGg5mZmdXNQxVmZmZWN/c4mJmZWd0c6KbJjR67Xqy/0SaF8pbtTBo6pHi7csGi3iby927EOl2F85a955dL1HvlyuIXXy2U1xpa9zXDyxVQ0ILFy0vl717ZXTivSjy0Mj8mo0YU//kEWPhy8Z+xjs7i/ybL9i4PG1r818UTD8yaGxEblKpAk9tRI2MBjQ+8+xhLr4yIAxpecAluODS59TfahK+ec1mhvN3F/08GYJP1RxTOe+3fVouKXLddJ2xYOO+y5eX+4d5yZ/E1ehbOW1I4b9ewzsJ5AQ555xsK5x3SUfwX8LV3FV2/KbNw/tLCeYeWeGbd3cV/ib515437TtSL62/rdfHOXr1mTL3hT1a3bFm5fxtbb7Zu4bzHv2WLx/tO1doWsJLvvLr+WsMczkN9rXi61nmowszMzOrmHgczM7MG6OiPP8VL9hz3BzcczMzMShLt03AYVEMVkhb2Q5nvk3Ri2j5Y0nYFyrhO0qRG183MzGxtc49DHyLiUl6NYXAwWSCf+wauRmZm1nTUTz0OTWhQ3maKlneapHslzZJ0WDq+T/rr/yJJD0g6txL6VtK70rGbJP1I0mXp+GRJP5H0FuB9wGmSZkraKt+TIGmcpDlpex1Jv5N0j6TzgXVyddtf0i2S7pR0oaRRa/fpmJmZFTdYexzeD0wEdgTGATMk3ZDO7QRsTxbxcDrwVkl3AL8A9o6IxySdV11gRNws6VLgsoi4CHp9j/xYYFFE7CBpB+DOlH4c8DVgv4h4WdKXgc+ThUZ+haSjgaMB1tuw3KtfZmbW//ptjkMTGqy3uSdwXkSsjIhngOuBXdO52yPiyYjoBmYC44E3Ao9GxGMpzWoNhzW0N/AbgIi4B7gnHf83YDtguqSZwEdh9Rd/I2JqREyKiEmj112vZFXMzMwaZ7D2OPS2ok1+xZmVZM+g6Ao4K3i18VW9dF+tFWYEXB0RHy54PTMza1Il1lJrKYO1x+EG4DBJnZI2IOsBuL2X9A8AW0oan/YP6yHdAmB0bn8OsEvaPrTq+ocDSJoA7JCO30o2NLJ1OjdCUvEl/8zMzNaywdpwuIRseOBu4FrgSxHxr54SR8Ri4DjgCkk3Ac8A82ok/R3wRUl3SdoKOB04VtLNZHMpKn4OjJJ0D/AlUqMlIp4DJgPnpXO3kg2TmJlZK0tvVTT604wG1VBFRIxKXwP4Yvrkz18HXJfbPz53+q8R8cb0lsVPgTtSmmnAtLQ9nWyOQt4Oue2vpXSLgQ/1UMdreXW+hZmZDQKeHNmePpkmLM4GxpC9ZWFmZmY5g6rHoYyIOAM4Y6DrUW3M8A7e86aRhfI+Mb9c+N9rZ/c4utOnWXcUj5o4auTQwnmHdZWLMjluXPGIoG/dpfirs8++uLhwXoAb7i4e1XOzDUf3nagHi0qEiAZ4eUHx6JjLlxX/XneVCBF9yR/vL5wXYKPNxxbOO39e8edV5lkDLH65XAj1Qc8LQJmZmZmtzj0OZmZmJXmOg5mZmVkN7nEwMzNrAPc4DFJ9hd6WNFbScbn9jSRVYlNMlPSuAtc8SdIX1ry2ZmZmzaXtGg51GEu2GBQAEfFURFRWhZwIrHHDwczMBrk2WgCqSavV/ySNknRNCm89S9JB6dQpwFYpdPZpksan8NxDyaJYHpbOHVbdk5DSjU/bX5X0oKS/ANvm0mwl6QpJf5N0oySvHGlm1uIqkyPboeHQznMclgCHRMT8FO761hQ2+0RgQkRMBKg0BCJimaRvAJMqK05KOqlWwZJ2IVs5cieyZ3wn8Ld0eipwTEQ8LGl34GfA26vyvxJWe+NNN2nU/ZqZmZXWzg0HAf8jaW+gG9gYeF2Dyt4LuCQiFgGkBgmSRgFvAS7MVrYGYFh15oiYStbAYMedJ9aKsmlmZk0m9//6oNbODYfDgQ2AXSJiuaQ5rB4auy/5sNpU5a/1C78DeKnSm2FmZtZqmnQEZa0YAzybGg37Apun49Whs/NqhdXeGUDSzsAW6fgNwCGS1pE0GngvQETMBx6T9IGUR5J2bNwtmZnZgPDkyLZwLjBJ0h1kvQ8PAETE88D0NNHxtKo8fwW2q0yOBC4G1kvBsY4FHkpl3AmcD8xMaW7MlXE4cJSku8kCah2EmZlZi2i7oYpc6O25wB49pPlI1aEJ6fgLrB4Se/8eyjgZOLnG8ceAA9as1mZm1szaacnptms4mJmZNZyjY5qZmZmtzj0OTe6J5xbz+Z/PKpT38elPlLr2u46pHpWp34oFywrnvf7i2YXzdgwr9yO9wfixhfNOv/yhwnkXPzGvcF6ADXbeqHDeu256vHDelx9+vnBeKPdz0jG8+Pd66LgRhfOus3FPc6fr88zDLxTOO2rDkYXzPn/Ps4XzAozY7DWl8g927TRU0Sa3aWZmNjhJOiCtVPyIpBNrnD9I0j1pYv8dkvasN28t7nEwMzNrgIHocZDUCfwUeCfwJDBD0qURcV8u2TXApRERknYALgDeWGfe1bjHwczMrHXtBjwSEY9GxDLgd1S95h8RCyOisijhSF5doLDPvLW4x8HMzKys/nurYlxab6hiagpLULExkJ/Q9iSw+2rVkw4Bvgu8Fnj3muSttlZ7HPLRJCV9S9J+DShzrKTjcvsbSbqobLkF6jEg1zUzs0FtbkRMyn2mVp2vFSBjtZAHEXFJRLwROBj49prkrTZgPQ4R8Y0GFTUWOI4syiQR8RRwaJkCJXVGxMo1ydOI65qZWWsawLcqngQ2ze1vAjzVU+KIuEHSVikq9BrlrejX25R0ZJrJebekc6rOTZN0aNqeI+l/JN2SZnzuLOlKSX+XdExKM0rSNZLulDRLUmUc5hRgqzRb9DRJ4yXdm/J0Sjo9pb9H0md6qescSd+QdBPwgfRgr5D0N0k3SnpjSreVpFslzUi9JgvT8fx1h0v6VbruXSkWBpImS/p9KvdhSd9r6AM3M7OBMXCxKmYA20jaQtJQ4EPApatUTdpaKXRniqs0FHi+nry19FuPg6Ttga8Cb42IuZLWA07oJcsTEbGHpDOAacBbyaJNzgamAEuAQyJifmop3ZrCVZ8ITKhEnJQ0Plfm0WSBp3aKiBWpDr1ZEhF7pnKuAY6JiIcl7U7Wo/F24IfADyPivEqjpoZPA0TEm1OD4ypJb0jnJgI7AUuBByX9OCJWWXBB0tGp7oxYt1GRvs3MbLBJv9uOB64EOoGzImJ25fdTREwB/g9wpKTlwGLgsDRZsmbevq7Zn0MVbwcuSjEhiIgX1Hus8korZxYwKiIWAAskLZE0FngZ+B9JewPdZJM6+vqtuh8wJSJWVOrQR/rzIevdAN4CXJir87D0dQ+yMSKA3wKn1yhnT+DH6ZoPSHocqDQcromIeek695FF5Vyl4ZDGsKYCrLfptn2ON5mZ2cAS0NHrr7j+ExGXA5dXHZuS2z4VOLXevH3pz4aDqGOSRc7S9LU7t13ZH0IWVXIDYJcUCnsOWY9EI+vwcvraAbxU6cUooLcfn/y9rcRvtpiZWQvpzzkO1wAflLQ+QB3DBH0ZAzybGg37kv2lDrAA6GkN2KuAYyQNWZM6RMR84DFJH0j5JGnHdPpWsm4fyMaDarmBrKFDGqLYDHiwnmubmVlrGqA5Dmtdv1UrjZOcDFwv6W7g+yWLPBeYlN5nPRx4IF3neWC6pHslnVaV50zgH8A9qQ7V4bJ7czhwVMo3m1cXxfgs8HlJtwOvB2oFGfgZ0ClpFtnwx+SIWFojnZmZWUvp127yiPg18Osezk3ObY/PbU8jmxy52jmy+QW1yqpuEExIx1cAn0+fvuo6vmr/MeCAGkn/CfxbWrrzQ8AdKf2c3HWXAJNrXGMaq97be/qql5mZtYA2Cqvt8fU1twvwk/Rqy0vAxwe4PmZmZmtN2zUcJF1C9opm3pcj4sp68kfEjcCOfSZskOWLVvDPu58plHdEiRDRANdf9Uip/EV1rbtO4bzD1in3I/38vxYWzrvs+UWF85YJ8wywaEHxkbBlc4vXu3t5d+G8ZanEFPZt996870Q9eLnEswaYN6T4n6XrjiseVvuFznJT/pfOXVwq/2DXTmG1267hEBGHDHQdzMxssBEdA/U+5lrWJu0jMzMza4S263EwMzNrOIFKDge1Cvc4mJmZWd3ccMjJB6qqOn6mpO0Gok5mZtb8RDZht9GfZuShijpExCcGug5mZmbNwD0Oqxsi6dcpDPdFkkZIuk7SJABJH07hsu+V9ErQEEkLJZ2awnD/RdJuKd+jkt6X0nSm0N8zUvmfGqibNDOzBlL79Di44bC6bYGpEbEDMB84rnJC0kZkEcbeThYee1dJlUiZI4HrImIXsvgZ3wHeCRwCfCulOQqYFxG7ArsCn5RUvaYEko6WdIekO5Yvnd8f92hmZlaIhypW90RETE/bvwFOyJ3blaxx8ByApHOBvYE/AMuAK1K6WcDSFJBrFjA+Hd8f2EHSoWl/DLAN8Fi+Avmw2qPX38phtc3MWkC7vFXhhsPqqn9R5/d7+6lYHhGVtK+EBo+I7kp0zpT/M/WuUmlmZi1CzTu00GgeqljdZpIqwbQ+DNyUO3cb8DZJ4yR1pvPXr0HZVwLHSuqCLOS2pOJryJqZma1l7nFY3f3ARyX9AngY+DnwXoCIeFrSfwF/Jes9uDwi/ncNyj6TbNjizhQk6zng4F5zmJlZS/BQRRtKobFrrdewTy7Nb4Hf1sg7Krd9Uq1zEdENfCV9zMzMWo4bDmZmZiVJtE2QKzccBrGlz75cKv+4N44rnHfB8pWF865ctLxw3pGvLTdlZJ2RQwvnffqfxV+djZXlXp7ZdqfXF847+7rH+k7Ug9dMeG3hvAArFi4rnHfsJq8pnPeRGU8Vzjt0veGF8wKMKRE2/p8Pzi2cd9Q26xXOCzB8eFep/DZ4uOFgZmbWAH6rwszMzKyKexzMzMzKaqOw2m44mJmZlSbU0R6d+C13l5LGSjoubW8k6aIGlXuSpJC0de7Y59KxSQXLPDgfjjsfLMvMzKwVtVzDARhLCjwVEU9FxKF9pF8Ts4AP5fYPBe4rUd7B1F4XwszMBhGloYpGf5pRKzYcTgG2kjRT0oWS7gWQNFnSHyT9UdJjko6X9HlJd0m6VdJ6Kd1Wkq5I4a9vlPTGXNl/AA5K6bYE5pGt7kg61ltI7ZMl3Z2u9TpJbwHeB5yW6rpVSv4BSbdLekjSXv35oMzMzBqtFRsOJwJ/j4iJwBerzk0APgLsBpwMLIqInYBbgCNTmqlkgaZ2Ab4A/CyXfz7whKQJZHEozq+cqCOk9q0RsSNwA/DJiLgZuBT4YkRMjIi/p7RDImI34LPAf9e6QYfVNjNrPepQwz/NqBUbDr35a0QsSGGv5wF/TMdnAeMljQLeAlwoaSbwC6B65ZzfkQ1XHAxckjv+SkjtiFgBVEJqQxZS+7K0/TdeDaNdy+/7ShcRUyNiUkRM6hpWfJEbMzOzRhtsb1UszW135/a7ye61A3gp9Vb05I/AacAdETE/i0UF1B9SeyW9P9eldaYzM7NWIS8A1cwWAKOLZIyI+cBjkj4AoMyOVWkWA18mG+rIKxJSu3BdzcyslTR+YqQnRzZIRDwPTE+TIk8rUMThwFGS7gZmkyZDVl3jdxFxZ9Wxp4FKSO27gTvrCKn9O+CLaYLmVn2kNTMza3ot2VUeER+pcWwaMC23P77WuYh4DDigRv6TerjWPrntekJqXwRclLans+rrmPmy5tL7XAgzM2sR7RQds+V6HMzMzGzgtGSPQzuJ7u7CoYeHrlsu/O9zs54pnLdMaOyh40YUzvvErU8WzgvQMWxg/kmUeV4Ad1/2YOG8w0qEIn/50RcL5wXo6Cr+t8szJcLGl/k+L39xceG8AAuWPtd3oh6Uqffify4onBdgQXd3qfztwJMjzczMzKq4x8HMzKysNoqO6R4HMzMzq5t7HMzMzBrAcxzaUD5kd4PKm5xiXJiZ2WAmLwDVrl4J2V2vtIpkTyYDbjiYmdmg4aGKVb0SshtYDiwGnge2JYt6eVxEdEtaCHwf+HfgPyW9HXgvsA5wM/Ap4P8Ak4BzJS0G9iBbDOr7wChgLjA5rUhpZmYtTIA62uNv8fa4y/pVh+zeDfhP4M3AVsD7U7qRwL0RsXtE3AT8JCJ2jYgJZI2H96QVJO8ADk/lrQB+DByaQnqfxerxMIDqsNrl3r02MzNrJPc49O72iHgUQNJ5wJ5ky0mvBC7OpdtX0peAEcB6ZDEw/lhV1rbABODqFHGzE6jZ2xARU4GpAKPW3SJqpTEzsybSRtEx3XDoXfUv7cr+kohYCSBpOPAzYFJEPCHpJKDWko0CZkfEHv1VWTMzs/7moYpVVYfB3k3SFpI6gMOAm2rkqTQS5koaBRzaQ3kPAhtI2gNAUpek7RtaezMzGzAdnWr4pxm5xyEnIp6XVAnZvRi4hWzC5JvJJkdeUiPPS5J+CcwC5gAzcqenAVNykyMPBX4kaQzZs/8B2bCGmZlZS3DDoUolZLekfYAvRMRhNdKMqtr/GvC1GukuZtW5EDOBvRtZXzMzG3iSPMfBzMzM6tesCzY1mhsOPYiI64DrBrgaZmZmTcUNhyYXK4MVC5YVyrt83tJS1y7T7Vam5b30mZcL512xsNizqlBXbwuB9q57yYrCeTu6Bm6e8pKnFxbO2710ZQNrsmY6hpX4Xi3vLn7h7nJvSJeq99JFhfN2rlPuv/tSz6wdtNHrmH6rwszMzOrmHgczM7NGaJM5Du5xMDMzs7q5x8HMzKwsz3FobZLGSjoubW8k6aIGlLm/pFuUAk1I6pQ0U9JbypZtZmbWKgZlwwEYCxwHEBFPRcShfaTvU0RcBTwOHJUOfQaYERE3lylXknt9zMxanqCzo/GfJjRYf2mdAmwlaSbwMPCmiJggaTJwMFlkygnA/wOGAkcAS4F3RcQLkrYCfgpsACwCPhkRDwCfA26SdAtwPFnYbSS9Dvg5sBnQDZwQEbdK+jfgDLJ4FouAyRHxsKRPAPsBo4BhwDv7+4GYmVk/EtAmQxWDteFwIjAhIiZKGg9cljs3AdiJ7Jf5I8CXI2InSWcAR5LFj5gKHJN+ye9OFv3y7RHxtKQfkMWwOCEiXkhl/gj4XmosVK43Abgf2DMiVko6APgOWbAsyGJXTIyIF6srL+lo4GiAocPXa8TzMDMza4jB2nDozV8jYgGwQNI84I/p+CxghxTh8i3AhWk6A2S9AhU/BU6JiGm5Y/sB2+bSrytpHbIhk7NTD0a1q2o1GgAiYipZ44WRrxlfbrUZMzNbK7zk9OCVX06xO7ffTfY8OoCXImJircwR0S2p+pe5gN0iYpVlCyWdDFwZET+TtDVwRe508eURzczMktSj/UOyYfgzI+KUqvOHA19OuwuBYyPi7nRuDrAAWAmsiIhJfV2vOWdelLcAGF0kY0TMBx6T9AEAZXbsI9tfgE9XdiRVGh1jgH+m7clF6mNmZi2gMseh0Z++Lit1kvWEHwhsB3xY0nZVyR4D3hYROwDfJvVo5+wbERPraTTAIG04RMTzwHRJ9wKnFSjicOAoSXcDs4GD+kj/aeCtku6RdB/wyXT8VOA0SdML1MHMzKwvuwGPRMSjqdf7d1T9zoqIm3ND47cCm5S54KAdqoiIj9Q4Ng2YltsfX+tcRDwGHNBL2aOq9p8DVnvlMyJuAt6QO/S1dPzMOm7BzMxahvpryelxku7I7U9N8+AqNgaeyO0/CezeS3lHAX/O7QdwVRqC/0VV2TUN2oaDmZnZ2qL+Wzlybh9DCLUuWnNSvaR9yRoOe+YOvzUinpL0WuBqSQ9ExA29VcgNhyYnFQ+53Dmiq9S1y+YvKkqELV5ZMsxzmfDWw147pnDezuHFQy1DudDYw18/qu9E/XBdKPcfbZnvddcA/WyXNVD/JrNrt8cbAy3oSWDT3P4mwFPViSTtAJwJHJiG84FskcT09VlJl5ANffTacBiUcxzMzMzWuoFZOXIGsI2kLSQNBT4EXJpPIGkz4PfAERHxUO74SEmjK9vA/sC9fV3QPQ5mZmYtKiJWSDoeuJLsdcyzImK2pGPS+SnAN4D1gZ+l9YYqr12+DrgkHRsC/DYirqhxmVW44WBmZlbWAEbHjIjLgcurjk3JbX8C+ESNfI8CfS03sBoPVZiZmVndmrrhIOkkSV9oUFmTJT2XQmFXPttJGp/We1jrJJWbWWZmZk0ivY7Z6E8TarehivMj4vj8gRSUyszMzOrQdD0Okr4q6UFJfwG2Tcc+KWmGpLslXSxphKTRkh6T1JXSvEbSHEldkk6QdF9ayfF3a3Dt8ZJulHRn+rwlHd9H0g2SLknlTpHUIalT0jRJ90qaJelzKf1Wkq6Q9LdU3hvT8S0k3ZLu5dsNf3hmZjYwhHscBoKkXcheJdmJrG53An8Dfh8Rv0xpvgMcFRE/lnQd8G7gDynfxRGxXNKJwBYRsVTS2NwlDpOUX/hij6oqPAu8MyKWSNoGOA+oLLyxG9k64I+TBat6P9n63xtHxIRUt8q1atEdorUAACAASURBVIblJgtC8vOIOFvSK7EtajyHXFjt9ft8bmZmNvAGanLk2tZsPQ57AZdExKIUbKryLuqE9Jf7LLI4Etun42cCH0vbHwN+lbbvAc6V9H+BFbnyz0+BPCqfxVXX7wJ+ma5zIVlDoeL2tBb4SrIGxZ7Ao8CWkn6copPNrwrLPRP4BfD6VMZbU16Ac3p6CBExNSImRcSkrqHFF+cxMzNrtKbqcUhqLRs4DTg4Iu6WNBnYByAipqfhhbcBnRFRmeT4bmBv4H3A1yVtv3qRNX0OeIbs9ZQOYEkv9YqIeDFFzvx3skBXHwQ+Sy9huXu4PzMza2WVoYo20Gw9DjcAh0haJ61m9d50fDTwdJrPcHhVnrPJ/or/FYCkDmDTiPgr8CVgLFDvn+1jgKcjohs4gmwxjYrd0hyFDuAw4CZJ44COiLgY+Dqwcx9huaeTDalQ4z7MzMyaXlM1HCLiTuB8YCZwMXBjOvV14DbgauCBqmznAuvy6hBAJ/CbNNxwF3BGRLyUzh1W9TrmW6rK+hnwUUm3kkW1fDl37hbgFLLlOB8DLiGLSnZdGpKYBvxXSttTWO7/AD4taQZZI8XMzAYFQUdH4z9NqOmGKiLiZODkGqd+3kOWPYGLKo2DiFjOqpG/KuVOIxdSu8qElOZhYIfc8f/KbS+KiMOq8t0N7FzjWjXDcqfj+QmZp/RQHzMzs6bUdA2HNSHpx8CBwLsGui5mZtbGBGqTOQ4t3XCIiM+spetcB1y3Nq61GqnwD2PH8HLf3uXzlhbOWyZM9PANi79JsmLekr4T9UJdxesdy4uHeV62sPizBhgyamjxa79Q7pmVUeZntExY7TLPq8y/Cyj3yyVWFp9bPWR08XuGcj/fNri0dMPBzMysabTJOg5uOJiZmZXl1zHNzMzMVuceBzMzs9LkJafbQU9huyUdLGm7WnkKXGOapEMbUZaZmdlAc49DFUlDgIOBy4D7Brg6ZmbWCgR0tsff4u1xlzk9hO2+TtL/SLoe+DJZjIvT0uqSW0naWtJfUljvO9MxSTotF1L7sFSWJP0khd/+E/Da3LV3kXR9Crd9paTX16iimZlZ02qrHodewnYDjI2It6V02wCXRcRFaf824JSIuETScLIG1/uBiWQBscYBMyTdQLYy5LbAm4HXkfVanJXibPwYOCginksNjZOBj9eo56thtddxWG0zs6bXRm9VtFXDgVzYbgBJl+bOnV8rQwq2tXFEXAIQEUvS8T2B81KY7WdSb8WuZFE5K8efknRtKmpbsqWtr5YEWUyNp2tdMyKmAlMBRo3dwtE0zcysabRbwwF6Dmv9cg/He2pC9ta0rHUNAbMjYo8a58zMrIUJ/FbFINVT2O5qC8hCeZPCZD8p6WAAScMkjUhlHSapU9IGZD0Nt6fjH0rHXw/sm8p8ENhA0h6pnC5J2/fPbZqZ2VolZUMVjf40obZqOPQStrva74AvSrpL0lbAEcAJku4BbgY2JAurfQ9ZhMxrgS9FxL/S8YeBWWQRPa9P114GHAqcmsJtzwSqw3qbmZk1tbYbqughbPfpVWmmA9XrOLy9RnFfTJ983gCO7+HaM8l6JszMbLDxUIWZmZnZqtqux8HMzKzhVC5keitxw6HZdYjOEV2FssbKcm9ylvlHoK7OwnlffvTFwnlXLllZOC/AkBL1ju7iz7t7eXfhvAArFiwqnLfM96rMPQNoyYrimVcWf2Zln3cZZa5dZtb+ykXLC+eF8v+f2ODhhoOZmVkjdLTH6H973KWZmZk1hHsczMzMSpN7HAYbSSdIul/SeSlg1cxKYKp+vu54Sff293XMzGwAiazh0OhPE2qnHofjgAPJAk+dGhETB7g+ZmZmLac5mzMNJmkKsCVwOTAdmJgLmT0nhdS+RdIdknZOIa//LumYXBlfSuGz75Z0Sjo2UdKtku6RdImkddPxXVK6W4BP58roTKG4Z6Q8n1qrD8LMzPpPhxr/aUJt0XCIiGOAp8iiY74DuDEiJkbE31OSJ1LwqRuBaWRLQ/8b8C0ASQcCBwO7R8SOwPdSvrOBL0fEDmRLTP93Ov4r4IQaAa2OAuZFxK5kkTQ/KWmLRt+vmZlZf2mnoYreVMJrzwJGRcQCYIGkJZLGAvsBv6qE446IFySNAcZGxPUp76+BC2scP4dsiARgf2AHSYem/THANsBj+cpIOho4GmDYiPUbfKtmZtZwap/JkW44ZJamr9257cr+ELJpL/WuftJbWgGfiYgreysgIqYCUwFGrbelV10xM7Om0R7No/KuAj6ewmkjab2ImAe8KGmvlOYI4PqIeAmYJ2nPdPzwXDlXAsdK6krlvEHSyLVzC2Zm1q/8VoVVRMQVkiYCd0haRjbJ8ivAR4EpqUHxKPCxlOVjwFmSFpE1FirOBMYDd0oS8BzZ3AkzM2tpHqoYdCJifNq8Ln2qjxMR08gmR9Y6dwpwSlWZM8kmUVZf62/AjrlDJ6Xj3WQNjq8UuAUzM7MB1zYNBzMzs35TWQCqDbTHXZqZmVlDuMehycXKbpbPW9p3whqKhuNuhBXzlhTPu6h4qOXOYcVDREO5sMXdS4vXu6OrXBu+o2to4bxlfk6WPvNy4bwA0V38vkuFA19eLvx6GWV+xsqEMVdnucWEyuZvC+5xMDMzM1uVexzMzMzKaqMFoNrjLs3MzKwh3ONgZmbWCE0alKrR3ONQg6QTJN0v6dyq43MkjVuDciZL2qjxNTQzs6bjlSPb2nHAgRHxWJ8peyCpE5gM3EsWmdPMzKzlueFQRdIUYEvgUknTgH8HNgBuJ1vigxRf4gJgE6AT+HZEnC9pDnAWWRTMKcAk4FxJi4E9gO2A7wOjgLnA5Ih4eq3dnJmZ9Q9PjmxfEXEMWQ/BvsDmwE0RsRNZ6O3NUrIDgKciYseImABckStiSUTsGRG/Ae4ADo+IicAK4MfAoRGxC1kD4+RadZB0tKQ7JN2xYtnCfrhLMzOzYtzj0Lu9gfcDRMSfJL2Yjs8CTpd0KnBZRNyYy3N+D2VtC0wArs7iW9EJ1OxtyIfVHjlmvMNqm5m1AKk9/hZ3w6Fvq/3ijoiHJO0CvAv4rqSrIuJb6XRPS+kJmB0Re/RTPc3MzPpdezSPirsBOBxA0oHAuml7I2BRGo44Hdi5h/wLgNFp+0FgA0l7pDK6JG3fj3U3M7O1Rn6rwgD4JnCepDuB64F/pONvBk6T1A0sB47tIf80YEpucuShwI8kjSF79j8AZvdf9c3MzBrLDYcaImJ8bnf/3Pbn0tcr06e3fETExcDFuUMzyeZNmJnZYNJGYbXdcDAzM2uENlk50g2HJiepcMjlrjHDSl17ydPFXwUtEya6TGjs7uXdhfMCqGT+wkr+pbJy0fIGVaR1lAljrs7iocRLh+TuHJi/SmOlX9CyxnDDwczMrCwvAGVmZma2Ovc4mJmZNYJ7HMzMzMxW1ZYNh3zYbElfaFCZx0g6shFlmZlZCxqgBaAkHSDpQUmPSDqxxvnDJd2TPjdL2rHevLW061DFccCBwEcbVWBETGlUWWZmZvWQ1An8FHgn8CQwQ9KlEXFfLtljwNsi4sW0CvJUYPc6866m7Xoc8mGzyRZ02lHStZIelvTJlGYfSZfl8vxE0uS0PUfSqZJuT5+t0/GTKr0Xkq7LpXlI0l7p+OclnZW23yzpXkkj1uLtm5lZf9CALTm9G/BIRDwaEcuA3wEH5RNExM0RUQnSeCuwSb15a2m7hkNV2OwzgB2Ad5MtCf2NFIeiL/MjYjfgJ2TLRtcyJKX5LPDf6dgPgK0lHQL8CvhURCyqzpgPq7182YI1uDszMxsw/dNwGFf5fZA+R1dddWPgidz+k+lYT44C/lwwL9C+QxV5/xsRi4HFkv5K1gJ7qY885+W+ntFDmt+nr38DxgNERHfqubgH+EVETK+VMR9We9TYLbxqi5lZ+5obEZN6OV9rucqavzck7UvWcNhzTfPmueGw+kMKYAWr9sYM7yVPTw95afq6klWf8zbAQqCeng0zM2sFYqCWnH4S2DS3vwlZr/oqJO0AnAkcGBHPr0neam03VFHDQZKGS1of2AeYATwObCdpWIpk+Y6qPIflvt5S74VSWT8kC3S1vqRDy1bezMza2gxgG0lbSBoKfIhsDt8rJG1G1gt+REQ8tCZ5a3GPA9wO/AnYDPh2RDwFIOkCsiGFh4G7qvIMk3QbWcPrw2twrTOAn0XEQ5KOAv4q6YaIeLbsTZiZ2UAamCWnI2KFpOPJIjZ3AmdFxGxJx6TzU4BvAOsDP5MEsCIiJvWUt69rKsJD6GtC0hxgUkTMXRvXGzV2i3jzXv/dd8Iaho4r98LGQAW5KhOMp2yQq84RxYMf0V3i2gMY5KpzePGgYisWLCucF6BjePG/XUrdc4nvc/eS4sG1sosPTEevBjBy44y/fOJvfYzTt7xJb940Zvzhsw0vt2PrLzTds3OPg5mZWSO0yZLTbjisoYgYP9B1MDMzGyhuOAxiy+ct7TtRL0p125e6bvFWe9l7LtP9PWT00MJ5y3Z/q7N4N3THsBL/DSwqWe8S3edl8pb52S4zlAYQ3QMzPFxm+BDKDwMOem0UVtsNBzMzs0ZQezQc2uMuzczMrCHc42BmZtYI7nFoTflgU72kOS+FF/3cWqpT8fcazczMmkjb9ThI2hB4S0RsPtB1MTOzQaKNJkcOiruU9FVJD0r6C7BtOnadpElpe1xauAngKuC1kmZK2iulO0PSDZLul7SrpN+nMNvfyV3jyNRLcbekc9KxzSVdk45fk5b1JC3feYukGZK+XVXXL6bj90j6Zv8/HTMzs8Zp+YaDpF3I1tfeCXg/sGsfWd4H/D0iJkbEjenYsojYG5gC/C/waWACMFnS+pK2B74KvD0idgT+I+X7CXB2ROwAnAv8KB3/IfDziNgV+FeurvuTBbnaDZgI7CJp7xr35LDaZmatRmr8pwm1fMMB2Au4JCIWRcR86gjQUUMlzyxgdkQ8HRFLgUfJIoe9Hbiossx0RLyQ0u8B/DZtn8OroUrfyquht8/JXWf/9LkLuBN4I1lDYhURMTWtIz6pa+joArdjZmZrnToa/2lCg2WOQ60VVfKhsavDYlerrBrUnduu7A8hC5haz6otfYXbFvDdiPhFHWWZmZk1neZszqyZG4BDJK0jaTTw3nR8DrBL2i4bvvoa4IMp9DaS1kvHbyYbJgE4HLgpbU+vOl5xJfBxSaNSORtLem3JupmZ2YBT2/Q4NGet1kBE3AmcD8wELgYq8xZOB46VdDMwruQ1ZgMnA9dLuhv4fjp1AvAxSfcAR/Dq3If/AD4taQYwJlfOVWRDG7dImgVcBHgswszMWobDaje5MmG11VU8XPJAKrOmftlYFWXiEAxkrIoy8Q+GjCpe72UvLimcF6BzWPGf0TJxRbrWW6dw3rKhxAcqVkWZZw3lYlW0RVjtieNjxlXfaHi5Ha87qumeXcv3OJiZmdnaM1gmR5qZmQ0gNe2chEZzw6HJRUThLsKuUcPKXby7RBjdMiuolbhu2dDBDCuev2y45TLKhJhuxeuWVeZ7VXaoYcC+VyVCrwNQfGTIBhk3HMzMzBrBPQ5mZmZWtyZd6bHR2qN5ZGZmZg3hHgczM7PS2mdyZHvc5QCqitJ5sqQnJC0c6HqZmZkV4YbD2vVHssiYZmY2mIjsbbJGf5pQc9ZqgEkaKelPku6WdK+kL0v6fTp3kKTFkoZKGi7pUUlvknR7Lv/4tAz1KiLi1oh4em3ei5mZWSN5jkNtBwBPRcS7ASSNAY5J5/YC7gV2JXt+t0XE/akhsWVEPAocBlxQ9OKSjgaOBhg6fP3id2FmZmuJkOc4tLVZwH6STpW0V0TMAx6R9CayoYbvA3uTNSIqQbUuAD6Ytg8jC7xVSERMjYhJETFpyNBRhW/CzMys0dzjUENEPCRpF+BdwHclXUXWQDiQbP20vwDTgE7gCynb+cCFaUgjIuLhtV5xMzMbOG3S4+CGQw2SNgJeiIjfpDcgJgM/AM4Gzo6I5yStD2wIzAaIiL9LWgl8nRK9DWZm1oKEGw5t7s3AaZK6yXoYjiVrILwOuCGluQd4NlaNS34+cBqwRa1CJX0P+AgwQtKTwJkRcVK/3IGZmVk/cMOhhoi4EriyxqlhuTRH18h3OnB61bF9cttfAr7UsIqamVmTkJecNjMzM6tWV4+DpDcAPwdeFxETJO0AvC8ivtOvtbNShowo16G0dO7iwnlj+bLCedXVWThv0RDkFV3rFg9FvvzF4s+rdDjwAVI2VHPH8OI/oyuXriyct3N48Z+xlYtK3nOJ73WZkN4dw9zB3O+adMGmRqv3Ln8J/BcpIntE3AN8qL8qZWZmZs2p3iboiIi4XauO36zoh/qYmZm1pjZ5q6Leu5wraSsgACQdCnjpZDMzszZTb4/Dp4GpwBsl/RN4DDi832plZmbWStQ+YbX7bDgoW3x7UkTsJ2kk0BERC/q/aq1F0jHAoog4W9J6ZGs6jAfmAB+MiBcl7UbWAINsuZCTIuKSgaivmZk1WJs0HPq8y4joBo5P2y+70VBbREyJiLPT7onANRGxDXBN2ocsONakiJhIFkjrF5I81dnMzFpGvc2jqyV9QdKmktarfPq1Zk2gRnjtwyTNScGvbk+frVPakyRV4lYcBPw6bf8aOBggIhZFRGVS6XDSnBEzM2t1yl7HbPSnCdX71+7H09dP544FsGVjq9N0aoXXPhWYHxG7STqSLIbFe6ryvS4ingaIiKclvbZyQtLuwFnA5sARuYYEuTQOq21mZk2proZDRNSMvdAGZgGnSzoVuCwibkyvpJ6Xzp8HnLEmBUbEbcD2KUT3ryX9OSKWVKWZSpoLMXLMePdKmJm1gjaZ41DvypFH1jqeG9MflHoIrw2rDjHU+sX+jKTXp96G1wPP1ij7fkkvAxOAOxpddzMzs/5Qb/No19xnL+Ak4H39VKemkcJrL4qI35AFr9o5nTos9/WWGlkvBT6atj8K/G8qb4vKZEhJmwPbkr11YWZmrUykVzIb/GlC9Q5VfCa/n8b6z+mXGjWXWuG1LwKGSbqNrOH14Rr5TgEukHQU8A/gA+n4nsCJkpYD3cBxETG3n+/BzMysYYq+CrgI2KaRFWlGtcJrpzkOP42Ib1alPSm3/TzwjhrlnUN7NLjMzNqMF4BahaQ/8upYfgewHXBhf1XKzMys5bjhsIrTc9srgMcj4sl+qE/Ti4jxA12Hei17cUnfiXpRJmRy99ISL4MsLx4uuayVC5cWzts1pnhI7hULiochh3LhxGNl8e9VmbwAUeZ7vbL4PZd6XiVCWw/ktVcuWl44b9lr2+BSb8PhXRHx5fwBSadWHzMzM2tX0SY9DvXe5TtrHDuwkRUxMzOz5tdrj4OkY4HjgC0l3ZM7NRqY3p8VMzMzax0ioj16HPoaqvgt8Gfgu7waqAlgQUS80G+1MjMzs6bUa/MoIuZFxJyI+HBEPA4sJnu7YpSkzdZKDZuMpBMk3S/p3F7SnCXpWUn3Vh1fT9LVkh5OX9ft/xqbmdnaEHQ2/NOM6upXkfReSQ8DjwHXk612+Od+rFczO45ssujhvaSZRhYgq1pP4bbNzKyFRRqqaPSnGdVbq+8A/wY8lAJevYM2nOMgaQpZRNBLJX0x9RrcKekXkh6XNA4gIm4Aag3l1Ay3bWZm1irqbTgsT6shdkjqiIi/AhP7sV5NKSKOAZ4C9iULi31tROwMXALUM3SzSrht4LW1Ekk6WtIdku5YsWxhYypvZmb9Kuho+KcZ1buOw0uSRgE3AudKepZsIah2tidwCEBEXCHpxUYV7LDaZmbWrOptOBxENjHys8DhwBjgW/1VqRZRZFnFPsNtm5lZKxLdTTonodHqusuIeBnYFNgnIn4NnAmUWyO39d0EfBBA0v5APW9I1Ay3bWZm1irqfavik2ThpH+RDm0M/KG/KtUivgnsL+lOslU0nwYWAEg6D7gF2FbSkym8NmThtt+Z3lB5Z9o3M7NBoF1ex6x3qOLTwG7AbQAR8bCkmhP7BrtKkCtJw4B/j4gVkvYA9o2IpSnNh3vIWzPctpmZWauot+GwNCKWSdmwvqQhvBpmu11tBlwgqYNs2OaTA1wfMzMbIBHts+R0vXd5vaSvAOtIeidwIfDH/qtW84uIhyNip4jYMSJ2jYgZA10nMzMbOAP1OqakAyQ9KOkRSastLCjpjZJukbRU0heqzs2RNEvSTEl31HO9enscTgSOAmYBnwIuJ5sgaf1MEh1dxVqxQ0YNLXXtlYuWF87bOaKr1LWLiuUryxXQUfwvhpVLil97yJjhhfMCLJu7qHDe6B7AzsMSz5vO1vzrTp1FXshqwHW7So6Xl/23Zf1CUifwU7J5c08CMyRdGhH35ZK9AJxAz4sO7hsRc+u9Zl/RMTeLiH9ERDfwy/QxMzOzKt0Ds2DTbsAjEfEogKTfkS2h8ErDISKeBZ6V9O5GXLCvu3zlzQlJFzfigmZmZla3cZWVhNPn6KrzGwNP5PafTMfqFcBVkv5Wo+ya+hqqyPepbbkGFTEzM2sj/TY5cm5ETOr1wqtbk/HHt0bEU+lNyaslPZDiLfWor7uMHrbbnqSxko5L2xPTxJPZku6RdNhA18/MzNrCk2QLNFZsQhZTqS4R8VT6+ixZ3KXd+srTV8NhR0nzJS0Adkjb8yUtkDS/3ooNUmPJQmwDLAKOjIjtycJp/0DS2AGrmZmZrVXBgC0ANQPYRtIWkoYCHyJbpbhPkkZKGl3ZBvYH7u0rX69DFRHRnMtWNYdTgK0kzQSujogvQtZ6S0HANiALDjYH+C1ZRM0u4Gjgu8DWwGkRMWUgKm9mZq0vLUJ4PHAl0AmcFRGzJR2Tzk+RtCFwB/AaoFvSZ4HtgHHAJWmNpiHAbyPiir6uWe/rmLa6E4EJEbFKeHFJuwFDgb/nDj8REXtIOgOYBrwVGA7MBtxwMDNreQO3AFREXE62TEL+2JTc9r/IhjCqzQd2XNPrueHQQCni5TnAR9MrrBWVbqNZwKiIWAAskLRE0tiIeKmqnKPJeiYYus76a6HmZmZWVr0LNrW69rjLtUDSa4A/AV+LiFurTi9NX7tz25X91RpvETE1IiZFxKSuoaP7pb5mZmZFuMehuAVAZVLJULLZqGdHxIUDWiszM1vrAtHdJrEq3HAoKCKelzRd0r3ASLLxo/UlTU5JJkfEzAGroJmZWT9ww6GEiPhIHWnG57ankU2OXO2cmZm1tjpfn2x57dGvYmZmZg3hHgczM7PSBu51zLXNDYcmF91ROFxz59IVpa69YuGywnk7hhX/0SoTdjhWllwZfWXx0MEdw4vfc+lw4CWUfmZldHf3naYHZZ5Zqz7vUiHQSzzr0te2QcUNBzMzswZol3Uc3HAwMzMrK2iboYr2uEszMzNrCPc4mJmZlRSIbr+OaWtC0pmStkvbJ0t6QtLCqjTDJJ0v6RFJt0kaPxB1NTMzK8oNhwaJiE9ExH1p94/AbjWSHQW8GBFbA2cAp66t+pmZWf+K6Gj4pxk1Z62anKSRkv4k6W5J90o6TNJ1kiYBRMStEfF0jawHAb9O2xcB71AKhG5mZtYKPMehmAOApyLi3QCSxgDH1pFvY+AJgIhYIWkesD4wN59olbDaw9drYLXNzKx/qG1ex2yPu2y8WcB+kk6VtFdEzKszX63ehdVWVcmH1R7S5bDaZmatwEMV1qOIeAjYhawB8V1J36gz65PApgCShgBjgBf6pZJmZmb9wEMVBUjaCHghIn6T3pyYXGfWS4GPArcAhwLXRoTXcTUza3F+HdP68mbgdkkzga8C38mflPQ9SU8CIyQ9KemkdOr/A9aX9AjweeDEtVhnMzOz0tzjUEBEXAlcWXV4n9z5LwFfqpFvCfCBfq2cmZkNiGadk9Bo7XGXZmZm1hDucWhy6hCdI7qK5e0qN95WJjR2mbDFHV3F7rcRyjyzIaOGFs67/MXFhfNCuVDk6igRxrxsqOWO4n+7lKl3qbDvBcPcv3LtruL33L28RGjsEs8aoGPg/lm2CL+OaWZmZrYa9ziYmZmVFEB3m7wk54aDmZlZWQFlR+5ahYcqzMzMrG5uODSIpGMkHZm215N0taSH09d1c+l2kHSLpNmSZkkaPnC1NjOzxgi6o/GfZuSGQ4NExJSIODvtnghcExHbANek/coy078BjomI7cnWflg+ANU1+//ZO+94O4ry/78/uemVEgIhlFASCIRQEsBAaNKbdBFQxEaRpn6xiyKIgiAi3aBIL9ID8qNKlRp6E6QKggJSQyhJ7vP7Y+Z4N5tz7z1n99y7Z+993q/XvM7Z2Xl2n2fOnt3ZmWfmcRzHyYQ3HDqgnfDZL8XgVvfHtGIse4Skw6JoMnz2OcCO8fsWwGNm9iiAmf3XzPLN7XIcx3EKJzhHNj41I95w6JhK+OzVzWwicH3Mf9/M1gFOAU6sIre4mb0OED9HxfzxgEm6QdJDkhZYXRJCWG1JMyXNnPPpBw01yHEcx3Hy4A2HjmkvfPZFic+pdRyvLzAN2Ct+7iRp03ShZFjtfv09rLbjOE4ZcB8Hp6Pw2clfs9ov+x9JowHi5xsx/1XgdjN7y8xmA9cBa3WJ8o7jOI7TBXjDoQNi+OzZZnY+cDxtD/ndE5/3VBGthM8mfl4dv98ATJI0ODpKbgQ81RW6O47jON2HWe/pcfAFoDpmNeA4Sa2E2Q8HAJcBAyTdR2h47VFF7hjgz5K+BvyTGBHTzN6RdALwAKGn4joz+0vXm+E4juN0NfOa8znfcLzh0AHVwmdLAjjVzH6eKntE4vt/gQV8F+K+8wlTMh3HcRyndHjDwXEcx3Fy4rEqnHYxs7FF6+A4juM4ReENh2bHDJuTbY2o1o/n5jp1y8CWzLKfzPo0s2zfEXlW4S5uIc4573yUXbhPPj9l9cn+pqMWZZad90m+9cv69GvNJZ+V1jnFnDfvuS3HikBZ7yONOHdvobdUN6VukQAAIABJREFUkc+qcBzHcRynZrzHwXEcx3EaQG/xcfAeB8dxHMdxasYbDl2IpH3iIlKO4zhOD8a6IMBVs/pM+FBFTiS1dBDhch/gCeC17tPIcRzH6X6ad6XHRuM9Dp0g6YsxfPYjkn4vqUXSLElHxtUjp0r6qaQHYujt6QrsCkwBLoiygyRNlnS7pAdjhMzRBZvnOI7jOHXhDYcOkDSBEI9ifTNbA5hHiGw5BHjCzNY1s7uAU8xs7Rh6exCwnZldBswE9oqyc4GTgV3NbDJwFnB0O+dNhNWe1dVmOo7jODmpLADlsSqcTQnRMR+IS00PIkS6nAdcnii3iaTvAYOBRYAngWtSx1oJmAjcFI/VArxe7aRmNh2YDjB0xNjmvHIcx3GcXok3HDpGwDlm9sP5MqXDKn4NkgYCpwFTzOwVSUcA1VYwEvCkmU3tYp0dx3GcAmhWZ8ZG40MVHXMLsKukUQCSFpG0bKpMpZHwlqShwK6JfR8Aw+L3Z4DFJE2Nx+onadWuU91xHMdxGo/3OHSAmT0l6SfAjZL6ENYzPjBV5l1JZwKPAy8RQmZXOBs4Q9JHwFRCo+IkSSMIdX8iYVjDcRzHKTnN6pPQaLzh0AlmdglwSSp7aKrMT4CfVJG9nPl9IR4BNmy0jo7jOI7TXXjDwXEcx3FyYk28YFOj8YaD4ziO4zQAH6pwmoM+fWgZ3C+TqPplD4udl76Dc1xarcWFPM5FztDYRZHnOmkZkO9GmefcuWRzhBLPIwugPtnl84S2zqu341TwhoPjOI7j5MR8yWnHcRzHcZwF8R4Hx3Ecx2kAvcU50nscHMdxHMepGe9xyEFcXnoWsDiwPfAp8DzwFTN7t0DVHMdxnG7EgHnu4+DUwU3ARDObBDwL/LCT8o7jOE5PIq7j0OjUjHiPQ51I+jGwN/AK8CbwoJndmChyLzFehaR9gB0JkTAnAr8B+gNfAj4BtjGzt7tNecdxHMfJifc41IGkycAXgDWBnYG1qxT7KvD/EtsTgT2BdYCjgdlmtiZwD6EBUu08+0qaKWnmnE/eb6AFjuM4TlfRatbwVAuStpL0jKTnJP2gyv6VJd0j6RNJh9UjWw1vONTHBsCVZjbbzN4HZiR3xt6IucAFiexbzewDM3sTeA+4JuY/DoytdhIzm25mU8xsSr8Bwxttg+M4jtNDkNQCnApsDawC7CFplVSxt4FDgOMzyC6ANxzqp2oTUNKXge2AvczmayZ+kvjemthuxYeKHMdxegRGYT0O6wDPmdkLZvYpcDGww3y6mb1hZg8QIjzXJVsNbzjUxx3ATpIGSRpGmEmBpK2A7wOfM7PZRSroOI7j9ChGVoauY9o3tX8MweeuwqsxrxYyyfobbx2Y2UOSLiGEx34ZuDPuOgUYANwkCeBeM9u/GC0dx3GcIuiiWRBvmdmUDvZXC0JSqyaZZL3hUCdmdjTByTHJ8e2UPRs4O7E9tr19juM4jpOBV4GlE9tLAa91paw3HBzHcRwnJxUfhwJ4ABgnaTngX4SZf3t2paw3HJodM1o/mZtJNK8DS+uc7OGt88jy8bzMokWGEs9D3pDHlnZ56ibyhHkukjyhrXsrHpa7Ewxac9z2Mp/WbK6kg4AbCGsGnWVmT0raP+4/Q9ISwExgONAq6VvAKmb2fjXZzs7pDQfHcRzHKTFmdh1wXSrvjMT3fxOGIWqS7QxvODiO4zhObozWkvbA1YtPx3Qcx3Ecp2a8x8FxHMdxclKgc2S34z0ODULS/pL2jt93k/SkpFZJUxJlNpf0oKTH4+dni9PYcRzHcerHexwaRNIRBXiCEATr96libwHbm9lrkiYSPFlrXeHLcRzHaVYM5rmPgyNpiKS/SHpU0hOSdpf0kqRjJd0f04qx7BGVqGNm9rSZPZM+npk9bGaVxTWeBAZKGtB9FjmO4zhOPrzh0DFbAa+Z2epmNhG4Pua/b2brEJaaPjHjsXcBHjazT9I75gur/ekHGQ/vOI7jdBcGtLZaw1Mz4g2Hjnkc2Cz2MGxgZu/F/IsSn1PrPaikVYFjgf2q7Z8vrHb/YVn0dhzHcbqZgqJjdjvu49ABZvaspMnANsCvJN1Y2ZUsVs8xJS0FXAnsbWbPN0ZTx3Ecx+kevOHQAZKWBN42s/MlzQL2ibt2B46Jn/fUcbyFgL8APzSzvzVYXcdxHKcgzJp3aKHR+FBFx6wG3C/pEeDHwC9i/gBJ9wGHAt9OC0naSdKrhGGMv0i6Ie46CFgROFzSIzGN6nIrHMdxHKdBeI9DB5jZDYQpk/9DEsCpZvbzVNkjEt+vJAxHpI/3C9oaH47jOE4PwnscHMdxHMdxUniPQ52Y2diidXAcx3GaC7Pe0+PgDYcmx1qNubPnZpIdMLhfrnO3tLRklm39JJvOeZk769Nc8i0Dstusftllbc68zLIArXNaM8u2DFZm2Xmz52SWhXx656mzubOKs7mo68QG5LvdWy95KDqd4w0Hx3Ecx2kAzbruQqPxhoPjOI7j5MTwWBWO4ziO4zgL4D0OjuM4jpMXXwCqOUlGoGxGJH1O0g862L+PpFO6UyfHcRzHaSTe41ADkvqaWYfTBGKZGcCMblLLcRzHaSK8x6FJkPRjSc9IuhlYKeZ9Q9IDkh6VdLmkwTH/bEknSbpb0guSdo35fSSdJulJSddKui6xb7Kk2yU9KOkGSaNj/m2SfinpdsLS0tV0O1vSCZJuBY5N9ihI2k3SE1HHO6rIbivpHkkjq+z7X1jtuR5W23Ecx2kimrrHIUam/AKwJkHXh4AHgSvM7MxY5hfA14CTo9hoYBqwMuHt/zJgZ2AsIfbEKOBp4CxJ/aLcDmb2pqTdgaOBr8ZjLWRmG3Wi5nhgMzObJ2mfRP5PgS3N7F8xuFXSrp2A7wDbmNk76QOa2XRgOsCQ4WN7RxPWcRynxBg+HbNZ2AC40sxmA0iqDANMjA2GhYChzB9P4iozawWekrR4zJsGXBrz/x17CCD0YEwEbooxKFqA1xPHuqQGHS81s2qrsvwNOFvSn4ErEvmbAFOALczs/RqO7ziO4zhNQ7M3HCA05NKcDexoZo/Gt/yNE/s+SXxX6jONgCfNbGo7+z+sQb+qZcxsf0nrAtsCj0haI+56AVie0FMxs4bjO47jOM1OL1pyutl9HO4AdpI0SNIwYPuYPwx4PQ417FXDce4Cdom+DovT1tB4BlhM0lQASf0krdoIxSWtYGb3mdlPgbeApeOulwlDJ+c26lyO4zhOsRih4dDo1Iw0dcPBzB4iDBc8AlwO3Bl3HQ7cB9wE/L2GQ10OvAo8Afw+yr5nZp8CuxIcGx+N51mvQeofJ+lxSU8QGkCPVnaY2TOEBs+lklZo0Pkcx3Ecp8tp+qEKMzua4LCY5vQqZfdJbQ+Nn62SDjOzWZIWBe4HHo/7HgE2rHKsjWvQLX2+swnDKJjZzlVEkvsfBlbp7ByO4zhOGTDmuXNkj+PaOLuhP3CUmf27aIUcx3Ecp2z0moZDLT0I7SHpx8BuqexLY29I1yLo0y/biFKekMUAcz/IHqK6ZWD20MFFkid0sOUIJa4+2cM8Q74w5p++U9xbUh67W+cVo3fe34p52f+Xec6tlpx6Ox1iBq35brmlodc0HPLQwXCJ4ziO4/QqvOHgOI7jOA2gWWdBNBpvODiO4zhOA+gtDYemno7ZXUi6u4YyG8RYF49IGtROmevSy0s7juM4Tk/CexwAM6tl7Ya9gOPN7E8dHGebxmnlOI7jlAWz3hOrwnscAEmz4ufGMSrmZZL+LukCBb4OfB74acwbLemO2PvwhKQNovxLkkZKGivpaUlnxl6KG+Pql31jVM+NY/lfSXKnS8dxHKc0eI/DgqwJrAq8RghUtb6Z/UHSNOBaM7tM0v8BN5jZ0ZJagMFVjjMO2MPMvhEDXe1iZufH2BqXSToE2ApYtzuMchzHcbqW3uLj4A2HBbnfzF4FkPQIIRz3XakyD9AWlvuquPpkmhcT+Q/G42BmT0o6D7gGmBqXvZ4PSfsC+wL0H7hoboMcx3Ecp1H4UMWCJKNrzqNK48rM7iAsU/0v4DxJe9d5nNWAd4HFqYKZTTezKWY2pW//oXWq7ziO43Q3hjGvtfGpGfGGQwYkLQu8YWZnAn8E1qpDdmdgUULD4ySfheE4juOUCR+qyMbGwHclzQFmAdV6HBZA0kjgGGBTM3tF0inA74Avd5WijuM4Tjdg7uPQq0hE0bwNuC2Rf1Di+z6J7+cA51Q5ztj49S1gYiL/+ESx8Yn8k3Kq7jiO4zQBhk/HdBzHcRzHWQDvcXAcx3GcBuBDFU5zYNnDY+cNbF1UGN6Wwf0yy8597+Nc584TFbffiAGZZS1niOhcoZ5zhHnOq7fNmZdLPvN5c+idJ/Q65AwlnvFeAEBLvpjPRf1WTvPhDQfHcRzHyUsvco50HwfHcRzHcWrGexwcx3EcJyeGeY+D4ziO4zhOGm84dIKkQ2Kkyws6KTdFkq/L4DiO0xsxaJ1nDU/NiA9VdM43ga3N7MWOCpnZTGBm96jkOI7jNBvWmm/mSlnwHocOkHQGsDwwQ9IHkhZS4L+VwFaSzpO0maSNJV0b846QdJak2yS9EENoI2ltSY9JGihpiKQnJU1sXwPHcRzHaS684dABZrY/8BqwCXABsD6wKvACsEEs9hng3iriKwNbAusAP5PUz8weAGYAvwB+DZxvZk+kBSXtK2mmpJlzP/2gwVY5juM4jcbidMxGp2bEGw61cychouWGwOnAapLGAG+b2awq5f9iZp+Y2VvAG7SF0D4S2ByYQmg8LMD8YbWHNdoOx3Ecx8mMNxxq5w5CL8MGhEBYbwK7EhoU1fgk8X0ebf4kiwBDgWHAwK5Q1HEcx+luGt/b4D0OJcfMXgFGAuPM7AXgLuAw2m84tMd04HDC0MexDVXScRzHcboYn1VRH/fRFgLiTuBXhAZETUSHyrlmdqGkFuBuSZ81s782XlXHcRynu7BetOS0Nxw6wczGJr5/KfH9bhI9NmZ2G2EIAzM7InWMysyJl4BzY948YN2u0NlxHMdxugpvODiO4zhOA2jWBZsajTccmpw+/VoYNCbbzIrWT+bmOvfA5RfOLNtnYDGX1ujVF++8UAe883r26a8Dh2cPq/3pp+UMWfzJGx/mkp/3cXa7x6y5RGbZfz/9ZmbZebPnZJYFGLT0iFzyWZn90ru55POEja/bE6yM9KKhCneOdBzHcRynZrzHwXEcx3FyYoB5j4PjOI7jOM2OpK0kPSPpOUk/qLJfkk6K+x+TtFZi30uSHpf0iKSa4i15j4PjOI7j5MZoLSDIVZzafyphReJXgQckzTCzpxLFtgbGxbQuYfXj5Ky+TeIqxzXRND0OkhaXdGEMCvWgpHsk7RSDR70XW0OPSLo5lj9C0r8S+Y/EIFSV8g/HFtgdkrZrsK7XSVqokcd0HMdxnAysAzxnZi+Y2afAxcAOqTI7AOda4F5gIUmjs56wKXocJAm4CjjHzPaMecsCnwPeAe40s2oP/9+a2fGpY5EsL2kN4CpJH5nZLamyfc2s7qkHZrZNvTKO4zhOD6brZlWMTA0hTDez6YntMcArie1XWXCNoGplxgCvE9wzbpRkwO9Tx65Ks/Q4fBb41MzOqGSY2ctmdnLeA5vZI4TAUgcBSDpb0gmSbgWOjeGtz5L0QOyl2CGWGyzpz3E86BJJ90maEve9JGlk/P4dSU/E9K2YN1bS05LOjKGzb5Q0KO47RNJT8bgX57XPcRzH6dG8VQl6GFP6wa4qMukWTEdl1jeztQjDGQdK2rAzhZqix4EQqvqhDvZvIOmR+P1SMzs6fv+2pC/G7++Y2SbtyD8EfDexPR7YzMzmSfol8Fcz+2ocfrg/DoccEI85SdJE4JH0QSVNBr5CaN0JuE/S7YReknHAHmb2DUl/BnYBzgd+ACxnZp+0N9whaV9gX4ABQ0Z2UC2O4zhOM2AUtgDUq8DSie2lgNdqLWNmlc83JF1JGPq4o6MTNkuPw3xIOlXSo5IeiFl3mtkaMR2dKPrbRH57jQZYsLV1aVzyGWAL4AexYXIbIWLlMsA0wlgRZvYE8FiV404DrjSzD2No7SsI0TMBXoy9HQAPAmPj98eAC2KDp+owSTKsdr8Bwzswy3Ecx2kK4lBFAdExHwDGSVpOUn/gC8CMVJkZwN5xdsVngPfM7PXY4z4MQNIQwvPwic5O2Cw9Dk8S3sgBMLMD41BATVNDamBN4OnEdnK5OwG7mNkzSYHod9EZHZVJh9UeFL9vC2xI8N84XNKqWfwsHMdxHMfM5ko6CLiBEITxLDN7UtL+cf8ZwHXANsBzwGxCTznA4sCV8XHXF7jQzK7v7JzN0nD4K/BLSQeY2ekxb3AjDixpEiGM9dfbKXIDcLCkg83MJK1pZg8Tol5+HrhV0irAalVk7wDOlnQMoRGxE/ClKuUquvQBljazWyXdBewJDAXyrQXrOI7jFIpRcw9B489tdh2hcZDMS/oMGnBgFbkXgNXrPV9TNBziA3tH4LeSvge8SegV+H4nokkfB4Ad4+cGkh4mND7eAA5Jz6hIcBRwIvBY7GV4CdgOOA04R9JjwMOEIYb3Uno/JOls4P6Y9Qcze1jS2HbO1QKcL2kEoaHxWzPzRoPjOI5TGpqi4QBgZq8TxmaqcVuV8kcAR1Qp+xLQbhQZM9sntf0RsF+Voh8DXzSzjyWtANwCvBxlxibkTwBOSB3zJWBiYjs5ZXRae7o5juM4JcV6z5LTTdNwaEIGE4Yp+hF6Bw6Ii2s4juM4Tq/FGw7tYGYfAFOK1sNxHMcpB70lrLY3HJqcvgNbWHT8oplk+/SpZWJI++T5E7z9/NuZZQeMGpJZ9oP3Ps4sCzBw+IDMsnPnZl+nfsiw7OcFeO+1D3LJZ2XuB/k64dSvJbPsvx5MT1WvnX4LD+q8UDvkuT4B5rz3SeeF2qHv0P6ZZfPYDNB/kYG55Hs6ZoWt49DtNOU6Do7jOI7jNCfe4+A4juM4uSkmOmYReI+D4ziO4zg14z0OXYSkWWY2tJMyd5vZet2lk+M4jtM1GL3HOdJ7HArEGw2O4zhO2fAehy5G0lDgamBhoB/wEzO7Ou7rtFfCcRzHKQHWe3ocvOHQ9XwM7GRm78fAXfdKmhHXDq9KMqz2oBGjuklNx3Ecx+kcbzh0PSIE8NoQaAXGECKS/bs9ATObDkwHWHjM+N7RhHUcxyk53uPgNIq9gMWAyWY2R9JLgK+k4jiO04MwA/MFoJwGMQJ4IzYaNgGWLVohx3Ecx8mK9zh0PRcA10iaCTwC/L1gfRzHcZyGYz5U4eSjMlvCzN4CpnZUxnEcx3HKgjccHMdxHCcvvWg6pvs4OI7jOI5TM97j0OTMm9PK+/+ZlUn2k7c+ynXukRNGZpbN413cOid7oJhPc4Z5zoNasocxzxsC3XK86fQbkT2k97yP5mSWBWgZ1C+z7NxZ2X/rPOGpP31rdmZZyHd925x5mWX7DMh3u583O99v3dMxwDzIleM4juM4zvx4j4PjOI7j5KUXrePgDQfHcRzHyY3lGjIsEz5U4TiO4zhOzXjDoU4k3SZpStF6OI7jOE1EHKpodGpGvOHgOI7jOE7NeMOhAyQNkfQXSY9KekLS7qn9e0h6PO47NpE/S9JvJD0k6RZJi8X8FSRdL+lBSXdKWrm7bXIcx3G6Bmu1hqdmxBsOHbMV8JqZrW5mE4HrKzskLQkcC3wWWANYW9KOcfcQ4CEzWwu4HfhZzJ8OHGxmk4HDgNOqnVTSvpJmSpr56Ufvd4VdjuM4jpMJn1XRMY8Dx8fehGvN7E7pfwv1rA3cZmZvAki6ANgQuApoBS6J5c4HrpA0FFgPuDRxjKor75jZdEIjg+GjVmzOJqfjOI7ThgHzescCUN5w6AAze1bSZGAb4FeSbkzsrmepPyP07rxrZms0UkfHcRzH6U58qKID4nDEbDM7HzgeWCux+z5gI0kjJbUAexCGJSDU667x+57AXWb2PvCipN3isSVp9e6ww3Ecx+lajMb7NzSrj4P3OHTMasBxklqBOcABhAYEZva6pB8CtxJ6H64zs6uj3IfAqpIeBN4DKk6VewGnS/oJ0A+4GHi0u4xxHMdxughfOdIBMLMbgBtS2Rsn9l8IXNiO7OHA4am8FwkOl47jOI5TSrzh4DiO4zgNoFmHFhqNNxy6ADMb2qhjjV/ofW7a7uZswkOH5Dr3K6sfmVl26Yd/kllW41bKLDvv+lszywJoWPZwy1p5xewnfvb57LKAPvOZzLK2xITMspcP+E5mWYA1Jme/Bc39aG5m2cGLDc4sO/vNfGG1+w7KbvP7/81u8xtvZhYFYKkx2WUn5Tu102R4w8FxHMdxGkFr75iO6bMqHMdxHMepGe9xcBzHcZy8WPMGpWo03nBwHMdxnAbQW5wjfaiiC5B0iKSn4zLUjuM4jtNj8B6HruGbwNZx3QYAJPU1s+wu0Y7jOE7TYr4AlJMVSWcAywMzJC1DCHY1FngrxrrYiRDcajngQjP7eVG6Oo7jOE69eMOhwZjZ/pK2AjYBDgK2B6aZ2UeS9gHWASYCs4EHJP3FzGYmjyFpX2BfgGVGNWxJCMdxHKcLcR8Hp1HMMLOPEts3mdl/Y94VwLS0gJlNN7MpZjZlsRGDuk1Rx3Ecx+kM73Hoej5MbaebpL2jieo4jtOTMYN5vgCU0zVsLmkRSYOAHYG/Fa2Q4ziO49SK9zh0P3cB5wErEpwjZ3ZS3nEcx2l2rPf4OHjDoQsws7Hx6xFVdr9hZgd1nzaO4zhOd9BbpmP6UIXjOI7jODXjPQ7diJmdDZxdsBqO4zhOo/GhCqdZsOGLMnezvTPJXvHsMrnOvePAJzPL/ueE2zPLLnzpHpllB2ySnsRSJ0MXySxq9+bwcx08OLssMHfGXzPLtizzSGbZVVbOLApA3wHZb0EP3Jt9IdY9Pjoqs2zrVZdmlgWY+/qszLL9xi+WWdZmf5xZFkDL57ifTMle307z4Q0Hx3Ecx8mJ0XuiY7qPg+M4juM4NeM9Do7jOI6TFwNafQEopwuRdLakXYvWw3Ecx3HqwXscHMdxHKcB9BYfB2845EDSscDLZnZa3D4C+ABYAtia0Hn1CzO7RJKAk4HPAi8CKkRpx3Ecp/H0oumYPlSRj4uB3RPbnwfeAtYAVgc2A46TNBrYCVgJWA34BrBeeweVtK+kmZJmvvXmu12lu+M4juPUjfc45MDMHpY0StKSwGLAO4RGw0VmNg/4j6TbgbWBDRP5r0lqd+K9mU0HpgNMnjKhdzRhHcdxSk3vmY7pDYf8XAbsShieuBhYoYOyveOqchzHcXosPlSRn4uBLxAaD5cBdwC7S2qRtBihp+H+mP+FmD8a2KQohR3HcZwGU5mO2ejUhHiPQ07M7ElJw4B/mdnrkq4EpgKPEi6l75nZv2P+Z4HHgWeB7GsyO47jOE5BeMOhAZjZaonvBnw3JlL5Hk7bcRynh1KUj4OkrYDfAS3AH8zsmNR+xf3bALOBfczsoVpkq+FDFY7jOI5TUiS1AKcSlgBYBdhD0iqpYlsD42LaFzi9DtkF8B4Hx3Ecx8mJFbeOwzrAc2b2AoCki4EdgKcSZXYAzo093/dKWij62o2tQXYBvOHQ5Dz04N/fGtB33Zc7KDKSsHZEFvLIdt25+00u5rxdL+96d59sh/J7Ddq+K8/tv9WCLJvxuKXho9n/vOHh+w8c2QWHHihpZmJ7epyyX2EM8Epi+1Vg3dQxqpUZU6PsAnjDockxs8U62i9ppplNyXLsPLJFntttLs+53ebynLtIm3sCZrZVQaeutgpxuuujvTK1yC6ANxwcx3Ecp7y8Ciyd2F4KeK3GMv1rkF0Ad450HMdxnPLyADBO0nKS+hPWFZqRKjMD2FuBzwDvmdnrNcougPc4lJ/pnRfpEtkiz+02l+fcbnN5zl2kzU5GzGyupIOAGwhTKs+K6wvtH/efAVxHmIr5HGE65lc6ku3snApOlo7jOI7jOJ3jQxWO4ziO49SMNxwcx3Ecx6kZbzg4juM4jlMz3nDo5cQ1zHsVeWwua32VVe8sSCrU6TtrXUsaLKlfo/VxnEbjDYeSIqlP/Kz7JhVvUEPgf8G36pEdLWmles+ZkF9V0rcyyo6UNLFie52ygyUNhWBzPfWWp76i/HKStq5XLsrmqa88v3NmnSvnTm3XU999U9v1yE4grsOfBUljJK2eUXYY1H99RdkJwCnAqCznjsdoySg3TNLIxHY99Z3rfuCUE284lBBJ44HDJS2T4SG4KnAjcKak30gaW6t8fPA+CPxA0tQMeq8MXEBYdKRe2VUJU4ZOAS6tU3YC8BfgIkl/hNofpHnqK8qvBFwMDO6sbBXZvPWV9XfOrHNC/kpJv5a0H9RV3+OBX0vaV9LGklTrNR5lzwW+JunbGfReFbgNWE7SwDpllwHukrQP1Nd4iL/zOcBdZvav1L5O79Hxt13CzObV23iI/43rgfMU4hTU81vluh845cUbDiVD0rLAXcB6wCH1NB4kLQacBvwW+CKwGPBHYP1abjhmNgu4B3gH2ELSBnWq/1XgT2b2a0l9JC0tqX9nvSeSRhHeIn9pZhsDi0vqNKBFlF2R8BA8F9gHmCzpyBplc9WXpHGEh/cvzezyaHM9/7ms9ZVZ77w6SxoLXE1oqL1MiLiX3N/udRqv7euBF4GFgN2Ao2ppPMRGw2XAr4G1CYvajKhD7+HAb4BfmdlVZvZxan9ndbAsMAj4jqQDoe0B3IneI4CTgSfN7KyYt4WkaZKWNLPWjs4d7X4GeFbScvU0HqLsJYTYB1sDE2PjqSYacD9wSoovAFU+FiHETr8R2BH4lqQTzeyflRtsB7ItwHvAffGG9C3gVuBzhJv1v2o4xlOE66YvsFG84fYBroVO31aGAG/E75cR3qTfB66XdLGZfdqOXH9CAJ2H4/aIaHcr8AfCm9oC54033PUIi5r8KebtB3ypAx0qy9XhAAAgAElEQVTT581TX8sTHoD/jNvTgwqaCxyZfrusQtb66ptD77w6rwZca2YnSVocuEphgZk5wJlRn/bOPRG40sxOljQI+D5h0Zq+kn7YXj0r+AXsBPzazC6Nb9FTY7q+hmsa4ANCsJ/L4/FOAt4k9Lp8rxO9IVybFxNW3TtN0rtmdkEN554D3EwIZLQbYWGej4CPCY2fPczs+Q7s3hM4hHCt3C1pPTN7UVJfM5vb3knjf2MScIKZnROzWwm9NXOA35lZp0sPk+9+4JQU73EoCZJGSVrYzB4GjjezBwhvdrMJD9Hl4ltZR93aswjrkG8Z3za2BB4nrFX+f9D+H11t4873Ac+a2eGE8diLgNUt0okZVwHbSjoNeJTwILsd2BgYXeWcy8YelVeBfwAnS7oHeAg4INryDaBqt7KZtRLeYK9MZLcCGyqO/bdj6yhJiwDvEh4mdddX3HcDsBdwrqTn4/FOIDR8ftnOuZMOcnXVV5QXoZH1eha9o857E7qua9I5xbuEt+6vEhor/wD6EXoBjuno3ISH5Y6SJpvZR8B/gf9HeHiv0Y69g81sDnCamZ0fj/80ocflJ5JGd3Zdxmt7aLRxfeC7wFzgXkLUx4s6agDEfbMIvStDCA//H0l6HZgWyyxwr41yswm9ae8Rfpu/m9kuhMbtbcAuHZxzDnAWcI2ZnQCcQWg8LN9RowH+99+4wszOjsc7Bvg7oZdqDKHnphby3A+csmJmnpo8AasCNwFbVdm3LuGG/lPCzeYEoH9i/wrAfsCmhDfJzxBuVDPiMUcAw4ELgT6pY4+L+f0SeSsT/AyWI9xobgSOAKZW0W1hYGBiewzwY+AOYPdE/tXAZinZ8cALhDF+EeLGrwGcD6yVKHc7sG5Kdjng68DWwGKJfBEeuHfF7Q2AH7VT11vG7R0JXcmd1lc1m2PeLsApie2+wN+AZVLlJhAeBGPi9pJ11NfKhJv9UdHGjeLvVMvvXKmvbYElYt5utegc9y0fZQfE7c8DhwKXJcpsTHi4p2VHErr5h8TtbxN6O04hNJaWJzQCvllFdgJwNrBkIq9P/FwC+D2wftxuqSKf/p12JAQDujKRtwShV2tQFZu3Yf7/xqHAOvE6e4HQu/PlTv7bldV7hwFbVbZj3g+BH1SRGUfojembtDl+/ynwb2AAsEzyukn91tskfuu+wLKJMv2Au4GxKdkV4++zF23XaM33A089JxWugKdOfqBwY30U2KeDMksTuklnM/8DZmWC89JxwOGEgCbLxH2LASPi960Ja5kPSt24vkp4Qz8pcZMaSXj4PAccBCwKHA2snNJpVeBtwtvbsET+lHhDv4jwMBkPPEJ4S6mUWQm4n/AG9Qdg4cS+/WJaPN7IHgPGJ/avAswkjOlPj2lEYn8f4E/A5vG8O9VS13FfZ/VV1ea4r2/i+7qEN7UlUr/V/cBXU3KToi0X11BfPwKOB06N+QM707uj+upM58S+ewiNm72JD1hCI/FOYErc3jKWWTRx7pVjfV9M6NkZHfPXj2nJuP0V4Fupc1atr1SZ44Bb29m3CuE6/lwqf0/CNb9D3N4wnmfxdmz+Im0Npi2AW4CXgO/E6+FRQqNXKXmlv6fyJsff+bMpuZXi77B3Kj/ZgDmQMATyJrBpO/+N35P6byTKrRPPMTqRNyHWw28I/8tjCP+lEfH3e54O7geeelYqXAFPnfxA4Q97dWL7QMKDabVE3lRCN++2cbtyIzqcxBsLcE28Qa+SyNsy5m1b5dzjCb0T1zH/W9hXga8nttMPycHx5nIh4Y33IGB4Yv9KhLfSG+L+XRP7loo3rT3j9v8D/pjYvy1wXrQl/eBflDBeXJFdLZatNJYqN7oPCG+WW6TqK13XB8e6Xr2z+mrH5qFV6nRDwrjw9om8EYRegT+lzrNetGkE4S1vgfqKZY8Afhy/TyY8EDYCxiXsXkDvdurrfBbsCVlA59T+owmzAo4EvpLI/wphqOInhIbmNol9SxOGT74ct48lDG30Tx17c8Kb++ad1NcWhGGBZO/DQMK1u1LqmKMID7oZhN6kao2HJwi9N0+nf+v2bI56nQrsn6zjVH2vWcN/fhqhkb99Kn8pgiPiXnG7H6EXaXCq3IoEP4nOfuv//TdiXku8bp4Etkvkj4z1uE/c3pnQKFs21vHOwH7t3Q889bxUuAKeOvmBws3o7HgzuIzwcDoWeBZYJ5ZZpXKTIXSTVh6EPyV4iVeOdQjh7eABYhd+vDFvU5FNlO1DeFP6XbxBXUJ4cN0OLJIsV0XnfsB68fvawF8JDZ4RVWwbnjw3wfkz+Za0UrR7SiJvBcLb3KSU7FBgX+YfHrkS+GLqvOcRGw011vU/EnW9RTv11Z7Nyd6W4cD30vKERsf3gZ8RhgiuAy4n9MrcCyyXsG94lXN/P/5OaxFm3NwInEhwrFylPb1rqa+o83er2Zwosy3hDXRfwnDJoYTx+uHRnkOAjVIyU5n/AbsIcGmqzKKE665aI61afV1AeCteIZZrIfHgTsgPJTQOxhN6r85kwcbDuHgdrF7N7io2Hwx8C1ix2n+D4Nj6Y4IPwZS0TqljL0xsYKR+51Hx9z0qbl9CaOg9CWyS+L2Oq9hT52+9OOGeUe06mZYodydhKOMkQq/L0h3dDzz1vFS4Ap46+YFCi/4swlvkMYn8Qwhv48kbwf8aDXF7OYKT3MnxJve3eGM5qbObV+IYp8QbxxjC287TNcq1JG486xAepAfH7UnEMdKUTHrsXfEmeh5wUDK/imzlXP3iZ2Vo5YTKzTE+DIZQ5eFbY133zWHzRMKb2wI2xs/hhAfPvQRPdwiNt+MIXv0dnXdpQiNjOnBTIv/HhIditcZdLfW1IqEx1ZndawKnx+/fIwyZ/bETmcHM/7Y7gOD0WukdGhw/R6T07ay+ft1ZfaXsXoK2xsOOlWPXIJ+2+SPgD51co6sTejF+AazdznE7fPASHu7XAPOA42LeQYQhu8pQT8VfRMz/ItHZbz2cxJBHO/+R9YBDEtu/IfoJVbPZU89MPquiybEwn/xwwtvRJnGePYSb7OuEscxKWTOL/2CpxcxeJDhDvkDomv+imb1PGOMe09F5E17grxCctC4n3PBelnR5Z3PFzWyemZmkPmZWGX/fIs4QuJbQqEnLtKa2zczeITzMvyNpzUp+FVmLn5X6qBzrbWCWpEmEBsi4WAcLHKeGul7gvHXYfD1h3HcBG6OH/PuEsecjaJv50Br172gef4uZvUIYyjiJ0Dis8DzwafqcSdtrqK/lrHMP/YeBjyStC3yZ8GB7V9Le7V0nZjbbzP5ZsSFm9wP+K2l94GKFBYbm+61qqK93qGG2WMVuM/s34Xp8CNhA0i+A65RYSbFGm2ckbO6TvLbiTBfM7FFCA68F2EnS2lUOrSgzVNLm6dkYZvYfQs/B98zsuzHvFELDYbm4/WGlrpL3hE5+6/OB5RNlKudL/0fuNrOTEln/aa+s04MpuuXiacFEasggfi5J8Kb/FaH34DHiG1IHstU8yacSFoyZ3JFsIm8S4aGZ9JVo722p6htHwoZDCQ2dz2WQ/S3hzaqaTe2+6RDeSu8jOIkuMEafp64baTOpN+r4vaqDXAe/1ShCI/EYYHfC2gLVxucbUl+Va4zglX8mYXrsQTF/P2DVWs8b908nPITvBXbu6vqqUuYkwrTIzzfa5qjbJNrWyfgVoSGeHIJriZ8LERqAa3ZwfbUkvk8l+KCsUqVcw37rKvvXivW9aUflPPW8VLgCnuIP0YHjVOKGsgjB2/zLxDFHwhtKrU5XEwlvV7vUeN7KTW9s/KzW5V3ruRchjMnuVq/esfw+JBo7dZz36wTH0U1qOW9ndd1dNlPFQa4TvSsNlRUJq2SeTnRwq/O8C9RX/Ew6t1ZrtExIXVfJB1uHsol99wEfknBazVNfdZ57BeBTEr4BeWxO/SZbExxBDyasTbFKlD2KMAtmnYTMQiSmA3ekN6EBsz7B8TTtCNnw/0ZKdmvCjJGqDrOeenYqXAFPBjU4TnVw86jH6WoQcb52vEnULBtl0uPz9Zy7L20OmXWfO8d5RxPfQGs9bycPmG6xmZSDXI16Vxo9fUi8keepr8R1cxtwQLU6qnJdJJ0CO5RNlicMOWySsa4XcCis5dypY6ybqLM8Ng9JfB9DcCgeS1jP4yHi1E5CI+9Y4nRiwloONwOb1aJ3rJ/tSDie5vmt65RdlNiQ76hOPfXMVPmDOQWjEJFvV8If+GoLK0NWK9diZvPqlW1v5bs6ztvHqoyV1yrfzjG72ub/ySXtz3Pe7rA5b11Xk89TX3F7S8IUxFOtbfnuBa6p5Lkr3+uQHWRhxUgqSybnqa9a9U7/zolzZ7F5EcIiSY9ZWP66P2Gmwj8IQxn7mNmzknYiNA4+shgXQyHWw2wze7COc/ez6JdQZ51l/m+k7K1lOW+nh+HOkQVTj+NU5c+edpyqRZb4W2eRjedtTcrWq3fOc2e1uXKMocBmec/bXTZDdQe5rL9V3vqK8jcAPwAOVVhOGrP5A08lzj248r1O2Y+ibF/CrIFc9VXruRM6VPSem9VmggPth8AUSdtbiCcyibCQ2Wax0bBOPO6SlgimZWZ3mtmDdZ57TsY6qxyj7v9Gsr5JXSdO78B/8AKptNYlTVbwbP6Y0HUpYAdJUxJlKw+yhQjrKbwVb1jdLkt02C6R3jf2Qptz1xdxFomkRSWNMLObCQ51B0v6CrQ9zFLy1xCmvmaVXTFPXReo90oWZgE9TBiaOEDSZwgzXu4G/ijpe4RVG39pZk+SoNIo6OY6y/3fsHZ6e5wejDXBeElvTORznNqwINkNSqq321ynzYm8HQkLLF1FmNUyDPgswRFxv1im4lsxgrDk8gY5ZMuqd0V2M4LT4JcID/RTomx/whDGN4CNY9lqfgvdXWcNqW9PvSsVrkBvS+RznPpr4o/enbI3k1hpsUR6u83127xhwua1CG/KlaWUb6NtcaEtCMsyLxW3FyKsajgto+zdCdky6X0XYUaHCN37R9O26NcowhooV5JaObOde0N31lnDrhNPvS8VrkBvSgTP76Nom57XnzCX+8vxJlD5c+7EgpEltybMG+9u2Q0IwZXKprfbXL/NWwPHJvK2IqyauVuUXz7mj42fi8bPPoTx+Asyyn6HsNR32fTen9RbN2Fxphm0RY9cjPDAP4lUgDBC7Imseueps7zXyQJrwHjqXalwBXpTin/CHxBa8JXYEjMICwRVltitRKZLLyRTiGxZ9XabM9k8hrDw0IlxezXCipcP0PYQ24Gw/PZCKdnlc8guUVK9B8bP1Qlv6isRor/+lDAssSQhENQMqi/OlEfvzHWW9zrx5KlwBXpLom1cckvCokDXEZaDHkboJryIsOb9w8SQvkXLllVvtzmTzZWp2VMJY/Q/j9vHEpz5dgS2Ibw9b9dA2VLqnTjGtoSplucQnAX/j9BrcBQhhPVDdLBqaHfXWd769uTJzNdx6FYkbUYICnM8Iaz0y8AVhHHSA4FZwD/M7LbKjIuiZcuqt9ucyebtCd3VbxK6pK8mhMQ+iPA2PBC42Myuq3LuPLJl1XsIIYLq6WZ2t6RNCSHIn7CwhsOKwBwze7kL9C7sOnGcwlsuvSGRw3GqKNmy6u02Z3bMG0J446wsP7wcwWP/J8kyjZQtq96pY1xGIhonwe/hOjqPKNrtddaI+vbkycyjY3YLFphHaNlvLmmMmb1BWBRmHLCLpCWaSbaservN9dscaSW8ab4ft/9JcL47WNLvYt5HjZQtm96JdRZWlLRGzD4XWETSNnH7vnjMwV2hdxNcJ47jDYeuInGTWV3SLpJWIox3zgQ+L2lJws3lBeAMC+F9C5Utq95ucy6bl5U0zMJSzzOAcyUtGR8wrxG64i+BtrDnDZItld7xu0najrDGwoWSfga8RBhqOEDSJQQfgQsthm5vsN7dfp04TjXcx6ELkbQtcCJhitMShFXa5hCmaG1NaLgdYWYzmkW2rHq7zZls3hr4OcG5bwhhfH0aweP+T4SIpF80s781WLZUekv/W+FVhGmL5wH/Bi4grLXwZ8JqlROBf5nZoxWZZqizvPXtOAtgTTBe0hMT4cZwHrBe3N6UcNOozJ1ekUSkymaQLavebnMmm5cFngTWI6wn8DXiwj/A5sD2tLPIT07Zsuq9HeHh/teE7mMJvQbHkgjB3Ux1lre+PXmqlnyoooswsw8JoXmnxe1bgNeBryhEsXvOzF6O+6wZZMuqt9tcu2yl65oQEOkxM7vbzF41sz8SlhHewcxuMrNrzOyO5DnzyJZZb0kTCFMs7weeBb4vaZKZvQQcSljHoapvQJF1llfWcdrDGw4NIjGWWLfjVFGyZdXbbc5uMzA8fv4HGCfpF4li7xIWLWq4bNn0ThxjEmHq4h1mdjrwM8KiTT+TtKaZvQjsaGbPNlrvIq4Tx6mJWrsmPHWeCN2ZTwBPEW4wkwgLwlxDcHj6O+Em0zSyZdXbbc5k87bAg4TpeJsAowkPkemE+fyPAZ/tAtlS6h3lhwGXEqYrjo55owirQ14T97c0U53lrW9PnjpL7hyZEym741RRsmXV223O5Zi3BGHBn6sJ4+qrEZzkbiY46X0C3G1m15Eii2xZ9U7JV0JIDwP+CPyLEFvi35IWJ6yz8EI7st1aZ42qb8epiaJbLj0hkcNxqijZsurtNmeyeW3g68Bv4vZIYE/Cm+8XUmXTznV5ZEupd2pfJaT6cOBCwnLQS3Sh3oVdJ5481ZoKV6DsiRCz/kbgAMIc7KuBSXHfcoSgNeObSbaservNmWyeBjwPnE5YUGjdmL8wYbnjPwJLd4Fs6fSm/SGHSuNhBHA5VQJWFV1neevbk6d6UuEKlDkRxg6vIy4TS+iS/F68uawZ8wY2k2xZ9XabM9k8njCuvWHc/hZhfHuduL0IsGQXyJZGb2Bl4JeJ7fYaD5XgUP26SO/CrhNPnupNPqsiHy8CHwKTJY02s/8Qlo19FDgyjo3OaTLZsurtNtchK6kPYVx9CWA3ADM7ETgNuFLSZ8zsbTN7rZGyZdJb0ljgL8Buki6M5edJakkfO+b3NbM5kvpLSs9mKKzOcso6Tv0U3XIpa6LtDWQYwfHot8SxT0KLf/lmky2r3m5z/TbHcgMJCwudDhyayP8OnQf7yiRbJr2BjQmOioMIsw0uSttRxa6FCH4Eo5uhzhpR35481Zt8VkUOJPUxs1ZJwwnjih8AP7Ma1nsvSraservN9dscjzEY2IowHfBVMzs2sa9Dr/qssmXSW9IiZva2pEUID3wzsy/EfcPN7P2EPSMI4aePMrPbGql30deJ49SDD1XUSDvdl63xT/s+wSlpJGEcsylky6q321y/ze1hZrMJjnF3AcvH7vnKvg7fGmqRLaveie23E58HAH0kTZc0DfiRpBGJRsPVhJgOt+U5dzNeJ45TF43otuipiRyOU0XJllVvtzmTzUsR4wzUcC0PJjGNMKdsKfWuNQH3EMJe7xS3+xJ8FXYuos7y1rcnT41OhSvQrIkw//l5QiS7CxP57f1p+8bP/vGPXoTs4JLq7TbXb/N4QvyDa4EV67y288jmqevC9I7ynQZxAtYE/glsn5QBphRUZ7muk3rryJOnWpIPVbTPWIIT1CSgRdJFUN3rWmGFubmSFiIsELNKQbIjSqq321yf7KIEJ7yfEYIuHS5pRdqhcjxJC0n6FbBDRtmjgRXKqLfCjAhrr3yCJYCvmtk1khQOoX7ARlnPTb46y/vfcJzGU3TLpZkTsEjlk+B1fXFi3/D4mVwc5hZg4yJly6q321y37IrAgPj998A5wLhK+cRxKm+gC0X5DfPIllnvDP9/Jb4XWWe5/huePDU6Fa5AWVL80/6ZsGzsNOAYYETcN4KwHvwGzSRbVr3d5tpkSTy0CN705wJDgPVIBDEiPMRuTMrnke0JerdjS+Wh3+EKkkXUWaP+G548NSIVrkDZEu07TnX6Zy1Ktqx6u82dy9LmEKf4ELkNeB3YJuYPAG6gyhtoHtkS6H1rLXpXOebChEWhFmq03s1yjXnylDcVrkCZEu07Ti3crLJl1dttrl028TDbkODAt11i32J0MBMgj2yT630LcEkir6NAVsnFnW6kgzDbRddZXllPnhqRfAGoOpC0NTDHzG6uOE6ZWWszy5ZVb7e5btkhhNgIT5vZFVLtIZPzyDab3jDfegl/A+4xs8M6OEYldPZChNgOR5jZnV2pd5Qv7L/hOHnxhkNG6r1RNINsked2m7teVtIQM/swY0Mrs2zqOIXqTWg3mKQ1gAOBPYBrzGyPtH6pRsNVwE/N7I7u0Dt1nML+G46TBZ+OWSOS+sbPFuh89bpmkC3y3G5zftnKG3SN8n0qD7F43nrOPZ9snQ/uptCbMHzQGs+/FsGB8AzgM8A4SedW9Kvom2g0XAH8FOi0p6E9vfPWWXfIOk6j6JUNB0mL11m+Mj96YeD6eLPpbtkZksaVUG+3uT7ZGZLGQO0P4ShfWRb5YEkDM8r+n6SBJdT728AxkgbE3X2Be83sQTN7AlgX2EhxDYT40J8XZS8HjjGzOwqos7zXSc2yjtNIel3DId4Y/ijpklRee+WTbyaXAEMJ87i7W/Y3wG9LqLfbXJ/s74FvStoLOn8Ip+RvANYCdskgex2wE2F9grLp/QwhQNUSkpYHXgOWlDQ+Hm8eIWrkNEkrWVtAqFuA4wmNiix6562zXP8NM3u3vfKO06VYE3hodleC+RZ0+RtwfCflk97WtxCnOhUlW1a93ebaZQnhkf8P+DWwS7VrN5FXWXegsujPFjlky673YoSeh79EXQ4E7gZ2B/YiDEesljjOBMIwRh69C/9vePJURCpcgW41ts0ZdA3gTGAWcFF6f/ye/LPeRtsKcN0uW1a93ea6ba7kbU4Yo7+e+af6VZNfFJiZOHcW2Wkl13sz4ELCssxHxu+DgV0JDYIZqWP2SR2v2+ssr6wnT0WmwhXoFiPjm0L8vhZhvfnJwMR4Ezg3VT75Z7018UfvTtm/ApuUUG+3uX6bkw2lTYHHCW/KlwMnkXoTTsiPILyxbtUA2bLqPQ64DFg1bi8LHAWcR4xOSdtS0ckHciP07vbrpIj7pydP6VS4Al1uYIhNf2zi5rFO8g8KtAAvE1v8zL/m+x3ABQXI3gJsV0K93eb6bf48sEzME3AEcFjcXhg4DLiSxJLGcd9ChIfYzhll7wDOL6Het9D2tj8IOAF4Ctg0UW4ZwnV0RSzTkti3fA6989RZ3uvEhyc8NU0qXIEuNxAWJ0SnWzbeNJYCbgbGJ8p8C3gFWCluDye8AWxfkOy0kurtNtdv876Eh0j/uO/LBKe7ZeP2UOBh4GRgdMyrxCT4dQ7Zz5VU74pvwJqEBsJSsdwvmN+HYVlgXJX7QR6989RZruuk6PuoJ0/JVLgC3WJkRsepImXLqrfbnMnmUYS35gnxWMcR3nyXJ4QMvwZYJZbtQ3hIrt8A2bLqPRG4iOCTsFQsfzxhLYY1argfFFJneevbk6dmSYUr0OUGZnScKlK2rHq7zZls3pzwIDwGuJ/w4JoKHE1425wJ7JCSGdQA2bLqvT1wL2GI4XLCio9jYzqF4N8wtIP7QSF1lre+PXlqplS4Al1qXEbHqSJly6q325zJ5jUJb5nrxO0jgAeBFRLHW7oiz/zOfXlky6q3COsebBa3xwI/JPgkjI52rdLB/aCQOstb3548NVvqsQtASRoEHACsAiwBYGYvE6Y/vQacFsvMjfusaNmy6u02Z7J5JMHR7kMzuz+WOYLwBn2TpAlm9rKZvVKRrxwjp2wp9U6wCOHtHTN7CbiPMARwDDDLzJ6iCkXVWd76dpympOiWS1ckMjpOFSlbVr3d5roc8ypTAIfFzy8B77Bg1/gRpLzo88iWXe9UuZWBa4Fvxu3JhFUjzyIVDrvIOmvEf8OTp2ZNhSvQMEPabhJ1O04VJVtWvd3mXDavAzxJ2+yAzxPWEfhcBzKNkC2N3iSmT1bZ3wJsHOX/TJjCOIEwLXO/Buvd7deJJ09lSD1mqMLMTNL2wB8Ia9d/SHCWIn6OAnaRNLRZZMuqt9uc2eYtga8R3nqvkrS+mf0Z+BnwO0k7pmUaJFsavYGVgCMlLdeOPvPM7DbClNDjCctdLwpsSVjvoFF6F3KdOE4pKLrl0qhEDsepomTLqrfbnMnmpYEnaFu86CDCGHdle3faWRkwp2xp9I66/gL4lLCmwYR2jpucrbAKYYbC6s1QZ3nr25OnMqQe0+MQyeQ4VbBsWfV2m+uTfYsw/e8VhbDOpwCXAldHx7xLzOyOdiIk5pEtjd5mZsDthKWYVwM2rUS4TGIhumVL3HwR+JaZPdpEdZb3v+E4TU2PaTjEm87hwERJ34zZ7xHGM+cRxkGbSraservN9dtMGJsfDnzBzFpj3uXAo8AV0eu/cp6GyZZBb2BYnFmAmd1EcH4cDEwBdpY0LnnQRIjpRQnDFXMaqXfB14njND9Fd3nUm8jhOFWUbFn1dpvrt7kduYrD3PKEt+ATCfP4HyTMEjgFWCqPbIn1XhJ4gzBVcp8osw5hBsRawJ+A79O2DHM6hsMmRdRZV9S3J09lSYUrUJey4U9/NLBcJ+VGxJvPMgQnqieBLQqSXbGkervN9dvc7uI9tD3wlgK+DvwYWBXYJD5glsghO62kei8Rr5PLgRsJzoTfITQU7gPWi7peDPwIGBKPVwl21e70zS6us1zXSUcynjyVIRWuQM2K5nScKlC2rHq7zfXJDqTN8W4CMbZBe7Jx+zPAPwhv1lllJ5ZU77UTeRMIsSJOBg4BvkCYCfHbuH8SMCl+70dYhXGzAuusIQ6cnjyVNfWlJJiZSbod2JHgODVX0jwzezZVrrUyBkqb49QbkkYVIQtQRr3d5rpllwQmSDqM8KDYkhQWx9oT8i8A6xIe3ttmkTWzt3PWdRF6fxE4XtIjwHNmdrKkRYAhhFkIZ2NdAX4AAAp4SURBVAMbAX2iY+NjiePNkbQ/0L/AOsv133CcstP0zpGShudwnPodYbyxu2WPBwaWUG+3OaNjnpm9BnxMCL38gJm9GMv3aUd+OLAn8G5G2a9EmbLp/W3gN4QZDg8RHr6Y2d8I/gCthGGFt83sEWtzbET63+yLtwqos4ZcJ47TI+isS6LIRD7HqTsJ3Z3dLXsLIeJd2fR2m+u3eRPaHPEmAH1jPfyIEPFwTNy3CImgSYQx+tuAqRll7wbeLqHedwGvAycmyjwP/Bz4FTAAWIHgzHgioUcjHTAqq9556iz3dVL0vdSTp0amwhXoULl8jlN7FSS7QUn1dpszOuYB2wDPAWvF7fWB44BfEh5spwKLJ+RvpG0J5CyyZdT7FsKiSwcTokJuEG04G9iO8PC9mtALug4wvoP7QnfXWUPq25OnnpIKV6CqUjA08b1ex6kriSvCdbPsZcCWJdTbba7f5g1TNj+TKDOKsH7AOoS4BH8nxkUgdG3fAGyUUfbmlGxZ9L6T0NvwQ0KD4WBCz8NlCX2WAi4Ahndyb+jOOmvYdeLJU09KTeccKWll4PdZHKcI3ZyVteBX7y5ZCw5bxwPHStqmLHq7zZls3t/M3pIkMzNgGOGhOELSkcBWhC70vczsSElnWJtT3JKEpY+fi9v1yE4jPCB3ljSpRHpvSOiyPxn4s5m9J+k+QhjpzSWta2b3EZZinhjLvk+KjHpnrjMadJ2k7XCcnkBTOUdKmkAIDpPFcaoie1E3yyrKH18yvd3mDI55wH/j58Ix7wHC/+gwwpvwhsDfgM/Gcm/SxvNm9o96ZaPePwXOLZnew4DvAr8zszPN7L24f1fCrIjzgW9LOpQwxfFHZvZK4rxJ/buzznJfJ95ocHo03dW10VkijAm+RAbHqaJky6q321y/zalrdSvCw+pc4NTUvkmEBYYWWFcgi2xZ9Y75fYFzgBGJvK/Esv8g+CXsTehhqAwvLKB7d9ZZI+vbk6eemgpXwCz4NMQ/Y92OU0XJllVvtzm3Y95qhKiLmxKc4q4Gbo37phLeUD/XCNmy6h3zRXgIPw5sk8g7kPAwXpzg+zCJuAIj1RsN3VZnjaxvT556cipeAVgp/hnrdpwqSraservN+RzzYtlVgDNSedcSnOX6ABNjXrWHYM2yZdW7iux+wFm0zYBoiZ9TgWuAkYmyhdVZo+vbk6eenIo9ebgpPAB8g9idSRj7PAC4grDKG4R5548CSxctW1a93eb6bY770usIjCWEfZ6cyPsZsHejZMuqdzv/8cUIcR3OIPgh9CU4LT4IbN0MddaI+vbkqTel4k4cvKNvAb6Wyt8TOBTYmTA3+lDC+Oa2RcuWVW+3uX6bY9nKuPcWwHSCM+iahDH3t+KxdgMeAzZuhGxZ9e7kv7444Q3+KYLD4b3Ajo3Su+jrxJOn3paKO3EOx6miZMuqt9tcv80JmQ0JD6ovE95A/0tY9GdDQnjm84hj+I2QLaveNf7nFwdG0rbCY0P0bobrxJOn3pSKOWkOx6miZMuqt9tct2z/1LX6deAnie2NgaeB0XG7T+L4mWXLrHfOe0GRddYQB05PnnpbKmQdBwu8S3iD2FXSWmZmBCeot4HlgXeB1ywGrylatqx6u821y0paCbhA0o8kbRqz+wKTE8e+DbiD4IGPtc3hH59VNupWWr2zkkfvvHWWV9ZxejNFLwB1BcFz+f+3d7chVlRxHMe/PytyTTHXyrIwocCC8IHoTWlJEj1jUpBiYSD1JiQKIXqAVOhFEEEvetAXRVZoFFRiVpKiFpFGKisFQeADGqaBlK0RZv9enNm6LpuNO3vn3rnz+8Dg7pn73/OfC9f535kz5zwk6UbS/CnTSR/kl6NhEpUB/pNqVWxV8/YxnyKWNKp+JWmQ3EWk++pExKtAt6RVksZKmkFaG2F4X6DSbKeDiv0PVc07t1a+Z034bJjVS7T4kgc5B061U2xV8/YxDxwLXAjsJrtETpr++BvSPfY7sra3SSe6rX1tRWM7Me+cx9ay96xZnw1v3uq09d3razlJ44ATwNkRcUD6Z276to2tat4+5pNjsymGHyPNEPgeaUbAXtKjd1OA7RHxnKQRpAXYDvXFF4nt5Lz/55ha9p41M9asLtqmcDArm6TzgOERsV/SVNKjfvOBDRGxUNIw0iX0ORHx4FDFOu/y+zazodN2q2OalUFpYN4K4FNJmyLiy+zENRo4Kuni7BvnMGCSpO5IA+YKxTrv8vs2s6HlKw5WO9ml8tXAC8BbEXGi374FwB+k+92PAssiYl3RWOddft9m1gTNHEDhzVu7baSrbKuBRf3aHyCd2M4CLgdeAo7w72A9FYl13uX37c2bt+ZsrX4c06w0kkZExJ+kk9mGhvYFpCmFzyeNqN9NWlvhhohYK0lA12BjI6LofAe1y7to32bWPC4crOMpGQNsygbo/QLc1fCSPcDsiLgfOApcERG7IqInO/meO5hYKPbcfx3zLtq3mTWfCwfraH3fXiPiCOnxv0tIyydPkHQzQERsjoh9SpP+XEa6314o1nmX37eZlcOFg3W6kQ0//wbcBnxCWm1xtqRHJE2QdAvwCvBsRPwwBLHOu/y+zawEfqrCOpakkaRFiraR1hw4BEyMiEWSziYtmTyLNDivF1gRER8WjXXe5fdtZuVx4WAdTdIU4BxgHmm9g4Wk6YwPAhuBncBxoDcifm8cmFck1nmX37eZlcOFg9WG0nTC7wKLgbuBMaSVGOdExL5mxTrv8vs2s+bxzJHW8RoG7P0k6TAwPiIez/aNj4gfmxHrvMvv28yaz4MjreNFRGSPJ0K6VD6pYffBZsUWVce8zaz9uXCwWmi4j74NuFbSqOyb8V/NjC2qjnmbWXvzGAerlWxConER8W2ZsUXVMW8za08uHMzMzCw336owMzOz3Fw4mJmZWW4uHMzMzCw3Fw5mZmaWmwsHs4qRFJLebPj9TEmHJa09zb+zJ3vq4bRfc4r2JZIWn04eZlYtLhzMqqcXuEpSV/b7TcCBFuZjZjXiwsGsmj4Gbs9+nges6tshqVvSB5J6JH0laXLWPlbSekk7JC0H1BBzn6RtknZKWi7pjLyJSHpK0veSPuPkWSLNrAO5cDCrptXAXEnDgcnA1oZ9S4EdETEZeBJYmbU/A3wREdOANcAEAElXAvcC10XEVOAEMD9PEpKuBuYC00jLZl9T8LjMrM15kSuzCoqIHkkTSVcb1vXbPZ20GiURsTG70jAauJ50ciciPpJ0JHv9LNKqlV9nS0x0AYdypjIDeD8ijgFIWjPYYzKzanDhYFZda4DngZnA2IZ2DfDa6PdvIwFvRMQTg8zD08+a1YhvVZhV12vAsojY1a99C9mtBkkzgZ8j4td+7bcCY7LXbwDukXRBtq9b0qU5c9gCzJHUJWkUcGeB4zGzCvAVB7OKioj9wIsD7FoCvC6pBzgGLMjalwKrJG0HNgP7sr/znaSngfWShgHHgYeBvTly2C7pHdLy2XuBzwsdlJm1PS9yZWZmZrn5VoWZmZnl5sLBzMzMcnPhYGZmZrm5cDAzM7PcXDiYmZlZbi4czMzMLDcXDmZmZpbb343+Yes0WYZ8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
This plot shows the correlation between the predictions of the models. For classification, frequency of identical predictions is used. By default, models are ordered by their similarity (as computed by hierarchical clustering). Interpretable models, such as GAM, GLM, and RuleFit are highlighted using red colored text." + ], + "text/markdown": [ + "\n", + "> This plot shows the correlation between the predictions of the models. For classification, frequency of identical predictions is used. By default, models are ordered by their similarity (as computed by hierarchical clustering). Interpretable models, such as GAM, GLM, and RuleFit are highlighted using red colored text." + ], + "text/plain": [ + "\n", + "> This plot shows the correlation between the predictions of the models. For classification, frequency of identical predictions is used. By default, models are ordered by their similarity (as computed by hierarchical clustering). Interpretable models, such as GAM, GLM, and RuleFit are highlighted using red colored text." + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv8AAAKACAYAAAALjxc2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzde5RdVZnu/++TBAiXCJggrRIJILfGxmACeAnp/KQFwUaIShPgqNAtiEaRtlFaoQVtutvj5aRBoyQ/BBoVxAvRKAoYL1RQFJIQSCJgJCEY5cg9QIhEyHP+WLNgs9lVtStVuyrZ9XzG2KNqzTXXu961KxljrrnmnEu2iYiIiIiI9jdssBOIiIiIiIiBkcZ/RERERMQQkcZ/RERERMQQkcZ/RERERMQQkcZ/RERERMQQkcZ/RERERMQQkcZ/RES8gKRxkixpRBN1T5J040DktTF6cy1dHP9xSRf3d14REYMhjf+IiM2cpHskrZc0pq58cWn0jhuczJ7NY0tJ50laLmltyfeSwc6rEUlTJK2uLbP9n7bfM1g5RUT0pzT+IyLaw0rg+M4NSX8DbD146TzPt4G3AicA2wOvBhYCh/Y2UKPe+43t0Y+IGIrS+I+IaA9fBd5Vs/1u4PLaCpK2l3S5pAckrZJ0jqRhZd9wSZ+T9KCkFcBbGhz7FUn3SfqDpPMlDe8pKUl/B7wJONr2Lbaftr3G9kzbXyl1XiZprqSHJf1O0ik1x58n6duSvibpMeCkLsqGSfpXSXdLekjSNyW9uIucTpZ0h6THJa2Q9N5Svi3wI+Blkp4on5eV832t5vi3Slom6VFJP5e0b82+eySdKel2SWskXSVpZE/fU0TEQEnjPyKiPfwKeJGkfUuj/Djga3V1vkDV87478LdUNwsnl32nAH8PHABMBN5Rd+z/AE8Dryx1DgOaGQrzd8DNtn/fTZ0rgdXAy8p5/1NS7VOBo6meHuwAfL2LstOBY8p1vQx4BJjZxfnup7rWF1Fd/wxJr7G9FjgC+KPt7crnj7UHStqr5HsGsBPwQ+D7krasqfYPwJuB3YD9gZO6ufaIiAGVxn9ERPvo7P1/E3An8IfOHTU3BB+z/bjte4DPA+8sVf4B+G/bv7f9MPBfNcfuTNUoPsP2Wtv3AzOAaU3kNBq4r6udksYCk4CzbP/Z9mLg4pq8AG6y/V3bG2yv66LsvcDZtlfbfgo4D3hHoyFBtq+xfbcrNwDXA4c0cS1QfYfX2P6x7b8An6MaXvX6mjoX2v5j+R6/D4xvMnZERMtlnGRERPv4KtBB1eN8ed2+McCWwKqaslXAy8vvLwN+X7ev067AFsB9kjrLhtXV78pDwF7d7H8Z8LDtx+vOPbFmu9F56st2BeZI2lBT9gywc/2Bko4Azi15DQO2AZZ0k2N9vs9+N7Y3SPo9z32PAP+35vcnyzEREZuE9PxHRLQJ26uoJv4eCVxdt/tB4C9UjeROr+C5pwP3AWPr9nX6PfAUMMb2DuXzItv7NZHWPOAgSbt0sf+PwIsljeoiLwA3OK6+7PfAETX57WB7pO3aOEjaCvgOVY/9zrZ3oBq603lX0+hc9fk++x2quhsaW5dvRMQmK43/iIj28k/AG8v49WfZfgb4JvAfkkZJ2hX4MM/NC/gmcLqkXSTtCPxrzbH3UQ2N+bykF5XJtXtI+tuekrE9D/gxVa/8BEkjyvlPk/SPZS7AL4H/kjRS0v7lGr7eXdwGLirXtiuApJ0kHd2g3pbAVsADwNPlKcBhNfv/BIyWtH0X5/km8BZJh0raAvgXqhujX/Yy34iIQZHGf0REGylj2Rd0sfuDwFpgBXAjcAVwSdn3/wPXAbcBi3jhk4N3UTWcf0M1mfbbwEubTOsdVL3rVwFrgKVUw3rmlf3HA+OoetXnAOfa/nGTsTtdAMwFrpf0ONUE6IPrK5XhRadTNeIfoVp+dG7N/jupJvSuKKv5vKzu+LuA/0U1efpB4CjgKNvre5lvRMSgkN3TE86IiIiIiGgH6fmPiIiIiBgi0viPiIiIiNjESLpE0v2SlnaxX5IuLC9HvF3Sa5qJm8Z/RERERMSm5zKqFwZ25Qhgz/I5FfhyM0HT+I+IiIiI2MTY7gAe7qbK0cDl5YWFvwJ2kNTjQgx5yVcMOaM03DuxRUtiv3jCq1oSNyIiYlOzcOHCB23vNNh5tMqrta0f55mWxV/JU8uAP9cUzbY9uxchXs7zX3i4upR1+VZ1SOM/hqCd2ILzn/eeo/5zwoKuVliMiIhoL5JW9Vxr8/U4z7SsvQBwIr/9s+2JPdfskhqU9biMZ4b9RERERERsflbz/Dez70L1vpRupfEfEREREdHAsGGt+/SDucC7yqo/rwXWlDeydyvDfiIiIiIiNjGSrgSmAGMkrQbOhWrSou2LqN6cfiTwO+BJ4ORm4qbxHxERERFRR/RbD31jG7rfbfv4HvYbmN7b06bxHxERERFRTy1u/A+SNrykiIiIiIhoJD3/ERERERF1Wj7sZ5C04SVFREREREQjm13jX9JYSSslvbhs71i2d5W0p6QfSLpb0kJJP5M0udQ7SdIDkhZLWibp25K26ce8xks6sh/j/VDSDg3Kz5N0Zi9jHVuueYOkvrxMolckjZO0tC91JI0uf8cnJH2xbt+WkmZL+q2kOyW9vb9yj4iIiBim1n0G7ZoG79Qbx/bvgS8Dny5FnwZmA38CrqF6NfIeticAHwR2rzn8Ktvjbe8HrAeO68fUxlMtt9QnZa3WYbaPtP1oP+QFsBR4G9DRT/EG0p+BfwMa3fCcDdxvey/gr4EbBjKxiIiIiM3NZtf4L2YAr5V0BjAJ+DxwInCT7bmdlWwvtX1Z/cGSRgDbAo+U7V0l/UTS7eXnK3ooP1bSUkm3SeqQtCXwKeC48mSh4U2FpJ0k/VjSIkmzJK2SNKb0ft8h6UvAImCspHskjSnHnS3pLknzgL17+2XZvsP2Xc3ULU9Ivivp++WJygckfVjSrZJ+VfPEZXzZvl3SHEk7lvIJ5Xu5iZrlpyQNl/RZSbeUY97bZO5rbd9IdRNQ7x+B/yr1Nth+sJvrOlXSAkkLHueZZk4dERERQ5k2+Zd8bZTNsvFv+y/AR6huAs6wvR7Yj6rh3J3jJC0G/gC8GPh+Kf8icLnt/YGvAxf2UP4J4HDbrwbeWs7/CZ57snBVF+c/F/ip7dcAc4BX1Ozbu5zrANurOgslTQCmAQdQ9d4f2MM19odXAScABwH/ATxp+wDgJuBdpc7lwFnlu1lCdW0AlwKn235dXcx/onrz3IFU13CKpN02NsGaIVH/Xm6mviVp567q255te6LtiaMYvrGnjYiIiNisbZaN/+II4D6qhuoLlN7opZKurim+yvZ44K+oGqwfKeWvA64ov3+V6mlCd+W/AC6TdAr0qiU5CfgGgO1rKU8eilW2f9XgmEOAObaftP0Y1aucW+1nth+3/QCwhudukpYA4yRtD+xgu3OYzf8AkxuUf7Um5mFUr6BeDPwaGA3s2YccRwC7AL8oN1M3AZ/rQ7yIiIiIZ3Wu9pOe/02ApPHAm4DXAv8s6aXAMuA1nXVsTwVOourhf57yRrTvA5O7OIW7K7d9GnAOMBZYLGl0s6l3s29tN/u6yqdVnqr5fUPN9ga6Xx5WdJ2rgA+WJyPjbe9m+/o+5PgQ1aus55Ttb1Hz94+IiIiIF9rsGv+SRDXh9wzb9wKfperxvQJ4g6S31lTvbjWfScDd5fdfUg2tgWruwI3dlUvaw/avbX8CeJDqJuBxYFQP6d8I/EOJcRiwYw/1oZqkO1XS1pJGAUc1cUxL2V4DPCLpkFL0TuCGMkF5jaTOJyQn1hx2HfA+SVsASNpL0rZ9yKHzBm5KKToU+M3GxouIiIh4njYd8785vuTrFOBe2z8u21+i6uE/CPh74P9I+m+q1X8eB86vOfa40jAdBqwuxwGcDlwi6SPAA8DJPZR/VtKeVL3ZPwFuA+4F/rUMa/mvLsb9fxK4skwIvoFq2NLjwHZdXaztRZKuAhYDq4D53X47DUiaCnwB2Am4RtJi24f3Nk6ddwMXleVSV/Dcd3My1Xf2JFWDv9PFwDhgUbmBewA4psn87wFeBGwp6RjgMNu/Ac4Cvlr+3rV/n4iIiIg+adeXfKnqQI2BIGkr4BnbT0t6HfDlMgchBtDuGunz2bUlsU9oblGliIiIzZ6khbYH7P1BA22vESN94Yta014AOOKR3w7K97c59vxvzl4BfFPSMKr3DJwyyPlERERERBfasec/jf8WkHQy8KG64l/Ynk61ZGd/nGMm8Ia64j2B5XVlF9i+tMHxhwP/u654ZZkoPeA2tXwiIiIi2lEa/y1QGtsvaHD38zmm91yr2+Ov4/lj8gfVppZPREREDHFqz57/NrykiIiIiIhoJD3/MeRstSXs8fLWxL5Ce7cmcJEJxREREQOjXVf7acNLioiIiIiIRtLzHxERERHRQPVqovaSnv+IiIiIiCEiPf8REREREfXadLWfNP4jIiIiIupkwm9ERERERGzW0vMfEREREVGvTYf9tOElRUREREREI+n5j4iIiIiokzH/mwhJYyWtlPTisr1j2d5V0p6SfiDpbkkLJf1M0uRS7yRJD0haLGmZpG9L2qYf8xov6ch+jPdDSTs0KD9P0pm9jHVsueYNkib2V45NnHecpKV9qSPpTeVvuaT8fGPNvuMk3V6u7TP9mXtEREREO9rsGv+2fw98Gfh0Kfo0MBv4E3ANMNv2HrYnAB8Edq85/Crb423vB6wHjuvH1MYDfW78qzLM9pG2H+2HvACWAm8DOvop3kB6EDjK9t8A7wa+CiBpNPBZ4NDy99xZ0qGDl2ZERES0m2HDWvcZtGsavFP3yQzgtZLOACYBnwdOBG6yPbezku2lti+rP1jSCGBb4JGyvaukn5Re5J9IekUP5cdKWirpNkkdkrYEPgUcV54sNLypkLSTpB9LWiRplqRVksaU3u87JH0JWASMlXSPpDHluLMl3SVpHrB3b78s23fYvquZuuUJyXclfb88UfmApA9LulXSr2qeuIwv27dLmiNpx1I+oXwvNwHTa+IOl/RZSbeUY97bZO632v5j2VwGjJS0FdVN3W9tP1D2zQPe3tQXEhERETFEbZaNf9t/AT5CdRNwhu31wH5UDefuHCdpMfAH4MXA90v5F4HLbe8PfB24sIfyTwCH23418NZy/k/w3JOFq7o4/7nAT22/BpgDvKJm397lXAfYXtVZKGkCMA04gKr3/sAerrE/vAo4ATgI+A/gSdsHADcB7yp1LgfOKt/NEqprA7gUON326+pi/hOwxvaBVNdwiqTdepnX24FbbT8F/A7Yp9w4jQCOAcZ2daCkUyUtkLTg0Wee6eVpIyIiYshRev43NUcA91E1VF+g9EYvlXR1TfFVtscDf0XVYP1IKX8dcEX5/atUTxO6K/8FcJmkU4Dhvch5EvANANvXUp48FKts/6rBMYcAc2w/afsxYG6DOv3tZ7YfL73qa3juJmkJME7S9sAOtm8o5f8DTG5Q/tWamIcB7yo3X78GRgN7NpuQpP2A/w28F8D2I8D7gKuA+cA9wNNdHW97tu2JtifuMLw3f7KIiIgYijon/KbxvwmQNB54E/Ba4J8lvZRqSMhrOuvYngqcRNXD/zy2TdWgndzFKdxdue3TgHOoepoXl/HnTaXezb613ezrKp9Wearm9w012xvofoUo0XWuAj5YnoyMt72b7eubSUbSLlRPSt5l++7Octvft31wecpwF7C8mXgRERERQ9Vm1/iXJKoJv2fYvpdq0ufnqHro3yDprTXVu1vNZxLQ2ZD8JdXQGqjmDtzYXbmkPWz/2vYnqCakjgUeB0b1kP6NwD+UGIcBO/ZQH6pJulMlbS1pFHBUE8e0lO01wCOSDilF7wRuKBOU10jqfEJyYs1h1wHvk7QFgKS9JG3b07nKikfXAB+z/Yu6fS8pP3cE3g9c3IfLioiIiHhOhv1sMk4B7rX947L9JWAfqvHpfw+cJmlFmXB6DnB+zbGdE3JvpxpD/++l/HTg5FL+TuBDPZR/tiw9uZSqcX4b8DPgr7ub8At8EjhM0iKeG7b0eHcXa3sR1dCWxcB3qIa49IqkqZJWUw1jukbSdb2N0cC7qb6H26lWOvpUKT8ZmFm+/3U19S8GfgMsKt/bLJp7z8QHgFcC/1a+28WdjX7gAkm/oRqG9Wnbv+3zVUVERES0MVUjYGIglFVqnrH9tKTXAV8ucxBiAO271Uhf9vJdWxL77pUtCfusE5pbtCkiIqLlJC20PWDvDxpo+2090lfsNq5l8cffcdegfH95w+/AegXwTUnDqN4zcMog5xMRERERQ0ga/y0g6WSeGyLU6Re2p1MNN+qPc8wE3lBXvCcvnPR6ge1LGxx/ONXqObVWlonSA25TyyciIiJiMMfmt0oa/y1QGtsvaHD38zmm91yr2+Ovo5qEu0nY1PKJiIiIaEdp/EdERERE1FN79vy34SVFREREREQj6fmPIUeCLbdsTex9925N3E5XqHUnyEpCERERz+l8w2+7SeM/IiIiIuIFxLBhGuwk+l0b3s9EREREREQj6fmPiIiIiKgn0PD0/EdERERExGYqPf8REREREXUEKGP+IyIiIiJic5We/4iIiIiIekrPf0REREREbMbS8x8RERER0UBW+2lTknaWdIWkFZIWSrpJ0lRJUyStkbRY0u2S5kl6STnmJEmWdGhNnKml7B39kNNESRd2se8eSWN6Ge8SSfdLWtrX3Hp53vMkndmXOpJeXf4mSyR9X9KLSvmWki4t5bdJmtLP6UdERES0lSHf+Jck4LtAh+3dbU8ApgG7lCrzbY+3vT9wCzC95vAlwPE129OA2/ohpxG2F9g+va+xalwGvLkf4w2ki4F/tf03wBzgI6X8FIBS/ibg85KG/L/piIiI6AcSGta6z2BJQwneCKy3fVFnge1Vtr9QW6ncJIwCHqkpng8cJGkLSdsBrwQWd3cySUdKulPSjZIulPSDUn6epNmSrgcuL08dOveNlnS9pFslzaJafapXbHcADzdTV9LPJc2Q1CHpDkkHSrpa0nJJ59fU+7CkpeVzRk352ZLukjQP2LumfA9J15anK/Ml7dNk+nsDHeX3HwNvL7//NfCTcn33A48CE7u4plMlLZC04JFnnmnytBERETGUabha9hksafzDfsCibvYfImkxcC/wd8AlNfsMzAMOB44G5nZ3IkkjgVnAEbYnATvVVZkAHG37hLryc4EbbR9QzvGKbq+of6y3PRm4CPge1ROPVwEnlZuRCcDJwMHAa4FTJB1QyqcBBwBvAw6siTkb+GB5unIm8KUmc1kKvLX8fiwwtvx+G3C0pBGSdqP6/sY2OB7bs21PtD1xx+HDmzxtRERERHtJ47+OpJll/Pgtpahz2M9Y4FLgM3WHfIOqsTsNuLKH8PsAK2yvLNv19efaXtfguMnA1wBsX8Pznz60SueNzBJgme37bD8FrKBqYE8C5thea/sJ4GrgkPKZY/tJ2491xilPRl4PfKvcTM0CXtpkLv8ITJe0kOrpy/pSfgmwGlgA/DfwS+DpPlxzREREBAASDBumln0GS1b7gWU8N4wE29PLZNoFDerOBb5TW2D7ZkmvAtbZ/m01OqhLPf2l13azzz0c29+eKj831PzeuT2C7q+lUa7DgEdtj+9tIrbvBA4DkLQX8JZS/jTwz531JP0SWN7b+BERERFDRXr+4afASEnvqynbpou6k4C7G5R/DPh4E+e6E9hd0riyfVyTOXYAJwJIOgLYscnjWqkDOEbSNpK2BaZSzYHoAKZK2lrSKOAogPIUYKWkY6GaQyHp1c2cqGaFpWHAOVRDkag5N5LeBDxt+zf9eZERERExdLXjhN8h3/Nv25KOAWZI+ijwAFUP/FmlSueYfwFrgPc0iPGjJs+1TtL7gWslPQjc3GSanwSulLQIuIFq/kGvSLoSmAKMkbQaONf2V3obp5PtRZIu47lruNj2reVcV1FNfF5FdUPQ6UTgy5LOAbagGjLVzOpIx0vqXGXpaqrhVwAvAa6TtAH4A/DOjb2eiIiIiKFA9kCPJhnaJG1n+4myetBMYLntGYOd11Dy1yNH+uvjdh3sNDbKHXe1LvYJbmHwiIhoO5IW2m64yl472H/7bXzN65pdmLD3XnHdrYPy/WXYz8A7pTxJWAZsTzXxNSIiIiKi5Yb8sJ9WkTQH2K2u+KzSy9/nnn5Joylr3NfoXMOyfiH7Q20/1CDGTOANdcUX2L60vu5A2NTyiYiIiKFMaFj79ZOn8d8itqe2OP5DQK9XzqmLMb3nWgNnU8snIiIiot2k8R8RERERUUdiUN/E2ypp/MeQY+DpzfRVYLuNa13sK7R364KTCcUREbH5GcwlOVul/QYyRUREREREQ+n5j4iIiIiop/T8R0RERETEZiw9/xERERERL6C2nPCbnv+IiIiIiCEiPf8REREREXUkGJYx/xERERERsblKz39ERERERANZ7SciIiIiIjZbafwDknaWdIWkFZIWSrpJ0lRJUyStkbRY0u2S5kl6STnmJEmWdGhNnKml7B39kNNESRd2se8eSWN6Ge8SSfdLWtrX3Hp53vMkndmXOpKOlbRM0gZJE2vKx0laV/4+iyVd1J+5R0RExBAm0HC17DNYhnzjX5KA7wIdtne3PQGYBuxSqsy3Pd72/sAtwPSaw5cAx9dsTwNu64ecRtheYPv0vsaqcRnw5n6MN5CWAm8DOhrsu7v8fcbbPm2A84qIiIg2pmFq2WewDPnGP/BGYL3tZ3uNba+y/YXaSuUmYRTwSE3xfOAgSVtI2g54JbC4u5NJOlLSnZJulHShpB+U8vMkzZZ0PXB5eerQuW+0pOsl3SppFtDrfzG2O4CHm6kr6eeSZkjqkHSHpAMlXS1puaTza+p9WNLS8jmjpvxsSXdJmgfsXVO+h6Rry9OV+ZL2aTL3O2zf1fzVNrymUyUtkLTg0Wee6UuoiIiIiM1WJvzCfsCibvYfImkxMBpYC3y8Zp+BecDhwPbAXGC3rgJJGgnMAibbXinpyroqE4BJttdJmlJTfi5wo+1PSXoLcGpTV9Y3621PlvQh4Hslt4eBuyXNAMYBJwMHU92M/FrSDVQ3lNOAA6j+fS0CFpaYs4HTbC+XdDDwJaqbr77YTdKtwGPAObbnN6pke3Y5P/uOHOk+njMiIiLanfKSryFB0kxJt0m6pRR1DvsZC1wKfKbukG9QNXanAfWN+Xr7ACtsryzb9fXn2l7X4LjJwNcAbF/D858+tMrc8nMJsMz2fbafAlYAY4FJwBzba20/AVwNHFI+c2w/afuxzjjlycjrgW+Vm6lZwEv7mON9wCtsHwB8GLhC0ov6GDMiIiKibaXnH5YBb+/csD29TKZd0KDuXOA7tQW2b5b0KmCd7d9Wo4O61NPt49pu9g10b/VT5eeGmt87t0fQ/bU0ynUY8Kjt8f2THpSbkafK7wsl3Q3sReO/XURERETTBGhY+/WTt98V9d5PgZGS3ldTtk0XdScBdzco/xjPHw7UlTuB3SWNK9vHNZljB3AigKQjgB2bPK6VOoBjJG0jaVtgKtUciA5gqqStJY0CjgIoTwFWSjoWqjkUkl7dlwQk7SRpePl9d2BPqicTEREREdHAkO/5t21JxwAzJH0UeICqB/6sUqVzzL+ANcB7GsT4UZPnWifp/cC1kh4Ebm4yzU8CV0paBNwA3Nvkcc8q8wumAGMkrQbOtf2V3sbpZHuRpMt47houtn1rOddVVBOfV1HdEHQ6EfiypHOALaiGTPW4OpKkqcAXgJ2AayQttn041XCoT0l6GniGaj5BU5OaIyIiIrql9nzJl+zMfRxIkraz/URZPWgmsNz2jMHOayjZd+RIX77LroOdxkZ5uoULFa28p3WxAU7o24JNERGxiZG00PbEnmtung7YaZR/dvSElsXf8Ss3DMr3N+R7/gfBKZLeDWwJ3Eo18TUiIiIiNjHD2nC1nzT+W0TSHF647OdZpZe/zz39kkYDP6krHl5+1vcPH2r7oQYxZgJvqCu+wPalfc1vY2xq+URERES0mzT+W8T21BbHfwjo08o5tqf3XGvgbGr5RERExNAlDe6beCW9GbiAqnP3Ytufrtu/I3AJsAfwZ+AfbS/tKW4a/xERERERDQzWS77KaoYzgTcBq4FbJM21/Zuaah8HFtueKmmfUv/QnmJnqc+IiIiIiE3LQcDvbK+wvZ5qhcSj6+r8NWUIuO07gXGSdu4pcHr+I/rRhg2bb/ydX9K62ABXaO+Wxc5KQhER0e9av9TnGEm1LyadbXt2+f3lwO9r9q0GDq47/jbgbcCNkg4CdgV2Af7U3UnT+I+IiIiIGHgPdrPUZ6O7jvr1+T8NXFDeR7WEahXJp3s6aRr/ERERERGNDN5Sn6uBsTXbuwB/rK1g+zHgZIDy/qiV5dOtjPmPiIiIiNi03ALsKWk3SVsC04C5tRUk7VD2AbwH6Cg3BN1Kz39ERERERL3Wj/nvku2nJX0AuI5qqc9LbC+TdFrZfxGwL3C5pGeA3wD/1EzsNP4jIiIiIjYxtn8I/LCu7KKa328C9uxt3DT+IyIiIiJeQDC8/UbIp/EfEREREVFPwCC+4bdV2u92JiIiIiIiGkrjH5C0s6QrJK2QtFDSTZKmSpoiaY2kxZJulzRP0kvKMSdJsqRDa+JMLWXv6IecJkq6sIt990ga08t4l0i6X9LSvubWy/OeJ+nMvtYp9c4s3++YuvJXSHqimRgRERERzdJwtewzWIZ847+si/pdquWRdrc9gWo5pV1Klfm2x9ven2rZpek1hy8Bjq/Znkb1trW+5jTC9gLbp/c1Vo3LgDf3Y7wBJWks8Cbg3ga7ZwA/GtiMIiIiIjY/Q77xD7wRWF83e3qV7S/UVio3CaOAR2qK5wMHSdpC0nbAK4HF3Z1M0pGS7pR0o6QLJf2glJ8nabak66mWbZpSs2+0pOsl3SppFo3f+tYt2x3Aw83UlfRzSTMkdUi6Q9KBkq6WtFzS+TX1PixpafmcUVN+tqS7JM0D9q4p30PSteXpynxJ+/TiEmYAH6Xu7XaSjgFWAMt6ESsiIiKie51j/lv1GSSZ8NUXn6AAACAASURBVAv7AYu62X9IeW3yaGAt8PGafQbmAYcD21O9fGG3rgJJGgnMAibbXinpyroqE4BJttdJmlJTfi5wo+1PSXoLcGpTV9Y3621PlvQh4Hslt4eBuyXNAMZRvVXuYKr/Hr+WdAPVDeU04ACqf1+LgIUl5mzgNNvLJR0MfInq5qtbkt4K/MH2bdU92LPl2wJnUT0R6Glo0amU7+2vRuSffURERAxN6fmvI2mmpNsk3VKKOof9jAUuBT5Td8g3qBq704D6xny9fYAVtjtfvVxff67tdQ2Omwx8DcD2NTz/6UOrdL5FbgmwzPZ9tp+i6mUfC0wC5thea/sJ4GrgkPKZY/vJ8pa5uQDlycjrgW+Vm6lZwEt7SkLSNsDZwCca7P4kMKOcv1u2Z9ueaHviDsOH91Q9IiIihjzB8BZ+Bkm6QKvhIm/v3LA9vUwoXdCg7lzgO7UFtm+W9Cpgne3f1vZMN9DTX3ptN/vczb5WeKr83FDze+f2CLq/lka5DgMetT2+l3nsQfU0pbPXfxdgkaSDqJ46vEPSZ4AdgA2S/mz7i708R0RERMSQkJ5/+CkwUtL7asq26aLuJODuBuUf4/nDgbpyJ7C7pHFl+7gmc+wATgSQdASwY5PHtVIHcIykbcrwm6lUcyA6gKmStpY0CjgKoDwFWCnpWKjmUEh6dU8nsb3E9ktsj7M9DlgNvMb2/7V9SE35fwP/mYZ/RERE9AcJNEwt+wyWId/zb9tl0ugMSR8FHqDqgT+rVOkc8y9gDfCeBjGaWmmmjOV/P3CtpAeBm5tM85PAlZIWATfQeMWbbpX5BVOAMZJWA+fa/kpv43SyvUjSZTx3DRfbvrWc6yqqic+rqG4IOp0IfFnSOcAWVEOm+rw6UkREREQ0R/ZAjyYZ2iRtZ/uJsnrQTGC57RmDnddQsu/Ikb58l11bEnvDhpaEfdbTz7Qu9p//3LrYAH+6v3WxT/BdrQseERENSVpoe+Jg59EqE16+g3/x/r9tWfytz5k7KN/fkO/5HwSnSHo3sCVwK9XE14iIiIjYlJRhP+0mjf8WkTSHFy77eVbp5e9zT7+k0cBP6oo7l7Gp7x8+1PZDDWLMBN5QV3yB7Uv7mt/G2NTyiYiIiGg3afy3iO2pLY7/ENDblXPqY0zvudbA2dTyiYiIiKFscJfkbJWs9hMRERERMUSk5z8iIiIiop5oy57/NP5j6HHrVuXZsBkvntXqlYp2GtO62Fdo79YFJ6sJRURE+0jjPyIiIiKigXZc7Sdj/iMiIiIihoj0/EdERERE1GvTMf/p+Y+IiIiIGCLS8x8RERER8QKCYe3XT57Gf0REREREPYEy7CciIiIiIjZX6fmPiIiIiGgkS31GRERERMTmKo1/QNLOkq6QtELSQkk3SZoqaYqkNZIWS7pd0jxJLynHnCTJkg6tiTO1lL2jH3KaKOnCLvbdI6lX70uVdImk+yUt7WtuvTzveZLO7EsdSVeVv8Hicu2LS/kWkv5H0hJJd0j6WH/nHxEREUNU51KfrfoMkiHf+Jck4LtAh+3dbU8ApgG7lCrzbY+3vT9wCzC95vAlwPE129OA2/ohpxG2F9g+va+xalwGvLkf4w0Y28eVv8F44DvA1WXXscBWtv8GmAC8V9K4wckyIiIiYtM35Bv/wBuB9bYv6iywvcr2F2orlZuEUcAjNcXzgYNKD/R2wCuBxd2dTNKRku6UdKOkCyX9oJSfJ2m2pOuBy8tTh859oyVdL+lWSbOo7kV7xXYH8HAzdSX9XNIMSR2lR/1ASVdLWi7p/Jp6H5a0tHzOqCk/W9JdkuYBe9eU7yHp2vJ0Zb6kfXpzDeVv8A/AlZ2XBWwraQSwNbAeeKyLY0+VtEDSgkefeaY3p42IiIghSWhY6z6DJRN+YT9gUTf7DynDTEYDa4GP1+wzMA84HNgemAvs1lUgSSOBWcBk2yslXVlXZQIwyfY6SVNqys8FbrT9KUlvAU5t6sr6Zr3tyZI+BHyv5PYwcLekGcA44GTgYKqbkV9LuoHqhnIacADVv69FwMISczZwmu3lkg4GvkR189WsQ4A/2V5etr8NHA3cB2wD/LPthjc4tmeX87PvViPdi3NGREREtI30/NeRNFPSbZJuKUWdw37GApcCn6k75BtUjd1pPNcj3ZV9gBW2V5bt+vpzba9rcNxk4GsAtq/h+U8fWmVu+bkEWGb7PttPASuAscAkYI7ttbafoBqKc0j5zLH9pO3HOuOUJyOvB75VbqZmAS/tZU7H8/zv7CDgGeBlVDdd/yJp995fakREREQdAcOHte4zSNLzD8uAt3du2J5eJtMuaFB3LtWYc2rq3yzpVcA627+tRqZ0qadnPGu72TfQvdVPlZ8ban7v3B5B99fSKNdhwKNl3H6vlaE9b6N6AtHpBOBa238B7pf0C2Ai1Q1KRERERNRJzz/8FBgp6X01Zdt0UXcScHeD8o/x/OFAXbkT2L1mUupxTebYAZwIIOkIYMcmj2ulDuAYSdtI2haYSjUHogOYKmlrSaOAowDKU4CVko6Favy+pFf34nx/B9xpe3VN2b3AG0usbYHXUn3HEREREX3Tpqv9DPmef9uWdAwwQ9JHgQeoeuDPKlU6x/wLWAO8p0GMHzV5rnWS3g9cK+lB4OYm0/wkcKWkRcANVI3eXinzC6YAYyStBs61/ZXexulke5Gky3juGi62fWs511VUE59XUd0QdDoR+LKkc4AtqIZMNbs6UqNhVTOphmItpfr7XGr79t5fTURERMTzCQZ1Ym6ryM7cx4EkaTvbT5SVa2YCy23PGOy8hpJ9txrpy16+a0tib2jxf6cNG1oX+8knWxe71R54sLXxT/BdrT1BRMRmSNJC2xMHO49Wmbj7aP/6/Le0LP6IE786KN/fkO/5HwSnSHo3sCVwK9XE14iIiIjYlGhwh+e0Shr/LSJpDi9c9vOs0svf555+SaOBn9QVDy8/6xeyP9T2Qw1izATeUFd8ge1L+5rfxtjU8omIiIhoN2n8t4jtqS2O/xCwUSvn1MSY3nOtgbOp5RMRERFDXBuO+c9qPxERERERQ0R6/iMiIiIi6gmUMf8R0Z2WPx1s4bO6Vq4k1Go77tDa+Fdo75bFzkpCERExkNL4j4iIiIhoZFj7jZBvvyuKiIiIiIiG0vMfEREREfECasue/zT+IyIiIiLqibZs/LffFUVEREREREPp+Y+IiIiIaCQv+YqIiIiIiM1Vev4jIiIiIuqpPSf8tt8VbQRJO0u6QtIKSQsl3SRpqqQpktZIWizpdknzJL2kHHOSJEs6tCbO1FL2jn7IaaKkC7vYd4+kMb2Md4mk+yUt7WtuvTzveZLO7Ic6H5R0l6Rlkj5TykZL+pmkJyR9sT/zjoiIiGhHQ77xL0nAd4EO27vbngBMA3YpVebbHm97f+AWYHrN4UuA42u2pwG39UNOI2wvsH16X2PVuAx4cz/GGzCS/j/gaGB/2/sBnyu7/gz8G9DtjUNERETERhk2rHWfwbqkQTvzpuONwHrbF3UW2F5l+wu1lcpNwijgkZri+cBBkraQtB3wSmBxdyeTdKSkOyXdKOlCST8o5edJmi3peuDy8tShc99oSddLulXSLKrFp3rFdgfwcDN1Jf1c0gxJHZLukHSgpKslLZd0fk29D0taWj5n1JSfXXrp5wF715TvIena8nRlvqR9mkz/fcCnbT9VruX+8nOt7RupbgIiIiIiogcZ8w/7AYu62X+IpMXAaGAt8PGafQbmAYcD2wNzgd26CiRpJDALmGx7paQr66pMACbZXidpSk35ucCNtj8l6S3AqU1dWd+stz1Z0oeA75XcHgbuljQDGAecDBxMdTPya0k3UN1QTgMOoPr3tQhYWGLOBk6zvVzSwcCXqG6+erIX1d/hP6ga+mfavqU3FyPpVMr39lfD888+IiIiepIx/0OCpJmSbpPU2bjsHPYzFrgU+EzdId+gauxOA+ob8/X2AVbYXlm26+vPtb2uwXGTga8B2L6G5z99aJW55ecSYJnt+0rP+wpgLDAJmFN6358ArgYOKZ85tp+0/VhnnPJk5PXAt8rN1CzgpU3mMgLYEXgt8BHgm+VJTNNsz7Y90fbEHYYP782hEREREW0jXaCwDHh754bt6WUy7YIGdecC36ktsH2zpFcB62z/toc2aU8N1rXd7HMPx/a3p8rPDTW/d26PoPtraZTrMOBR2+M3IpfVwNW2DdwsaQMwBnhgI2JFRERE9Cxv+G1bPwVGSnpfTdk2XdSdBNzdoPxjPH84UFfuBHaXNK5sH9dkjh3AiQCSjqDqBR9sHcAxkraRtC0wlWoORAcwVdLWkkYBRwGUpwArJR0L1RwKSa9u8lzfpQwPkrQXsCXwYL9eTURERES9NpzwO+R7/m1b0jHADEkfpepNXgucVap0jvkXsAZ4T4MYP2ryXOskvR+4VtKDwM1NpvlJ4EpJi4AbgHubPO5ZZX7BFGCMpNXAuba/0ts4nWwvknQZz13DxbZvLee6imri8yqqG4JOJwJflnQOsAXVkKlmVke6BLikLFO6Hnh3eQqApHuAFwFblr/jYbZ/s7HXFREREdHOVNpQMUAkbWf7iTJmfSaw3PaMwc5rKNl3q5G+7OW7DnYaG2VDC/+7PvZY62K32oYNrY3/yKOti32C72pd8IiIFpK00PbEwc6jVSbu81e+efb/aln84X/7+UH5/jLsZ+CdUp4kLKNaIWjWIOcTEREREUPEkB/20yqS5vDCZT/PKr38fe7plzQa+EldcecyNs/UlR9q+6EGMWYCb6grvsD2pX3Nb2NsavlERETEEDes169W2uSl8d8itqe2OP5DwMasnFMbY3rPtQbOppZPRERERLtJ4z8iIiIiopEs9RkREREREZur9PxH9KNWrsYDrV/VZnPV6o6Z7bdvXewrtHfrgpPVhCIiNprUlj3/afxHRERERDQgtV/jv/2uKCIiIiIiGkrPf0RERETEC7TnsJ/2u6KIiIiIiGgoPf8REREREfVEev4jIiIiImLzlZ7/iIiIiIhGhmmwM+h36fmPiIiIiBgi0vMfEREREVGvTV/y1X5XtBEk7SzpCkkrJC2UdJOkqZKmSFojabGk2yXNk/SScsxJkizp0Jo4U0vZO/ohp4mSLuxi3z2SxvQy3iWS7pe0tK+59fK850k6sy91JB0raZmkDZIm1u3bv/y9lklaImlkf+UeERER0W6GfONfkoDvAh22d7c9AZgG7FKqzLc93vb+wC3A9JrDlwDH12xPA27rh5xG2F5g+/S+xqpxGfDmfow3kJYCbwM6agsljQC+Bpxmez9gCvCXAc8uIiIi2tOwYa37DNYlDdqZNx1vBNbbvqizwPYq21+orVRuEkYBj9QUzwcOkrSFpO2AVwKLuzuZpCMl3SnpRkkXSvpBKT9P0mxJ1wOXl6cOnftGS7pe0q2SZlEtPtUrtjuAh5upK+nnkmZI6pB0h6QDJV0tabmk82vqfVjS0vI5o6b8bEl3SZoH7F1Tvoeka8vTlfmS9mky9zts39Vg12HA7bZvK/Uesv1MF9d0qqQFkhY8+kzDKhERERHP14aN/4z5h/2ARd3sP0TSYmA0sBb4eM0+A/OAw4HtgbnAbl0FKkNSZgGTba+UdGVdlQnAJNvrJE2pKT8XuNH2pyS9BTi1qSvrm/W2J0v6EPC9ktvDwN2SZgDjgJOBg6luRn4t6QaqG8ppwAFU/74WAQtLzNlUvfTLJR0MfInq5mtj7QVY0nXATsA3bH+mUUXbs8v52Xerke7DOSMiIiI2W2n815E0E5gErAc+QjXs5+/LvrOAzwCn1RzyDeB0qsb/v/D8m4N6+wArbK8s21fy/Ib8XNvrGhw3mWrYC7avkfRIgzr9bW75uQRYZvs+AEkrgLFU39Ec22tL+dXAIVSN/zm2nyzlc8vP7YDXA9+qHqIAsFUfcxxR8jgQeBL4iaSFtn/Sx7gREREx1LXphN80/mEZ8PbODdvTy2TaBQ3qzgW+U1tg+2ZJrwLW2f5tTcO2kZ6G66ztZt9A91Y/VX5uqPm9c3sE3V9Lo1yHAY/aHt8/6QGwGrjB9oMAkn4IvAZI4z8iIiKigfa7nem9nwIjJb2vpmybLupOAu5uUP4xuu/x73QnsLukcWX7uCZz7ABOBJB0BLBjk8e1UgdwjKRtJG0LTKWaA9EBTJW0taRRwFEAth8DVko6Fqo5FJJe3cccrgP2LzmMAP4W+E0fY0ZERERUMua//di2pGOAGZI+CjxA1QN/VqnSOeZfwBrgPQ1i/KjJc62T9H7gWkkPAjc3meYngSslLQJuAO5t8rhnlfkFU4AxklYD59r+Sm/jdLK9SNJlPHcNF9u+tZzrKqqJz6uobgg6nQh8WdI5wBZUQ6Z6XB1J0lTgC1Tj+q+RtNj24bYfkfR/qFZhMvBD29ds7DVFREREtDvZmfs4kCRtZ/uJsnrQTGC57RmDnddQsu9WI33Zy3dtSewNLf7vtGFD62I/8UTrYm/unm7hAlFr1rQuNsAJDRfKiojouzLPbmLPNTdPE/9mF99y9YdaFn/YXh8dlO8vw34G3inlScIyqknCswY5n4iIiIgYIob8sJ9WkTSHFy77eVbp5e9zT7+k0bxwYuvw8rO+n/JQ2w81iDETeENd8QW2L+1rfhtjU8snIiIihrLBXe1H0puBC6jadxfb/nTd/u2pXnb6Cqo2/eeaaTOl8d8itqe2OP5DQJ9WzrE9vedaA2dTyyciIiJiMEgaTjU8/E1UqxveImmu7dqFTaYDv7F9lKSdgLskfd32+u5ip/EfEREREdHI4PX8HwT8zvYKAEnfAI7m+asaGhhV5pFuR/Uy1qd7CpzGf0REREREvcF9ydfLgd/XbK8GDq6r80Wqd1D9ERgFHGe7x6VB0viP6EetXI0HYMTwnutsrDZ8iWH/aeFqP9tv37rYAFdo75bFzkpCERF9MkZS7UtlZ9ueXX5v9DLV+jUFD6daWv2NwB7AjyXNL+9W6lIa/xERERERjailPWMPdrPU52pgbM32LlQ9/LVOBj7tat3+30laCexDD++RSl9fRERERMSm5RZgT0m7SdoSmEY1xKfWvcChAJJ2BvYGVvQUOD3/ERERERGNtLbnv0u2n5b0AeA6qqU+L7G9TNJpZf9FwL8Dl0laQjVM6CzbD/YUO43/iIiIiIhNjO0fAj+sK7uo5vc/Aof1Nm4a/xERERER9QZ3tZ+Wab8rioiIiIiIhtLzHxERERHRiBqtuLl5S89/RERERMQQkcY/1fJIkq6QtELSQkk3SZoqaYqkNZIWS7pd0jxJLynHnCTJkg6tiTO1lL2jH3KaKOnCLvbdI2lML+NdIul+SUv7mlsvz3uepDP7Uqfs/0P5OyyWdGQpP7GmbLGkDZLG9/c1RERExBClYa37DJIh3/iXJOC7QIft3W1PoFpLdZdSZb7t8bb3p1pzdXrN4UuA42u2pwG39UNOI2wvsH16X2PVuAx4cz/GG2gzyt9hfJn9ju2vd5YB7wTusb14cNOMiIiI9qA0/tvUG4H1dUsnrbL9hdpK5SZhFPBITfF84CBJW0jaDngl1WuWuyTpSEl3SrpR0oWSflDKz5M0W9L1wOXlqUPnvtGSrpd0q6RZNH7lc7dsdwAPN1NX0s8lzZDUIekOSQdKulrScknn19T7sKSl5XNGTfnZku6SNI/qhROd5XtIurY8XZkvaZ/eXkc3jgeu7OaaTpW0QNKCR595ph9PGxEREbH5yIRf2A9Y1M3+QyQtBkYDa4GP1+wzMA84HNie6s1ru3UVSNJIYBYw2fZKSfWN1QnAJNvrJE2pKT8XuNH2pyS9BTi1qSvrm/W2J0v6EPC9ktvDwN2SZgDjqF4rfTDVzcivJd1AdUM5DTiA6t/XImBhiTkbOM32ckkHA1+iuvlqxgckvQtYAPyL7Ufq9h8HHN3VwbZnl/Oz71Yj3eQ5IyIiYqgSWepzKJA0U9Jtkm4pRZ3DfsYClwKfqTvkG1SN3Wl00/Nc7AOssL2ybNfXn2t7XYPjJgNf4/+xd/fxclX1vcc/3wQwPImWgEVFAqiAIASSQNWAQXwCRUjVS4De+nAFQaxai1LFCljbWqmmoIhJEXKpgtQr0VTkoaCQYFEISSBEQUp4kMqrAkIQiMTkfO8few0Mw5xz5uScncmZ832/XvM6s9de+7d/e2YIa6+99tqA7ct49tWHujQeIb0cWGH7AdtPUT02ekdgOjDf9hO2HwcuBQ4sr/m2n7T9WCNOuTLyWuA75WRqDrBDh7mcC+wKTAYeAL7UvLKcSDxpe4PezxAREREx2qTnH1YA72ws2D6p3Ey7uE3dBcB3mwts3yhpL2C17V9q4CmhBhuu88QA6zZ0b/VT5W9f0/vG8iYMfCztch0HPFrG5w+J7f9pvJf0L8APWqp0cuIVERERMQTq6tj8uvTeEQ3dj4AJkk5sKtuin7rTgbvalH+KZw8H6s/twC6SJpXlozrMcSFwLICkQ4EXdrhdnRYCR0raQtKWwEyqeyAWAjMlbS5pa+BwgHIV4G5J74bqHgpJ+3SyI0nNVwhmArc1rRsHvJvqCkxEREREDGDM9/zbtqQjgdmSPgk8SNUDf0qp0hjzL2AV8IE2MS7vcF+rJX0IuELSQ8CNHaZ5BnCxpCXAdcB9HW73tHJ/wQxgoqT7gdNsf2OocRpsL5E0j2eO4TzbS8u+LqG68fleqhOChmOBcyV9BtiUqsHeyexIXyxTeBq4B/hg07qDgPttr1zfY4mIiIhoqwd7/mXn3scNSdJWth8vswedA9xpe3a38xpL9njeBM97yU61xF5b80RCm4yvL/Zjv6sv9mi35g/dzmD9rVpVX+xjfEd9wSNioyfpZttTu51HXaZO3tk3XX1GbfHHbfeernx+vXc6s/E7rlxJWEE1Q9CcLucTEREREe1I9b26ZMwP+6mLpPk8d9rPU0ov/7B7+iVtC1zTUtzoF27tfz7E9sNtYpwDvK6l+CzbFww3v/WxseUTERER0WvS+K+J7Zk1x3+YaurL4cQ4afBaG87Glk9ERESMZb05208a/xERERERrfKQr4iIiIiIGM3S8x9jUl8muYohGNe9+7KGbcst64t9kXarLXZmEoqI7hPqwWE/vXdEERERERHRVnr+IyIiIiLaSc9/RERERESMVv32/Ev6+EAb2v7yyKcTEREREbERED3Z8z/QsJ+ty9/dgGnAgrJ8OLCwzqQiIiIiImLk9dv4t30GgKSrgP1s/64snw58Z4NkFxERERHRFQKN4une+tHJtYyXAWualtcAk2rJJiIiIiIiatPJbD//CtwoaT5gYCZwYa1ZRURERER0Ww8+4XfQxr/tv5N0OXBgKXqf7aX1phURERER0WU9eMNvv0ck6Y8aL+AeqisA/wrcW8p6nqQXSbpI0kpJN0u6QdJMSTMkrZK0TNKtkq6WtH3Z5r2SLOmQpjgzS9m7RiCnqZLO7mfdPZImDjHe+ZJ+I+m24eY2xP2eLunk4dQp6/+7fA/LJB028plGRERE9I6Bev5vphrm07jTweWvyvtdasyr6yQJ+B7wf20fU8p2At4BPAIssv32Uv4PwEnAaWXz5cDRwDVleRZwywjktIntxcDi4cZqMg/4KqN3KNds2//U7SQiIiKix0g92fM/0Gw/O2/IRDZCbwDW2P56o8D2vcBXJM1olJWThK2B/2radhFwoKRNgecBLweWDbSz0mv9ZeAhYAmwi+23l9mVXkx1k/VDkuYCJ5d12wIXA9sBN/LMiVrHbC+UNKmTupKuBZYCU8o+/xz4FPBq4BLbnyn1Pg68v2x2nu1/LuWnlm1+BTxIdYKJpF2Bc0rMJ4HjbN8+1GMZJPfjgeMBXjQ+D7aOiIiIsSmtoP7tSdUI78+BkpYB2wJPAJ9uWmfgauAtwDZUz0jo92RK0gRgDnCQ7bslXdxSZQow3fbq5hMPqisN19v+nKS3URq3NVtj+yBJHwW+X3L7LXCXpNlUJynvAw6gOhn5maTrqIaYzQL2pfrdLaE0/oG5wAm275R0APA1qpOvTnxY0p9TXQ35K9uPtKtke27ZD3s8b4Lb1YmIiIh4lh7s+e+9I6qJpHMk3SLpplK0yPZk2zsCFwBfbNnk21SN3VlUvfMD2R1Yafvustxaf4Ht1W22Owj4JoDty6iGI9Wt8bC35cAK2w/YfgpYCewITAfm237C9uPApVQ3ix9Yyp+0/VgjjqStgNcC3yknU3OAHTrM5VxgV2Ay8ADwpZE4wIiIiIhelZ7//q0A3tlYsH1SuZm23Xj7BcB3mwts3yhpL2C17V9q4IdEDDZc54kB1m3oXuynyt++pveN5U0Y+Fja5ToOeNT25KEmYvt/Gu8l/Qvwg6HGiIiIiGhPPTnVZ0ez/bR7bcgku+RHwARJJzaVbdFP3enAXW3KP8WzhwP153Zgl6ax90d1mONC4FgASYcCL+xwuzotBI6UtIWkLameC7GolM+UtLmkrYHDAcpVgLslvRuqeygk7dPJjiQ1XyGYCWzQGYsiIiIiRpuhzPbTrOdn+7FtSUcCsyV9kuoG1SeAU0qVxph/AauAD7SJcXmH+1ot6UPAFZIeorp5txNnABdLWgJcB9zX4XZPK/cXzAAmSrofOM32N4Yap8H2EknzeOYYzms8F0LSJVQ3Pt9LdULQcCxwrqTPAJtSDZnqZHakL0qaTPV7vAf44PrmHREREfEcPTjmX3bufdwYSNrK9uNl9qBzgDttz+52Xr1oj+dN8Pkv3qmW2H19tYR92ibj64v92O/qiz3arV3b7QzW35o/1Bf7iYEGJA7TMb6jvuARMSIk3Wx7arfzqMvUKa/04p99tbb42vQtXfn8Bj2dKcMw/kzS35Tll0nav/7UxpzjypWEFVQzBM3pcj4RERERY5coc/3X9OqSTm74/RrVzZxvAP4W+B3Vza3TasyrZ0maz3OnSfu97AAAIABJREFU/Tyl9PIPu6e/zP1/TUtxo794XUv5IbYfbhPjHOB1LcVn2b5guPmtj40tn4iIiBgLxthDvpocYHs/SUsBbD8iabOa8+pZtmfWHP9hqqkvhxPjpBFKZ0RsbPlEREREjFadNP7/IGk8ZZpGSdtRXQmIiIiIiOhdY7Tn/2xgPrC9pL8D3gV8ptasIqKtvtyfH0NU5xTV22xTX+yLtFt9wckNxRExdg3a+Lf9LUk3A4dQ3fpwpO1f1J5ZREREREQXeSz1/Lc8yOs3wMXN62z/ts7EIiIiIiJiZHX6kK+XAY+U9y+gephU64w1ERERERE9Qti91/Pf7xHZ3tn2LsCVwOG2J9reFng7cOmGSjAiIiIiIkZGJ6cz02z/sLFg+3Lg9fWlFBERERHRfWZ8ba9u6WS2n4ckfQb4JtUwoD8DnvNgqIiIiIiIXuGxNuynydHAdlTTfX4P2L6URURERETEKNLJVJ+/BT4q6flAn+3H608rIiIiIqK73FE/+egy6BFJerWkpcByYIWkmyXtVX9qERERERExkjo5nZkDfNz2TrZ3Av4KmFtvWhuWpBdJukjSynJyc4OkmZJmSFolaZmkWyVdLWn7ss17JVnSIU1xZpayd41ATlMlnd3PunskTRxivPMl/UbSbcPNbYj7PV3SycOpI+lvy+e/TNJVkl7csv5lkh4fbD8RERERnRN9Hlfbq1s62fOWtn/cWLB9LbBlbRltYJJEdS/DQtu72J4CzAJeWqossj3Z9t7ATcBJTZsv59n3P8wCbhmBnDaxvdj2R4Ybq8k84K0jGG9DOtP23rYnAz8APtuyfjZw+YZPKyIiImJ06aTxv1LS30iaVF6fAe6uO7EN6A3AGttfbxTYvtf2V5orlZOErakedtawCNhf0qaStgJeDiwbaGeSDpN0u6TrJZ0t6Qel/HRJcyVdBVxYrjo01m1beryXSppD9bC1IbG9EOjoqcySrpU0W9JCSb+QNE3SpZLulPT5pnofl3RbeX2sqfxUSXdIuhrYral8V0lXlKsriyTt3mHujzUtbkk161Qj5pHASmDFIMd0vKTFkhY/sm5dJ7uNiIiIMW6sTvX5fuAMqgd7CVgIvK/OpDawPYElA6w/UNIyYFvgCeDTTesMXA28BdgGWMAATz6WNIFqGNVBtu+WdHFLlSnAdNurJc1oKj8NuN725yS9DTi+oyMbnjW2D5L0UeD7JbffAndJmg1MovodHED1u/iZpOuoTihnAftS/b6WUD0tGqrhYifYvlPSAcDXqE6+BiXp74A/B1YBB5eyLYFTgDcBAw75sT237J89njfBA9WNiIiI6FWD9vzbfsT2R2zvZ3tf2x+1/chg241Wks6RdIukm0pRY9jPjsAFwBdbNvk2VWN3FtDamG+1O7DSduPKSWv9BbZXt9nuIKrnLGD7Mp599aEuC8rf5cAK2w/Yfoqql31HYDow3/YTZQaoS4EDy2u+7SdLj/0CgHJl5LXAd8rJ1Bxgh06TsX1q+Q6+BXy4FJ8BzM4MVBERETHS7Gqe/7pe3dJvz7+kBf2tA7D9jpFPpytWAO9sLNg+qdxMu7hN3QXAd5sLbN9YZj9abfuX1eigfg02XOeJAdZt6N7qp8rfvqb3jeVNGPhY2uU6Dni0jNsfjouAy6iuhhwAvEvSF4EXAH2Sfm/7q8PcR0RERERPGui04zVUN70uAv4J+FLLq1f8CJgg6cSmsi36qTsduKtN+ad49nCg/twO7CJpUlk+qsMcFwLHAkg6FHhhh9vVaSFwpKQtyvCbmVS/lYXATEmbS9oaOByeHrd/t6R3Q3UPhaR9OtmRpFc0Lb6D6nPE9oG2J9meBPwz8Pdp+EdERMRIMeNqe3XLQGP+/5hqLPXRwDFUva0X2x7wxsrRxrbLTaOzJX0SeJCqB/6UUqUx5l9U480/0CZGRzPNlLH8HwKukPQQcGOHaZ4BXCxpCXAdcF+H2z2t3F8wA5go6X7gNNvfGGqcBttLJM3jmWM4z/bSsq9LqG58vpfqhKDhWODcctP4plRDpjqZHekLknajuupwL3DC+uYdERER0am+HnzIl+zBR5NIeh7VScCZwOdaZ8KJzknayvbjZfagc4A7bc/udl5jyR7Pm+DzX7xTLbH7+moJ+7RxNf4b9HjunOjX2rXdzmD9ra1xcqs6f4+rVtUXG+AY31HvDiLGAEk3257a7Tzqst+UPb3wZ/9WW/ytN92rK5/fgLP9lEb/26ga/pOAs6lu7Iz1d5yk9wCbAUupbnyNiIiIiI2Kunpjbl0GuuH3/wJ7UT086QzbG/TJsKOdpPk8d9rPU0ov/7B7+iVtC1zTUtyYNLa1r+8Q2w+3iXEO8LqW4rNsXzDc/NbHxpZPRERERK8ZqOf/f1ONfX8l8JGmWWxENVT++TXnNqrZnllz/IeBYc2cY/ukwWttOBtbPhERETF2Gbr6MK669Nv4dy9e54iIiIiIGMM6ecJvRERERMQYM8bG/Ef0snGDPW5tfeOO4quDdc9UNJr1behH7AXbbFNv/Iu0W22xM5NQRGzM0viPiIiIiGijmw/jqkvvHVFERERERLSVnv+IiIiIiBZG9GXMf0RERETE2NCLU3323ulMRERERES0lZ7/iIiIiIjn6M2pPnvviCIiIiIioq30/EdEREREtJGpPnuUpBdJukjSSkk3S7pB0kxJMyStkrRM0q2Srpa0fdnmvZIs6ZCmODNL2btGIKepks7uZ909kiYOMd75kn4j6bbh5jbE/Z4u6eTh1JE0WdJPy/ewWNL+pXwzSRdIWi7pFkkzRjj9iIiIiJ4y5hv/kgR8D1hoexfbU4BZwEtLlUW2J9veG7gJOKlp8+XA0U3Ls4BbRiCnTWwvtv2R4cZqMg946wjG25C+CJxhezLw2bIMcByA7VcDbwK+JGnM/6YjIiJiBBjscbW9uiUNJXgDsMb21xsFtu+1/ZXmSuUkYWvgkabiRcD+kjaVtBXwcmDZQDuTdJik2yVdL+lsST8o5adLmivpKuDCctWhsW5bSVdJWippDqChHqTthcBvO6kr6VpJsyUtlPQLSdMkXSrpTkmfb6r3cUm3ldfHmspPlXSHpKuB3ZrKd5V0Rbm6skjS7p2mDzy/vN8G+HV5/yrgmnJ8vwEeBaZ2GDMiIiJizMmYf9gTWDLA+gMlLQO2BZ4APt20zsDVwFuoGqULgJ37CyRpAjAHOMj23ZIubqkyBZhue3XLEJbTgOttf07S24DjOzqy4Vlj+yBJHwW+X3L7LXCXpNnAJOB9wAFUJyM/k3Qd1QnlLGBfqt/XEuDmEnMucILtOyUdAHyN6uRrMB8DrpT0TyX+a0v5LcARkr4N7Fhy3BG4sTWApOMpn9sfj8/PPiIiIgZmRF/m+e99ks4p48dvKkWNYT87AhfwzJCThm9TNXZnAa2N+Va7Aytt312WW+svsL26zXYHAd8EsH0Zz776UJcF5e9yYIXtB2w/BaykamBPB+bbfsL248ClwIHlNd/2k7Yfa8QpV0ZeC3ynnEzNAXboMJcTgb8s38FfAt8o5ecD9wOLgX8G/hNY2y6A7bm2p9qe+oLxvfcfckREREQn0gUKK4B3NhZsn1Rupl3cpu4C4LvNBbZvlLQXsNr2L6vRQf0abLjOEwOs8yDbjrSnyt++pveN5U0Y+Fja5ToOeLSM2x+q9wAfLe+/A5wHYHst1ckAAJL+E7hzPeJHREREPEfm+e9NPwImSDqxqWyLfupOB+5qU/4pnj0cqD+3A7tImlSWj+owx4XAsQCSDgVe2OF2dVoIHClpC0lbAjOp7oFYCMyUtLmkrYHDAcpVgLslvRuqeygk7dPhvn4NvL68fwOlgd+0byS9CVhr++cjc3gRERExtgkzrrZXt4z5nn/blnQkMFvSJ4EHqXrgTylVGmP+BawCPtAmxuUd7mu1pA8BV0h6iDZj0/txBnCxpCXAdcB9HW73tHJ/wQxgoqT7gdNsf2Pgrfpne4mkeTxzDOfZXlr2dQnVjc/3Up0QNBwLnCvpM8CmVEOmOpkd6TjgLEmbAL/nmXsetqe6F6AP+G/gf6/v8URERESMBbI39GiSsU3SVrYfL7MHnQPcaXt2t/MaS/Z43gTPe8lO3U5jo/Poqm5nsPFau67bGay/vr76Yo8bxdeOV9X4ez/Gd9QXPGIjIulm2z07y94+++3rHy66rrb4L91qm658fqP4n+5R67hyJWEF1QxBc7qcT0RERESMEWN+2E9dJM3nudN+nlJ6+Yfd0y9pW8oc900a09i09lMeYvvhNjHOAV7XUnyW7QuGm9/62NjyiYiIiLGrV6f6TOO/JrZn1hz/YWB9Zs5pjnHS4LU2nI0tn4iIiIhukfRW4Cyqzt3zbH+hZf0nKBPCULXp9wC2sz3gQ13T+I+IiIiIaKNbU31KGk91b+ibqJ5pdJOkBc2zGto+Eziz1D+c6plIAzb8IWP+IyIiIiI2NvsD/2V7pe01VDMkHjFA/aMZ/GGzQHr+I0aVOmedqXvmljpnnanbuMEez7cRG1fjcNXRPNvPtn9UX+yLtFt9wclsQhEbjuqej3+ipOaHys61Pbe8fwnwq6Z19wMHtAsiaQvgrcCHO9lpGv8RERERERveQwNM9dmu26m/+fkPB37SyZAfSOM/IiIiIuI5DPR173lY9wM7Ni2/FPh1P3Vn0eGQH0jjPyIiIiLiuQx93XsW7k3AKyTtDPw3VQP/mNZKkrYBXg/8WaeB0/iPiIiIiNiI2F4r6cPAlVRTfZ5ve4WkE8r6r5eqM4GrbD/Raew0/iMiIiIinsPdHPaD7R8CP2wp+3rL8jxg3lDijuK5GiIiIiIiYijS8x8RERER0aK64bfbWYy89PxHRERERIwR6fmPiIiIiGijm2P+65Kef0DSiyRdJGmlpJsl3SBppqQZklZJWibpVklXS9q+bPNeSZZ0SFOcmaXsXSOQ01RJZ/ez7h5JE4cY73xJv5F023BzG+J+T5d08gjU+QtJd0haIemLpWwzSRdIWi7pFkkzRjD1iIiIiJ4z5hv/kgR8D1hoexfbU6jmUn1pqbLI9mTbe1PNuXpS0+bLgaOblmcBt4xATpvYXmz7I8ON1WQe1aOfRx1JBwNHAHvb3hP4p7LqOADbrwbeBHxJ0pj/TUdERMTw2VXPf12vbklDCd4ArGmeOsn2vba/0lypnCRsDTzSVLwI2F/SppK2Al4OLBtoZ5IOk3S7pOslnS3pB6X8dElzJV0FXFiuOjTWbSvpKklLJc2h/SOfB2R7IdDRY58lXStptqSFkn4haZqkSyXdKenzTfU+Lum28vpYU/mppZf+amC3pvJdJV1Rrq4skrR7h+mfCHzB9lPlWH5Tyl8FXNNU9ijQ9jHZko6XtFjS4kfXretwtxERERG9JY1/2BNYMsD6AyUtA+4D3gic37TOwNXAW6h6phcMtCNJE4A5wKG2pwPbtVSZAhxhu/UJbqcB19vet+zjZQMe0chYY/sg4OvA96mueOwFvLecjEwB3gccAPwJcJykfUv5LGBf4E+BaU0x5wJ/Ua6unAx8rcNcXkn1PfxM0nWSGjFvAY6QtEl5At4Unv0o7KfZnmt7qu2pLxg/vuMPISIiIsauda7v1S254beFpHOA6cAa4BNUw37eXtadAnwROKFpk28DHwG2Af4K+PQA4XcHVtq+uyxfDBzftH6B7dVttjuIqiGN7cskPdKmzkhrnMgsB1bYfgBA0kqqBvZ0YH7jiXKSLgUOpDqhnG/7yVK+oPzdCngt8J3qIgoAz+swl02AF1KdZEwD/k3SLlQnYnsAi4F7gf8E1q7n8UZEREQ8rZrqs/du+E3jH1YA72ws2D6p3Ey7uE3dBcB3mwts3yhpL2C17V82NWzbGWy4zkCPZt7Qv76nyt++pveN5U0Y+Fja5ToOeNT25PXI5X7gUtsGbpTUB0y0/SDwl41Kkv4TuHM94kdERESMCRn2Az8CJkg6salsi37qTgfualP+KQbu8W+4HdhF0qSyfFSHOS4EjgWQdChVL3i3LQSOlLSFpC2BmVT3QCwEZkraXNLWwOEAth8D7pb0bqjuoZC0T4f7+h7VvRlIeiWwGfBQ076R9CZgre2fj9whRkRExFjW5/pe3TLme/5tW9KRwGxJnwQepOqBP6VUaYz5F7AK+ECbGJd3uK/Vkj4EXCHpIeDGDtM8A7hY0hLgOqr7D4ZE0sXADGCipPuB02x/Y6hxGmwvkTSPZ47hPNtLy74uobrx+V6qE4KGY4FzJX0G2JRqyFQnsyOdD5xfpildA7ynfG/bA1eWKwH/Dfzv9T2eiIiIiLFA7sGxTBszSVvZfrzMHnQOcKft2d3OayzZ43kTPO8lO3U7jfWytsaJip58sr7YAH199cav02jOvU7jcu24rYc7mldt/R3jO+rdQUSHJN1su+0se73gVZP384VXXVdb/Gkven5XPr/8073hHVeuJKygukl4TpfziYiIiIgxYswP+6mLpPnAzi3Fp5Re/mH39EvaljLHfZPGHJat/cOH2H64TYxzgNe1FJ9l+4Lh5rc+NrZ8IiIiYuxyl8fm1yWN/5rYnllz/IeB9Zk5pznGSYPX2nA2tnwiIiIiek0a/xERERERz+HM8x8RERERMRbkIV8RvUL1zVKSWWG6o+5ZZ0bz91rnZ1Nn7NH8mW/7R/XGv0i71RY7MwlF9L40/iMiIiIi2ujFG34z1WdERERExBiRnv+IiIiIiDZ6ccx/ev4jIiIiIsaI9PxHRERERLTo1Yd8pec/IiIiImKMSM9/REREREQbGfMfERERERGjVhr/gKQXSbpI0kpJN0u6QdJMSTMkrZK0TNKtkq6WtH3Z5r2SLOmQpjgzS9m7RiCnqZLO7mfdPZImDjHe+ZJ+I+m24eY2xP2eLunk4dSRdKak28t3MF/SC0r5JEmry/ezTNLXRzr/iIiIGJuM6XN9r24Z841/SQK+Byy0vYvtKcAs4KWlyiLbk23vDdwEnNS0+XLg6KblWcAtI5DTJrYX2/7IcGM1mQe8dQTjbUj/AexVvoNfAp9qWndX+X4m2z6hO+lFREREL+pzfa9uGfONf+ANwBrbT/ca277X9leaK5WThK2BR5qKFwH7S9pU0lbAy4FlA+1M0mGlF/t6SWdL+kEpP13SXElXAReWqw6NddtKukrSUklzAA31IG0vBH7bSV1J10qaLWmhpF9ImibpUkl3Svp8U72PS7qtvD7WVH6qpDskXQ3s1lS+q6QrytWVRZJ27zD3q2yvLYs/5ZkTs45JOl7SYkmLH123bqibR0RERPSE3PALewJLBlh/oKRlwLbAE8Cnm9YZuBp4C7ANsADYub9AkiYAc4CDbN8t6eKWKlOA6bZXS5rRVH4acL3tz0l6G3B8R0c2PGtsHyTpo8D3S26/Be6SNBuYBLwPOIDqZORnkq6jOqGcBexL9ftaAtxcYs4FTrB9p6QDgK9RnXwNxfuBS5qWd5a0FHgM+IztRe02sj237J89Jkzovbt3IiIiYkQZWJcbfnufpHMk3SLpplLUGPazI3AB8MWWTb5N1didBbQ25lvtDqy0fXdZbq2/wPbqNtsdBHwTwPZlPPvqQ10WlL/LgRW2H7D9FLAS2BGYDsy3/YTtx4FLgQPLa77tJ20/1ohTroy8FvhOOZmaA+wwlIQknQqsBb5Vih4AXmZ7X+DjwEWSnr/eRxwRERHR49LzDyuAdzYWbJ9UbqZd3KbuAuC7zQW2b5S0F7Da9i+r0UH9Gmy4zhMDrNvQp55Plb99Te8by5sw8LG0y3Uc8KjtyeuTjKT3AG8HDrGr0/ByMvJUeX+zpLuAV9L+u4uIiIjoXB7y1bN+BEyQdGJT2Rb91J0O3NWm/FM8ezhQf24HdpE0qSwf1WGOC4FjASQdCryww+3qtBA4UtIWkrYEZlLdA7EQmClpc0lbA4cDlKsAd0t6N1T3UEjap5MdSXorcArwDttPNpVvJ2l8eb8L8AqqKxMRERER0caY7/m3bUlHArMlfRJ4kKoH/pRSpTHmX8Aq4ANtYlze4b5WS/oQcIWkh4AbO0zzDOBiSUuA64D7OtzuaeX+ghnAREn3A6fZ/sZQ4zTYXiJpHs8cw3m2l5Z9XUJ14/O9VCcEDccC50r6DLAp1ZCpTmZH+irwPOA/ypWVn5aZfQ4CPidpLbCO6n6Cjm5qjoiIiBhMLz7kS+7Bg9qYSdrK9uNl9qBzgDttz+52XmPJHhMm+MKX7lRL7L6+WsI+bW2NExU9+eTgdYajzs9mXM3XMNeuHbzOxqrOz6bO2HX/tzSaPVxjF8cxvqO+4NFzJN1se2q386jLK1492V/+/tW1xX/Hrtt15fMb8z3/XXBcGb++GbCU6sbXiIiIiNiImN7s+U/jvyaS5vPcaT9PKb38w+7pl7QtcE1L8fjyt7V/+BDbD7eJcQ7wupbis2xfMNz81sfGlk9EREREr0njvya2Z9Yc/2FgvWbOaYpx0uC1NpyNLZ+IiIgY23pxtp80/iMiIiIiWvTqsJ9M9RkRERERMUak5z/GnLVr4TcPdTuLGEl9f+h2BhuxGmeIGs0zOI3mmYq22aa+2Bdpt/qCk9mEYpRxb848lp7/iIiIiIgxIj3/ERERERHPYfp68I7f9PxHRERERIwR6fmPiIiIiGiR2X4iIiIiImJUS89/REREREQrw7qM+Y+IiIiIiNEqPf8RERERES0MPTnbTxr/ERERERFt5IbfLpJ0qqQVkm6VtEzSAZI+JmmL9Yz3XklfHUY+90iaWN6vKzk1Xn+9vnGHkc/pkk5uUz5J0m3DiPuXkn4vaZumshmSflDeP/05lhws6eUt21vS1CHsc9DvZrjfX0RERMRYNCp6/iW9Bng7sJ/tp0qjezPgEuCbwJPdzA9YbXtyl3Ooy9HATcBMYF4H9ZcDs4DPl+V3AT+vJbOIiIiImth5yFc37QA8ZPspANsPUTUqXwz8WNKPASSdK2lxuUJwRmNjSdMk/aekWyTdKGnr5uCS3ibpBkkTJW0n6buSbiqv15U620q6StJSSXMADZZ0uTpwhqQlkpZL2r2Uv77pKsHSRj6SPlH2eWsj/9Jzf7uk8yTdJulbkt4o6SeS7pS0f9Mu95H0o1J+XJt8xks6s2kfHxwk/12BrYDPUJ0EdOJ7wBFl+12AVcCDTTGPLp/FbZL+san8fZJ+Kek64HVN5W2/j5Y8313i3SJpYT/Hcnz5bSxe1beuw0OJiIiI6C2jpfF/FbBjaRx+TdLrbZ8N/Bo42PbBpd6ptqcCewOvl7S3pMYVgo/a3gd4I7C6EVjSTOCvgcPKScVZwGzb04B3AueVqqcB19veF1gAvKwpv81bhv0c1bTuIdv7AecCjWE5JwMnlasFBwKrJb0ZeAWwPzAZmCLpoFL/5SWvvYHdgWOA6SXOp5v2tTfwNuA1wGclvbjlc/w/wKpybNOA4yTt3N+HTtXgvxhYBOwmafsB6jY8BvxK0l5l+0saK0o+/wi8oRzjNElHStoBOIOq0f8m4FVN8fr7Ppp9FnhL+X7f0S4p23NtT7U9dZtx4zs4jIiIiBjr+vpc26tbRsWwH9uPS5pC1VA+GLikn3H1/0vS8VTHtQNVI9LAA7ZvKrEeA5BEiTUVeHOjnOrk4FVlPcDzS8/8QcCflhiXSXqkab8DDfu5tPy9ubE98BPgy5K+BVxq+/7S+H8zsLTU2YrqZOA+4G7by0veK4BrbFvScmBS076+b3s11cnEj6lOJJY1rX8zsLekd5Xlbco+7u4n91nATNt9ki4F3g2c00/dZt8u274FOAR4XymfBlxr+8FyLN+i+lxpKb8EeGUp7+/7aPYTYJ6kf+OZzzsiIiIiWoyKxj+A7XXAtcC1pdH7nub1pQf7ZGCa7UckzQMmUA3P6e/0aiWwC1VDc3EpGwe8pjSim+MzQJyBPFX+rqN83ra/IOky4DDgp5LeWPL8B9tzWvY7qSkGQF/Tch/P/g5b82tdFvAXtq8cLGlJe1OdGPxHOfbNqD6vThr//w6cCSy2/VhTw32goVL9fbYDfR/VhvYJkg6guuqxTNJk2w93kGdEREREW3ZvTvU5Kob9SNpN0iuaiiYD9wK/Axq9wM8HngBWSXoRcGgpvx14saRpJdbWkhoN5nupeuMvlLRnKbsK+HDTvhs9+guBY0vZocALh3E8u9pebvsfqU46dgeuBN4vaatS5yUdDrNpdoSkCZK2BWZQ3ajb7ErgREmbln28UtKW/cQ6Gjjd9qTyejHwEkk7DZZEaaifAvxdy6qfUQ3HmihpfNnHdaV8hqr7KjalusLQ0N/3QVPZrrZ/ZvuzwEPAjoPlGBERETEWjZae/62Ar0h6AbAW+C/geKrG4+WSHrB9sKSlwAqqHuqfANheU8bgf0XS5lTj/d/YCGz7DknHAt+RdDjwEeAcSbdSfT4LgROoxqRfLGkJVYP1vqb8NpfUPLzmCtsDTff5MUkHU10N+DlweZnFaA/ghtKr/TjwZ6VOp24ELqO6H+Fvbf+6XDloOI9qmNASVTt5EDiyn1izeOYEqmF+Kf/ZYInY/nabsgckfQr4MdVVgB/a/j5U04QCNwAPAEuAxsD8/r6PZmeWk0MB1wC3DJZfRERExGB6cZ5/uQcPKmIgr9hkgv95q0EvYMQo0tfX7QzGpjo/93E1X5euM37dv8c6c1+1qr7YAMf4jnp3EBuUpJvLRCs9aac99van/u+/1xb/xAMmdeXzGy09/xERERERG4yBdT045j+N/zFO0quBf20pfsr2Ad3IJyIiImKj0KMP+Urjf4wrU4j26tOJIyIiIqJJGv8REREREW30Ys//qJjqMyIiIiIihi89/zHmjB8PL9im21msnzpnEfn97+uLXbfRPNvPaJ4ZJvoxfvAqG6vNN683/kXarbbYmUkoRprpzak+87+FiIiIiIgxIj3/ERERERGtnDH/ERERERExiqUXIndxAAAgAElEQVTnPyIiIiKihUnPf0REREREjGLp+Y+IiIiIeA6zrgdn+0njPyIiIiKihT26p5LuT4b9RERERESMEWn8A5JeJOkiSSsl3SzpBkkzJc2QtErSMkm3Srpa0vZlm/dKsqRDmuLMLGXvGoGcpko6u59190iaOMR450v6jaTbhpvbEPd7uqSTh1OnrP/v8j0sk3RY07q9y/e1QtJySRNGMv+IiIgYu/r6XNurW8Z841+SgO8BC23vYnsKMAt4aamyyPZk23sDNwEnNW2+HDi6aXkWcMsI5LSJ7cW2PzLcWE3mAW8dwXgb2uzyPUy2/UOoPifgm8AJtvcEZgB/6GKOERERERu1Md/4B94ArLH99UaB7Xttf6W5UjlJ2Bp4pKl4EbC/pE0lbQW8HFg20M4kHSbpdknXSzpb0g9K+emS5kq6CriwXHVorNtW0lWSlkqaA2ioB2l7IfDbTupKulbSbEkLJf1C0jRJl0q6U9Lnm+p9XNJt5fWxpvJTJd0h6Wpgt6byXSVdUa6uLJK0+1CPo8WbgVtt31KO8WHb6/o5puMlLZa0+NF1batEREREPEt6/nvTnsCSAdYfKGkZcB/wRuD8pnUGrgbeAhwBLBhoR2VIyhzgUNvTge1aqkwBjrB9TEv5acD1tvct+3jZgEc0MtbYPgj4OvB9qiseewHvLScjU4D3AQcAfwIcJ2nfUj4L2Bf4U2BaU8y5wF+UqysnA18bQj4fLkOvzpf0wlL2SsCSrpS0RNIn+9vY9lzbU21PfcH48UPYbURERETvSOO/haRzJN0i6aZS1Bj2syNwAfDFlk2+TdXYnQVcPEj43YGVtu8uy631F9he3Wa7g6iGt2D7Mp599aEujROZ5cAK2w/YfgpYCewITAfm237C9uPApcCB5TXf9pO2H2vEKVdGXgt8p5xMzQF26DCXc4FdgcnAA8CXSvkmJY9jy9+ZzfdgRERERKwvG/rs2l7dkqk+YQXwzsaC7ZPKzbSL29RdAHy3ucD2jZL2Albb/mU1Oqhfgw3XeWKAdRv6V/JU+dvX9L6xvAkDH0u7XMcBj9qePNREbP9P472kfwF+UBbvB66z/VBZ90NgP+Caoe4jIiIiYixIzz/8CJgg6cSmsi36qTsduKtN+aeAT3ewr9uBXSRNKstHdZjjQqrebSQdCrxw4OobxELgSElbSNoSmEl1D8RCqh74zSVtDRwOUK4C3C3p3VDdQyFpn052JKn5CsFMoDFj0ZXA3iWHTYDXAz8fgWOLiIiI6Mkx/2O+59+2JR0JzC5jxh+k6oE/pVRpjPkXsAr4QJsYl3e4r9WSPgRcIekh4MYO0zwDuFjSEuA6qvsPhkTSxVSz4UyUdD9wmu1vDDVOg+0lkubxzDGcZ3tp2dclVDc+30t1QtBwLHCupM8Am1INmepkdqQvSppMdUXhHuCDJYdHJH2ZahYmAz8sw6IiIiIiog25Bx9bvDGTtJXtx8vsQecAd9qe3e28xpLdnzfB3/jjnbqdxnqp80mDv/99fbHrNpqfwFh37uNyfTeG4Ml2d52NoNU1xj/Gd9QXPNqSdLPtqd3Ooy47vGJPv//L/1Zb/L9/x15d+fzGfM9/Fxwn6T3AZsBSqhtfIyIiImJjYro6PKcuafzXRNJ8YOeW4lNKL/+we/olbctzb2xtzGHZOpH9IbYfbhPjHOB1LcVn2b5guPmtj40tn4iIiIhek8Z/TWzPrDn+w1RTXw4nxkmD19pwNrZ8IiIiYuwydHVKTklvBc6i6tw9z/YX2tSZAfwz1b2UD9l+/WBx0/iPiIiIiNiISBpPdW/om6imNr9J0gLbP2+q8wKqB6a+1fZ9krbvJHYa/xERERERbXRxzP/+wH/ZXgkg6dvAETx7SvNjgEtt3wdg+zedBE7jP8YcG9aurSf2aJ51pq7PZEMYzfdj1T7bzyj+bKK9cYM9LnIY6v53YODnYA7PRdqtvuBkNqGoxURJzQ+VnWt7bnn/EuBXTevuBw5o2f6VwKaSrgW2prpP8sLBdprGf0REREREq/pn+3logKk+250qtyazCTAFOATYHLhB0k9t/3KgnabxHxERERGxcbkf2LFp+aXAr9vUecj2E8ATkhYC+wADNv7z+JeIiIiIiBbG9PXV9xrETcArJO0saTNgFrCgpc73gQMlbSJpC6phQb8YLHB6/iMiIiIiWhn61nXnxinbayV9GLiSaqrP822vkHRCWf9127+QdAVwK9BHNR3obYPFTuM/IiIiImIjY/uHwA9byr7esnwmcOZQ4qbxHxERERHRhkfzNH79yJj/iIiIiIgxIj3/EREREREtXP9Un11Ra8+/pFMlrZB0q6Rlkg6Q9LFyR/L6xHuvpK8OI597JE0s79eVnBqvv17fuMPI53RJJ7cpnyRp0Bs2+tludTmeWyT9p7R+Tz2R9OmW5ZdK+r6kOyXdJemscvd5Y/3F5Xv+S0nzJN3d9Nl+ZH1yaNn/iyX9v/J+hqQfDDdmRERExFhTW8+/pNcAbwf2s/1UaXRvBlwCfBN4sq59d2i17cldzqEOdzWOS9IHgU8D71mPOJ8G/r7EEXApcK7tIySNB+YCfwd8QtIfA6+1vVOpPw/4hO3/N9yDabD9a+BdIxUvIiIiYmAdTck56tTZ878D1YMHngKw/RBV4+3FwI8l/RhA0rmSFpcrBGc0NpY0rfRc3yLpRklbNweX9DZJN0iaKGk7Sd+VdFN5va7U2VbSVZKWSppD+6elPUu5OnCGpCWSlkvavZS/vqkne2kjH0mfKPu8tZF/6YG/XdJ5km6T9C1Jb5T0k9Jzvn/TLveR9KNSflybfMZLOrNpHx8cwnfwfOCRgeJI2kHSwnJct0k6UNIXgM1L2beANwC/t30BgO11wF8C7y9Xca4Cti/1Dxzgs+3vu75H0t+X73OxpP0kXVmuMJzQ9Jne1hJvXPnctmta/q9yohkRERERLeps/F8F7Cjpl5K+Jun1ts+mejrZwbYPLvVOLY823ht4vaS9y3CSS4CP2t4HeCOwuhFY0kzgr4HDyknFWcBs29OAdwLnlaqnAdfb3pfqwQgva8qv0bhtvI5qWveQ7f2Ac4HGsJyTgZNKr/qBwGpJbwZeAewPTAamSDqo1H95yWtvYHfgGGB6idM8pGZv4G3Aa4DPSnpxy+f4f4BV5dimAcdJ2rm/Dx3YtRzPXcDHgS8PEucY4MpyXPsAy2z/NeXKiO1jgT2Bm5t3Yvsx4L5ynO+gXHGwvahUObPps311KXvOd90U8le2XwMsAuZRnSj+CfC5/g7Udh/VVaRjS9EbgVvKb+JZJB1fTiwWr+pbN8DHFxEREfHMmP8uPeSrNrUN+7H9uKQpVA3lg4FL1H5c/f+SdHzJZQfgVYCBB2zfVGI9BlCNPuFgYCrw5kY5VaPvVWU9wPNLz/xBwJ+WGJdJeqRpvwMN+7m0/L25sT3wE+DLpSf8Utv3l8b/m4Glpc5WVCcD9wF3215e8l4BXGPbkpYDk5r29X3bq6lOJn5MdSKxrGn9m4G9JTWGvGxT9nF3P7k3D/s5imp4zlsHiHMTcL6kTYHv2V7WJqaovpNOy6H9sJ923/WtZV3jqXXLga1s/w74naTfS3pBP/sAOJ/qCXf/DLwfuKBdJdtzqT4LdttsQu9dw4uIiIjoQK2z/ZThIdcC15ZG77PGnpee55OBabYfUTVWfAIDNypXArsArwQWl7JxwGtKI7o5PgPEGchT5e86ymdk+wuSLgMOA34q6Y0lz3+wPadlv5OaYkD11LWnmt43f+6t+bUuC/gL21eux3Es4JnGcL9xytWKtwH/KulM2xe2VFlBdUWleZvnAzsCdwHbD5bIAN91Q/Pn0/rZ9fs7tf0rSf8j6Q1Uj7U+tr+6EREREUPRrSf81qm2YT+SdpP0iqaiycC9wO+Axvj95wNPAKskvQg4tJTfDrxY0rQSa2tJjQbgvVS98RdK2rOUXQV8uGnfjR79hZTGoKRDgRcO43h2tb3c9j9SnXTsTvXI5fdL2qrUeYmkQRvCLY6QNEHStsAMqp74ZlcCJ5aeeSS9UtKWHcaeTtU47zeOpJ2A39j+F+AbwH6l/h8adYFrgC0k/XnZdjzwJWCe7U5v3O7vux4J51EN//m3csIZERERMTwZ9jNkWwFfKUM21gL/BRwPHA1cLukB2wdLWkrVs7ySamgNtteUIStfkbQ51Xj/NzYC275D0rHAdyQdDnwEOEfSreWYFgInAGcAF0taAlxHNRynYXNJzUNcrihj3fvzMUkHU10N+DlweZnFaA/ghnKV4XHgz0qdTt0IXEZ1P8Lf2v51uXLQcB7VMKElqnbyIHDkAPF2LcclYA3wgUHizKCasecPJf8/L/XnArdKWmL72HKfxdck/Q3VSeMPefa9CwOyfUu773qENK5wtB3yExEREREV2b13OSPGFklTqW747nemoWa7bTbBc7fbqZZcRvNTwH//+25nsP5G80xsdf9mxuU57j1n3KDz1q2/x5+oLzbA2rX1xa67OXOM76h3B6OQpJvLRB49aeJOe/iIT51fW/zzT3xtVz6/POE3RrVyE/mJZKx/RERExKDS+B+FytSZ/9pS/JTtA7qRTzfZ/gLwhW7nEREREb3G9I3mS/r9SON/FCpTiPbi04kjIiIiokZp/EdEREREtCqz/fSa3AoWERERETFGpOc/IiIiIqKF6c2HfKXxH2POuHGwxeb1xK77vqDNNqsv9pM1xobRPQ1qndMT1j0V52jOvU7JvTu22KK+2GvW1Bcb4CLtVlvsTCMaG1Ia/xERERERrXp0zH8a/xERERERLYx7svE/ii8eRkRERETEUKTnPyIiIiKilcHp+Y+IiIiIiNEqPf8REREREW1kzH9ERERERIxa6fmPiIiIiGhh9+ZDvkZdz7+kHSXdLemPyvILy/JOkl4h6QeS7pJ0s6QfSzqo1HuvpAclLZO0QtL/kzRijxuRNFnSYSMY74eSXtCm/HRJJw8x1rvLMfdJmjpSOXaw30mSbhtunVLvZZIebz52SUdLWi7pVklXSJo4EnlHRERE9KpR1/i3/SvgXOALpegLwFzgf4DLgLm2d7U9BfgLYJemzS+xPdn2nsAa4KgRTG0yMOzGvyrjbB9m+9ERyAvgNuBPgYUjFK8bZgOXNxYkbQKcBRxse2/gVuDDXcotIiIieo7p6+ur7dUto67xX8wG/kTSx4DpwJeAY4EbbC9oVLJ9m+15rRuXhuOWwCNleSdJ15Qe5GskvWyQ8ndLuk3SLZIWStoM+BxwVLmy0PakQtJ2kv5D0hJJcyTdK2li6f3+haSvAUuAHSXd0+jJlnSqpDskXQ0M+fnitn9hd/bs8HKF5HuS/r1cUfmwpI9LWirpp01XXCaX5VslzZf0wlI+pXwuNwAnNcUdL+lMSTeVbT7Yaf6SjgRWAiuai8trS0kCng/8eoAYx0taLGnxo+vWdbrriIiIiJ4yKhv/tv8AfILqJOBjttcAe1I1nAdylKRlwH8DfwT8eyn/KnBh6UH+FnD2IOWfBd5iex/gHWX/n+WZKwuX9LP/04Af2d4PmA+8rGndbmVf+9q+t1EoaQowC9iXqvd+2iDHOBL2Ao4B9gf+DnjS9r7ADcCflzoXAqeUz2Y51bEBXAB8xPZrWmL+H2CV7WlUx3CcpJ0HS0TSlsApwBnN5eU3cGLZ96+BVwHf6C+O7bm2p9qe+oLx4wfbbURERIxxpprtp65Xt4zKxn9xKPAAVUP1OUpv9G2SLm0qvsT2ZOCPqRqNnyjlrwEuKu//lepqwkDlPwHmSToOGEpLcjrwbQDbV1CuPBT32v5pm20OBObb/5+9846bq6j+//uThBACqSR0UiCFJoTeQpfeUQRBqiIgUr+ASO8d6VU6SpPeERXpIhABQZqAFEF/oBBCJ8n5/XFmfS7LU3b32bu798n5vF7z2r1z537u2bmzd87MnHPGPjWzj4Db2ilTb9xvZlPM7D1gMm2DpL8CoyQNAgab2QMp/wpg1Xbyr8pwrgNsnwZfjwOzA2MrkOUo4HQz+zibKWkmXPlfEpgHN/v5eZW/MxAIBAKBQKB9WM9U/gsZ7UfSBGBtYAXgYUnX4iYhq5bKmNnmybn11PLrzcwk3Y77BJxYfh4f7LUHS9fvJml5YEPg6SRPRaJ3cu6TTs41uoV8kfk+PXM8nc7bjOhYVgF7mtm9X8uURnUhy/LAdyWdDAwGpkv6HB9AYGavJp7rgYO64AoEAoFAIBCYoVG4mf9k330+bu7zJnAKruBfDawsaZNM8c6i+UwEXk3fH8VNa8B9Bx7uLF/Sgmb2uJkdDrwPzA9MAQZ0If7DwPcSxzrAkC7Kgzvpbi5pFkkDgI0ruCZXmNlk4ANJq6Ss7YAHkoPyZEmlFZJtM5fdC+yeZuyRNC6Z9HR1r1XMbJSZjQLOAI43s3Nw061FJA1PRdcGXujubwsEAoFAIBAoIWb+WwO7AG+a2X3p+DxgR9w+fSPgF5LOwKP/TAGOzVy7VVJMewFvp+sA9gIulXQA8B6wUxf5p0gai89m/x54BngTOCiZtZzQgd3/UcA1ySH4AdxsaQowW0c/1swmSboOeBp4A3io09ppB5I2B84GhgN3SnrazNatlqcMOwAXyMOlvkZb3eyE19mnuMJfwsXAKGBSGsC9B2xW683N7B1JRwEPSvoKr5sda+ULBAKBQCAQmBEgs563eUGrQtLMwDQzmyppReD85IMQaCAW7tfPrpxvZC7ceUfu6ts3P+5PP8uPG/KvmzwxdWp+3L1yXn8tsux5ImRvHx9/3HWZ7qB/3XbX+Sa+/DI/boD33s+Pe5vKAvK1HCQ9ZWYN2z+o0Rg09zibuPNZXResEXcdv35T6q+IM/9Fxgjgekm98H0GdmmyPIFAIBAIBAKBGQih/OcASTsBe5dlP2Jme+DRaepxj3OBlcuyxwKvlOWdaWaXtXP9usBJZdmvm9nm9ZCvWrSaPIFAIBAIBGZ0NNc2Py+E8p8DkrL9DYW7zvfYo+tSnV5/L1+3yW8qWk2eQCAQCAQCgZ6IUP4DgUAgEAgEAoFypDj/PQ0FdnkKBAKBQCAQCAQC1SBm/gMzHiy/yDN5TxDkGTEn72g8RY72E7IHZhQU+R32cWdbZdYBc8+VH/fVGp8fOcWNJtRsGGA98CUayn8gEAgEAoFAIFAOA5sWZj+BQCAQCAQCgUCgoIiZ/0AgEAgEAoFA4BswLBx+A4FAIBAIBAKBQFERM/+BQCAQCAQCgUA5wuY/EAgEAoFAIBAIFBkx8x8IBAKBQCAQCLSDsPkPBAKBQCAQCAQChUXhlH9J80t6XdLQdDwkHY+UNFbSHZJelfSUpPslrZrK7SjpPUlPS3pe0g2S+tdRrgmSNqgj312SBreTf6Sk/avk2jL95umSlqmXjBXcd5Sk57pTJp3/LD23pyVdkDl3nKS3JH1cT7kDgUAgEAgEMGDa9PxSk1A45d/M3gLOB05MWScCFwH/Bu4ELjKzBc1saWBPYIHM5deZ2QQzWxT4EtiqjqJNALqt/MvRy8w2MLMP6yAXwHPAFsCDdeJrNF5Nz22Cme2Wyb8dWK5ZQgUCgUAgEAgUDYVT/hNOB1aQtA8wETgN2BZ4zMxuKxUys+fM7PLyiyX1AWYFPkjHIyX9XtKz6XNEF/lbSnpO0jOSHpTUFzga2CrNTrc7qJA0XNJ9kiZJulDSG5KGpdntFySdB0wC5pf0D0nD0nWHSHpJ0u+AqvcAN7MXzCrb2zutkNwi6fa0ovJTSftJ+oukP2VWXCak42cl3SxpSMpfOtXLY8AeGd7ekk6R9ES6Ztdqf0c7v+tPZvZuhb/rx5KelPTkh9OmdffWgUAgEAgEejgsxfnPKzULhVT+zewr4AB8ELCPmX0JLIorzp1hK0lPA/8EhuIzxwDnAFea2eLAr4Gzusg/HFjXzJYANkn3P5y2lYXrOrj/EcAfzGwp4GZgRObc+HSvJc3sjVKmpKWBrYEl8dn7Zbv4jfXAYsA2+Kz6ccCnZrYk8BiwfSpzJfCzVDd/xX8bwGXAXma2YhnnD4HJZrYs/ht2kTS6QnlGp8HHA5JWqeUHmdlFZraMmS0zuHfvWigCgUAgEAjMSEihPvNKzUIhlf+E9YF3cUX1G0iz0c9JuimTfZ2ZTQDmwhXWA1L+isDV6ftV+GpCZ/mPAJdL2gWoRpOcCFwLYGb3kFYeEt4wsz+1c80qwM1m9qmZfQTc1k6ZeuN+M5tiZu8Bk2kbJP0VGCVpEDDYzB5I+VcAq7aTf1WGcx1g+zT4ehyYHRhbgSzvAiPS4GM/4GpJA7vz4wKBQCAQCARmVBRS+Zc0AVgbWAHYV9LcwPPAUqUyZrY5sCM+w/81mJnhCu2qHdyio+GYpet3Aw4F5geeljR7paJ3cu6TTs41enj4Reb79MzxdDoPDys6llXAnhnb/dFm9tuuBDGzL8zsP+n7U8CrwLiurgsEAoFAIBDoLsLspwUgSbjD7z5m9iZwCnAqPkO/sqRNMsU7i+YzEVckAR7FTWvAfQce7ixf0oJm9riZHQ68jw8CpgADuhD/YeB7iWMdYEgX5cGddDeXNIukAcDGFVyTK8xsMvBBxgRnO+CB5KA8WVJphWTbzGX3ArtLmglA0jhJs3Z1r+Qn0Tt9XwBfLXitTj8lEAgEAoFAYIZCETf52gV408zuS8fn4TP8ywEbAb+QdAYe/WcKcGzm2q2SYtoLeDtdB7AXcKmkA4D3gJ26yD9F0lh8Nvv3wDPAm8BByazlhA7s/o8CrkkOwQ/gJi1TgNk6+rFmNknSdcDTwBvAQ53WTjuQtDlwNjAcuFPS02a2brU8ZdgBuEAeLvU12upmJ7zOPsUV/hIuBkYBk9IA7j1gswrusypwtKSpwDRgNzP7b/pdJ+O+Cf0lvQ1cbGZHdvN3BQKBQCAQCDimNy8kZ16QW8AEGgFJMwPTzGyqpBWB85MPQqCBWHjmfnb5vCNz4c57Fa/vTPlxf/pZftxQ7Pfn1Kn5cffKef21yLLniZC9fXzcmQFqHdB/lvy4P5ycHzfA4EH5cb/7r/y4AbapLOBf1ZD0lJk1bP+gRmPAsAVtqQ2Pz43/wSu3bkr9FXHmv8gYAVwvqRe+z8AuTZYnEAgEAoFAINAerLlRefJCKP85QNJOwN5l2Y+Y2R54yM563ONcYOWy7LHAK2V5Z5rZZe1cvy5wUln268lRuuFoNXkCgUAgEAgEeiJC+c8BSdn+hsJd53vs0XWpTq+/l6/b5DcVrSZPIBAIBAKBQDOj8uSFUP4DgUAgEAgEAoEyWNrkq6ehwC5PgUAgEAgEAoFAoBrEzH8gEAgEAoFAINAOwuwnEOgBkKBPQVt+nnLnXSdFDvUZYSF7HopcL3nK3quzfejrgDzfMwO72mazm+jbNz/ueefJjxvgao3PhXc0My+dC3EgVxRUBQoEAoFAIBAIBHKEGUwr8MxVByjw3EcgEAgEAoFAIBCoBjHzHwgEAoFAIBAIlMN6ps1/zPwHAoFAIBAIBAIzCGLmPxAIBAKBQCAQaAcR5z8QCAQCgUAgEAgUFjHzHwgEAoFAIBAIlKOH2vyH8h8IBAKBQCAQCJTBsDD7aQVIml/S65KGpuMh6XikpLGS7pD0qqSnJN0vadVUbkdJ70l6WtLzkm6Q1L+Ock2QtEEd+e6SNLid/CMl7V8l15bpN0+XtEy9ZKzgvqMkPdfdMqncCEkft/fbJd1WCUcgEAgEAoHAjI7CKf9m9hZwPnBiyjoRuAj4N3AncJGZLWhmSwN7AgtkLr/OzCaY2aLAl8BWdRRtAtBt5V+OXma2gZl9WAe5AJ4DtgAerBNfM3A6cHd5pqQtgI8bL04gEAgEAoEeDcO3p88rNQmFU/4TTgdWkLQPMBE4DdgWeMzMbisVMrPnzOzy8osl9QFmBT5IxyMl/V7Ss+lzRBf5W0p6TtIzkh6U1Bc4GtgqrSy0O6iQNFzSfZImSbpQ0huShqXZ7xcknQdMAuaX9A9Jw9J1h0h6SdLvgKr36DazF8zspUrKphWSWyTdnlZUfippP0l/kfSnzIrLhHT8rKSbJQ1J+UunenkM2CPD21vSKZKeSNfsWqn8kjYDXgOeL8ufDdgPOLYCjh9LelLSkx9Mm1bprQOBQCAQCAR6FAqp/JvZV8AB+CBgHzP7ElgUV5w7w1aSngb+CQwFbk/55wBXmtniwK+Bs7rIPxxY18yWADZJ9z+ctpWF6zq4/xHAH8xsKeBmYETm3Ph0ryXN7I1SpqSlga2BJfHZ+2W7+I31wGLANsBywHHAp2a2JPAYsH0qcyXws1Q3f8V/G8BlwF5mtmIZ5w+ByWa2LP4bdpE0uitBJM0K/Aw4qp3Tx+ADv0+74jGzi8xsGTNbZkjv3l0VDwQCgUAgEMCmWW6pWSik8p+wPvAurqh+A2k2+jlJN2WyrzOzCcBcuMJ6QMpfEbg6fb8KX03oLP8R4HJJuwDVaJITgWsBzOwe0spDwhtm9qd2rlkFuNnMPjWzj4Db2ilTb9xvZlPM7D1gMm2DpL8CoyQNAgab2QMp/wpg1Xbyr8pwrgNsnwZfjwOzA2MrkOUo4HQz+5ppj6QJwBgzu7mG3xcIBAKBQCAwQ6KQ0X6S4rc2sALwsKRrcZOQVUtlzGzz5Nx6avn1ZmaSbsd9Ak4sP49bebUHS9fvJml5YEPg6SRPRaJ3cu6TTs41enj4Reb79MzxdDpvM6JjWQXsaWb3fi1TGtWFLMsD35V0MjAYmC7pc2AasLSkfySZ5pD0RzNbvQu+QCAQCAQCga7RQ0N9Fm7mX5Jwh999zOxN4BRcwb8aWFnSJpninUXzmQi8mr4/ipvWgPsOPNxZvqQFzexxMzsceB+YH5gCDOhC/IeB7yWOdYAhXZQHd9LdXNIskgYAG1dwTa4ws8nAB5JWSVnbAQ8kB+XJkkorJNtmLrsX2F3STACSxiWTnq7utYqZjXMbtfIAACAASURBVDKzUcAZwPFmdo6ZnW9m86T8icDLofgHAoFAIBAIdI4izvzvArxpZvel4/OAHXH79I2AX0g6A4/+M4WvO4NulRTTXsDb6TqAvYBLJR0AvAfs1EX+KZLG4rPZvweeAd4EDkpmLSd0YPd/FHBNcgh+ADdbmgLM1tGPNbNJkq4DngbeAB7qtHbagaTNgbOB4cCdkp42s3Wr5SnDDsAF8nCpr9FWNzvhdfYprvCXcDEwCpiUBnDvAZt1U4ZAIBAIBAKBnNAz4/zLrOf9qFaFpJmBaWY2VdKKwPnJByHQQCzSr59dNWJks8WoCX1yHK5/+ll+3NDUqGbdRsje89CrcOvebchT9o8+yo8bYLYOp7q6jy+/zI8boF+//LinTs2PG+Cf7+TDeyhv8Jp93plJc6Ex64CRtvCSh+TG/9RDuz5lZg3bf6mEIs78FxkjgOsl9cL3GdilyfIEAoFAIBAIBNpDKc5/D0Mo/zlA0k7A3mXZj5jZHnjIznrc41xg5bLsscArZXlnmtll7Vy/LnBSWfbrZrZ5PeSrFq0mTyAQCAQCgUAzzX4krQeciUeWvNjMTiw7vzpwK/B6yrrJzI7uijeU/xyQlO1vKNx1vsceXZfq9Pp7+bpNflPRavIEAoFAIBAINAuSegPn4tEt3waekHSbmf2trOhDZrZRNdyh/AcCgUAgEAgEAmWw5ob6XA74u5m9BpDC2m8KlCv/VaPALk+BQCAQCAQCgUCPxLzAW5njt1NeOVaU9IykuyUtWglxzPwHZji88MUX7y/zystvVFh8GL6XQ17Ikz9kbzx33vwhe3P4i8qdN3/13B/mzN/zufPmr5a7mKHzKsRnn75571/+vMewHG/RT9KTmeOLzOyi9L29KErlyxCTgJFm9rGkDYBbcP/PThHKf2CGg5kNr7SspCfzDMOVJ3/I3njuvPlD9ubwF5U7b/6QvfHcefPnLXvRYGbrNfH2b+ObyJYwH/C1oK1m9lHm+12SzpM0zMw6HcCF2U8gEAgEAoFAINBaeAIYK2m0pL7A1sBt2QKS5kobpyJpOVyv/09XxDHzHwgEAoFAIBAItBDShrA/xSMh9gYuNbPnJe2Wzl8AfBfYXdJU4DNga6tg995Q/gOBznFR10Valj9kbzx33vwhe3P4i8qdN3/I3njuvPnzlj1QBczsLuCusrwLMt/PAc6pllcVDBACgUAgEAgEAoFAD0DY/AcCgUAgEAgEAjMIQvkPBAKBQCAQCARmEITyHwgEAoFAIBCgFDkm0LMRyn8g0A4kzStpiRz5+5Qd5/LCjRd5oBKUt8c6c/eXNFNe/I1Cnv+lov5PMyEGCyl/vSGpf9lx3etFUu96cybeAQBmZvE8ez5C+Q8EypC2x/4jMFpSvxz4xwEnS/qxpNUlqZ4v3KRszQr+Iq8HZ4Z7tKT168lZxj+3pPE5cQ+TtJikXN57Jd6cOvxFJe1Tb97EvTBwfo7c5wBz5MSfW3tJ/Hn+l4r8Py218fmhvvLn2dYz98jjPzoeuFnSyZJ2hbrXyyhJc5nZtHoPACSNAB6WtCPEAGBGQCj/gUAGkgYCpwEnmNktZvZ52flu/WckjQTuAV4HBgNbAsfUawCQBi6/BX4p6bTUYdRrUDEeuBbo31XZGvlnA54CDpK0Yp25F8VjJZ8D/Kae3Il/HHCYpBH17jglLQT8GuhbL84M9zjgSuCHkvatM/dCwBXAw2b2z7Jz3e578mwviT/P/1KR/6e9UhtfH7hD0tg6cufW1rNI8k+UtH89+CSNAm4F7gTeABYpO9/d9/o44CXgZUmjcxgAjARmAfaTtAe0DVxiENAzEcp/IPB1TAHeAm6UNJOk8yUdLenU1OlN7+bLcDHgZjM7GzgbeA9YBzihNAColVjScOA84HTgB8Bw4BJg5e52FKmD/y1wvJndKKlXvWfQzexj4DHgA2AdSavUg1fSHPjM9vFmtjowp6Sl68Gd+EcCDwMrAXvlMADYGbjMzE5O9T6/pL7dXWlICsUNwMnAsvhOkoPqIXDiORt43swuTXnrJIVrnvQ/6lb7yau9QO7/pUL+TyXNApCe3crAmcAuZvZKvdoNObX1DvABsJWkb9WB61vAHWZ2Fv6fWk7STyXtmhks1fo/nQnYBtgLOBJ4NDMAqJe53l/wAePOwA6Stk337lafFGhdhPIfCCSkF+lswCBgZeAAYCrwJ2AYcE0dXoafA5tJWtrMPsO34b4bn6Wb0B358R0AJwOPm9l0YJ8k9ybAXNCtznMBfKXizXR8ET5reaGkebsl9dfxN+ALfAPC1SRtKGljJdTI2Rd4H+/gwJ/vPpKukLRKHRSKobgidGiSfZ86DwBmBf5f+n4DPpC5HPiBpL61tMekUGwOnGxmvwE+BVZMqR5K1lfA74B/SNpS0l3ArsDuwC2SFkxttLvIo72Q+PL6L/XNkTuX/6mkwcBxktZJWXMm7g/lO5A+JOky+cppd1D3tt4RzOx5/N07GrptS/8hPmu+M3A/8AowEz6oPjHdr5b/qczsK+BS4HYz+wVwAT4AWMDMpnZD5uw9PsZXK2YFdgIOlvQuMDGVCV2xhyEeaGCGh5Jdv5lNNbMpwNV4x7asme2Zdtg7CF8VqNoHQG5rPlLSrGb2e9z05GZJ5wA/wk0j+pAUr27gY+AdYN00q7su8FfcLvf/0m+sqfM0s3uBbYErJb2Kd3a/wBXp47spd9bh9HHgZTM7DLcTvwZYwhKq5ByZlPC38c74bEmPAZNwJfQdYBdqeKaJfw5JQ8zsL8CpZvYEvvT/KT4AGJ0GAN01YbgF2FDSecAzuJL4ALA6MHcNcvdPCsV5ZvYrADN7AZ+NPlTS3N1cgZKZfYorbpPxtveimX0H2A73p/lOrfxlqFt7KSEp3u8D71LH/1JqL0Px/85b9eQuIf1PtweuqvP/dCC+Srm5pJWAp/FVi3Pwgd6O+IBgmWqJ9XWH8Lq29cQ/p3zltp+kMZLulLSepGHAo8BR6T8xrUreBdJgc2YzewjYGhgA/M3Mtjez04Ff4RNKtcg9FjhQUh8zexP4F4CZHYX/tx6VNLOkEZK2qkH2DSTNlGlrDwGf4QPqWfCJqgXSPesxUA+0EEL5D8zQkLQIcKmkTUp5ZnYLcCCwqaRNU/Y4YHG8E6yGfyHg98BJwItJsTod+D6uqKxvZq8BT1CDnaukBdPS8lr4AOJyvAM+FV/C3QOfcZ2r2tkbSUOUcXg2szvwZee7zWz/NHP2A2CM3GGsWtnHSro6dUClGay/A0tLGo2bQ/0J6KMqbbqTUnU/yZwK7ywPAV4FzjSzj83s57it6+I1yL4obpu8PICZfZE+/wzcjnec20naDjixmgFAeb3jnfELuMnYi2Y23cwuBGYHqrK3ljvgnic3vZmS8krt4nbgeVKHX+tMaGnFw8w+ws1ZjqRNqZ2Om1tU3fckxW1fSdtmZrHr0l4S/0KSTgaOxmfirwaWpD7/pVJ7WdbMPgHuw1f66sE9WtKPkiI6l5ndChxFnf6nAEn5vBZ4Gfgh/q5aEdg8tcUPcOX8P1XKXu4Q/jx1ausZ9Ev8J5rZ34G7gBVw36tP8QHSGkmeaur+18DPcNOhWczseny1Yk5JpUHQzMBikmavZjVH7rfxK+Dd0rsxmVvNlL4fDRyDT/g8hQ9Wq8Gv8QmtrSTNnPJeAE7A/dHOATbCVzPq5o8SaCGYWaRIM2TCO4RXgdtw++RNys5vAzyHv2RfADaskn9+fEZvh3R8Eq6Q9i0rtzb+wl27Sv6F8Bf/KcBh+ABiRDo3HBiUvq+Pd3izAKqQe1Hgv7jp04Cyc30y35fHZ1/nqqH+dwamA2eVOGlTuv4O/BTv9I8DFqqCdzzwZ3x5/GJgSObcrinNCYwBngXGVSn3MHxWcscunv21uHKxVRXc7dY7PqC7EB8wro4PRp/GZ7mraS9/BnbupMwpwP3VPsvM9Sr/Xpa3dJJ7zSp5F06yn5ae64n4AGJQqudXa20vZW3mYFwhPzfl90vPuzv/pQ7bSx24FwGexAdZF6VU4uv2/zTzDHunz1mB/dP/avWUtxn+ntusSu522yM+GL8kPdea2nriGQHsm3m+l+KrIKV3zRapHb0O3FRDWz8OX7U9Gtgpk78TvtJ4KP4e26BK3vnwwdS26XgmfNKpf1m5MfhMfVX9Ukeyp//SucBumXKzV8sdqRip6QJEitSshC/HbpM6l12BX/LNAcDY9JJdIh1X1CmnsiuWvUiHAr8pKzM7cF2NL/DDgIMyx7fj5gSLZPLWTXkV8+P+BxfgSvhtuFI1WzvlVsVnpTeusf7H4TPyd+FO0KX8nYEfZY4HVME5H67kbJOO7wYuyZzfELgq1dXT+MxltXIvDNyaOd4DV9a/VfbsPy/VeyXtpoN6H5g5Px74Hh616Dbgu1XIPAifbb4sk7cObtM7TyavX3oe46vgnh1YsoJyE/EBalXtBVeQ7yIpz7jSdgq+atMvHe9aS3vJXHMkcEj6vjSuRK8GjE15vWr5L3XQXvZM7WWJTF4t/9PZcb+KUlv/Fj5bPKKsXHf/p5vgM8U34Mr4MNxP4TzcN2oOYKVK23kn7XFd3Gl+9nR+21raeoZvLmApYI50PAp/x18A9Et5ffH38mPAelXyb4gPHn6MO83vja9wDcSjuO0FrFaD3HPgAQSOScfXpef6PLBGyhuY/gObVFPvnci+Z3qmYzJletXSXiIVIzVdgEiRmpmAmdLnXLQNADZLeQO7yd0/2xHjS8CTaJud758+SzN11b7AD8dDkpaO98Jny54Ahqe8tUkzT1V0zDNlOvNlgT/gCm52JnogbhpVFXfm+l6pMz4z3e+61NE/AAzNlquSdyiwVuZ4PK60LJPJWxCfYV+8RtkH4eZVYxL3BfiqzsvAcqnMIiRlC1Al9+ik3ge1c/+BVT7T/riJwhG4YnIXcCOu1P0ZWDCV600Vs3248nQIHrlmmS7KDiENEqqpc3yQPjFz/BBuq30W8CAwf63tJXPdz1JbXApXvH4LnIE7ny6SyqxTS3vvpL28kmkvVXOnevkxSZFNeTcDP8gcD8QHGrX+T1fHTalG4YPSR1L+iFRnl9POxEA32uM16X6jM7+xqrZedp8++GrrBel4NL6Cdh4wc6bc6cD3q+ReEjg/fT8QX+W7pFoZO+CeE5+gmAackvJ+iq9Uzp2OZy3VSw3PtVz2z4CLM+errutIxUqlJb1AYIZHsiPehLbl1NXxgUC19pTtcffGO6IncXvTCXjntw3widXwR0x2zo/iCsUnwCq46cCxwJVm9mQ35Z1uZiZpOXyW6GYzO1vSYrjz2X+tm45gyen5IFxBeg74l5ktXCNXr6w8yU51MK4kPm5m55Tya6nvDG8/XHmYitfBQSl/L7z+N7e0P0TJVrbS+3VR74sD/7GymPkVcJb2kBiIr6psDTxqZvslG+cTgffN7ORqeDP8SwDfxZWQW80dn8vL9KqlrZQ/q+Rsuox5SEUknYbXyfHdea6S5sdnQKfgiufaKf8QXPHdtda2XkF72diqjNqSeaYzmdlXySl0qqRfAJPM7FeSxuBOup9Uyi9pTuDbZvbrdLwTbhYzBDf3+YGZvS7fY6EvPjB9vUbZO2qPJwHvdaM9lvhLoZlH4Ss5z6V7jMLNXT7HJ3zmwW3cDzGzv1V5r1/gExeX4u+vt3ETr19blQ7E7XDPja/qnJbJ+xXuqP9od7gTV7nsb+GDi191970eaH2Ew29ghkJnjktm9k8zOx+fgd0TOKtaxb8jfjObZu4U+hiuKJ0GXG7ueFqL4t87dborAK/hnc4PzJ0sZwG6FX4zyVvqQEu20OvIo3Dcg9tU19xBZBzr3gJ+js/6HQu8IenGWpxNy+Uxxwd457afpCVL+bXKna7/HDe5GgesobZNjibhEWK+KpOh4vt1Ue93kMISVilvXg64pYHNM/iMbW88Gsyy7RVP18wmae1KHSvL687MHi0p/gn/7qhspUj/pbdwM5OzgEcyp18FvuxOW6+gvVQtd+m3mkdtAvedAfcX+TgNFK/CBzKVKv69cNOsDeQhK8Gf27HAT4Ctk+K/GT5g/KRaxb8kexft8b90QzdJ/Gvh4Sq3M7N/4FHVlpB0Sjo+An+/WxpMb9+Z4l/+XpfUWx6hbAC+2nK+mW2Fr/49Va3i316/YWbv4qtPpTIr4itTH3aHuxPZX0myh+I/I8BaYPkhUqS8E1+3ne5wSRM3CfmSKm0pq+B/HJ+lX6ca/va4SU54ZedXxHeCXLqGOmpXFpIpBW7T+hVlfhHd4ced+97l674Ly+Yg++n4svk36qyGei9xzoOH9jwBV4aepUqnx7zrvUzuejrgKnP94rTFlz8BVxazZlYlZ9HBuGLdpX9AZ/WSOb9Ukn2tamTvoj3OgQ+mTwS2wveGqMUfp+HtJZ3bJ71jnqJ2G/8f4wOHjfGJkD+k45lxM8IXqNI+Pu/2WHaPxfBddvfCVyh/nvLnxydfzix/Np1wdfpex/05vpM5rur90hV/iRP3rfh7NW0xb9kjFTs1XYBIkfJO+Ez4H4HdM3mddaDLl8p0pYBUyp9RAP6P5LRVhfyVOlQuhs8OfycH7qH4EvGWXdVfpfyZzn9Uto7qLXsquyNVDoi6kL2k0A5NHfMOJLv0CttMbvVeBXetDriltrw+HuVlTzzE4yJJoTgGj5izXOaawbiD5yp1kn193LyiWtk7e6al3zUGuBJ3Rt+oHvXewPbyI9ycZY1KucuuXxd3sH0Q98HZFHeqvjXVye+oPnpNru0x+zvTs1uaZL+P+/z8jTS5gPsqLF8hZ6fvdcreV+XH3eXP5PXFw26uVi/u7soeqfip6QJEitSIlDq1J/l6SLZyBb132XGfevKnvFmq4ac6h8pZgJEd3bub3H1ocyKudFBUMX8qX3EHVC13De2lS/5qFatG1HuV3FU54JIcDNP3eXHn7FH4hl2TgDnTuTG43fa4dDwAVxpXraPss5MGc5U+hwqfaUlJ70U7M9MFaC9zk2bNq70f7mQ6CQ/BORzfLOwyMiGIgWE5yl6rQ3jpOa2JmxE+jK8wlSI1jU35h9VQ95W+13u1972O/DNlvlfUL+Ute6Rip7D5D8wQMN/58iBg75I9q5nbnpaXle842duqcMKrhD9xfpb4+1TCb2Zf4rP5HwObdWBPXXJy+8zM3ijdu17cqexUM3uvxF1v/modQqvkrsV/oEv+Uh1Uy59nvVfRXnqZ2QfmuxN32V4kDQEOkrRlynoPj7qzGr6atbWZ/VvS5vgqwBFm9nIqOwH4mZk9WEfZ/2NmT1Xj5FvhM52W+W7Zzzpw59pe0vvlXTP7Q43Oz/3wAebk1Obuxs3NjpL0w1TmvznJXlV7LLuHyTfVWhP3p/oJbqq0m6QFzewV4Nv4akZVqOK9Pj3Tb1TzHquU/6tq+o1GyB4oNkL5D/RYlF5y8t0VB5nZ73Cb2D1TFIv/vQzTi2+apMF4iLUud5PsJv+YSvmtMofKXumaihwqq+EuKSvVOGtWy586oFxkT/Wep+wV8+dZ71W2l1occD8BlpG0cVLqFsc3e/q2mb0sj050EL5vwOeli8zsITN7Kg/ZgW/35PZYZb2UrqmoXjLvr6HpHm8AtwAHyncifw8PkzkJD79JNcphA9ojknrJnVfPwjcbe9PMnsUHHJ8A+0saY2YvmdkDWcW3K7mL2G/kLXug5yCU/0CPRXrJbYY7q10h6ae4I9z/AT+RtGsq2iu9BAfhUWeONLMXm8kv/S9c3dLyyB2f46YUAjZV2/bxlL3E78XDNnbYSefJHbI3R/acuXubR036C27ms7ukFfDoOI8Cl0g6EI+ffryZPd8RV6Nlb0DdtCL3b6vg3hB/d90kaW88utE/gRsl7Y5HxbmmFZ9p+torzYRvCLyPRw7DzB7HVy4+wJ2WSfmVrOIUtt/IW/ZAD4K1gO1RpEh5JDwayKO0bVv+R9o2RlkHj208XzoejNuKTmw2P/k6VObGHbL3PO5M+W/jDrbb4bOE5+BmFn2BfYFdgNVT2WrsteOZNu+ZLkLaaAzfb2R/fKOzhXDH4QPJ2Pu30DMt2fivBRwHfB8fVAzCVyhOz5QdVIP8hew3GiF7pJ6Tmi5ApEj1SsB8wEmZ4/XwcG9bphfiAil/VPqcPX32AnaroEPOmz83h8o8uUP25sied72kssLNNY4D9kx5c+AzrDdTRQSSeKZN514IOJS2HcUnAtdnzi+J7/i8bDquNnpN3s8065i6Lh7FZ3M8BOYZ6Z4DcQX3nCrkLmy/kbfskXpuaroAkSLVK6WX/yPAGen4W/iGVE9kXoKb4svBg8uu7ddMfjzSxTG0hXTsi8dL3yG9xEsd5eapbL/MtavQSRjLPLlD9ubInne9tHO/H+MhIOdNx8NxJessYK4queKZNp67N/ALfDOwXXAleTg+U/79TLlfkqLDUN0KTt7PdMHUBmdJcv8aH8ysCTwPXIGHZh2Oz3qvVIXsRe43cpU9Us9NTRcgUqR6JNqWglfEzROOSscn4bbImwEb4ArLRi3IPwR3ljyJFOcaV7a+Avqn4+XwDXwWbRXukL1Hcpfa+hL4rO14YBngcNzEZx5gZLrfIq1U5wWv97zrZVN886uH8dnhIcDWuMJ/BLA8voHXcjVw51kv4/GNv7KDlDnwjeUewTcfG41HoDqBKpRaCtxv5C17pJ6dSo0nECg8JG2MzzS9h88m3Yovc/8UnxHpB1xrZneVHNJagT/j8LYusDO+DH40PqN1B/AO7mz5fdwx69YqZM6NO2TvedyZe2yIm1I8CsyFO5F+hc+sro+bDRxpZrdVyRvPtIHckgaY2ZTM8b64qcgSwJ24gj4nbt//PnCHmd1Sqdx5yp64RwF34Xb8v5Q0EzDCzF6VtARwsZktK2kB3F/hYDP7a5XyF7LfaITsgR6MZo8+IkWqRwJmxW1MSztbjgZ+DxyaLdPC/Lk4VObNHbL3SO5Z8WghK6XjtYCjaDPpGEMVm8nFM20ON67k/wc3zdou5W0I/BDf6fZePApMn3SubyvVOTAstbu78dWmmfHQo/tkypyPD1D/Bqxfg9yF7Tfylj1Sz05NFyBSpHok3Bb0Ttp2/eydOqJ/A2emvJp3L8yLn5wcKvPmDtl7HnfZfW4ADswc74bPwFa863U80+ZyA+PwaC+34uY2R+OmIH/HTUVG42YzB1O2u3kLyD4euAmPXnMCvgr1J+AXZeX6AasDS9V4n0L2G42QPVLPThHnP1BIlOI8SxqZlrY/w5ewr5Q0j/lOne8AFwDXQW0b1OTFX4I5puG2uGtLmtfM/h++edJY4DuS5qqWN2/ukL3ncGfa+hhJE1L2lcBQSRuk48fxXVr71yJ3XrI3ir9I3JLmkO+78BYevvMF4Fp85rwfbp+/gZm9js/I/84yOxs3U/Ykf298sPmSmU3CFdwP8fZ3Rdn9PzezP6ZylXAXtt9oVJ8UmDHQp9kCBAK1wMxM0vr4svArkmbFbR0FPCrpMmBH4Adm9mgr8ZdsL5PN6hjcIWsSblv9PUnX4RvTvAZcYGb/agXukL3nccP/2vpGwIlAr8R3M6687S5pB9xG/CAz+6ga7nimjefGzX0Wxk16TsEHbBviduG/xeO990m2+n+rgrcRsmPuP3ApcL+kXfAVjEfxFYAdJd0MPFLLgKXI/UbesgdmLITDb6CQkDQSN0PYBXgTj/u8B+6MuDg+wzXZzB5sUf5cHCrz5g7Zew53RokTHpbxKuBfeBjFPwLXAwYsBvzTzJ4pXdNs2RvFXyTuNMO+g5mdJGlZYHvcifcEYFnc4fY1fMfed6uVN0/ZE+fMZvaFpFnS9f9M8u9sZg9K6g8cku5xlZk9VIPche038pY9MIPBWsD2KFKkShNtA9b58E4se+4k4MetzJ94cnOozJM7ZO+R3BsBlwF/yPCPws0JTgIGtmpbL3i9150bmIDb9x+ejpcDzsbDePbF7fx/iUf26VdLfeco+yL4oPMC4FepDc6FR7D5K7BFKtcfX82oKsQsBe438pY90oyZwuY/UAiU7B3xzWnAnZrGSjo2U+xDPCpEy/FnYWaf4M5aE9Px74F3gZ0k9TGzv5vZG+lcVbOseXKH7D2LW9LCeLz3PwMvAz+TtLiZ/QPYGzf1qdkGP0/ZG8FfQO7ncKfesZKOMrM/40r6MFzhnwRcjofz/LyW+s5DdknjgVvwyDU34m3xTmBl89n9Y4DDJG1pZp8CP7MKzZWK3G80sk8KzHgI5T9QCJiZpaXmP0g6Du94NsadzC6S9D18WbumJc88+UsvceXgUJknd8je87gz91gcOA140MzOx2eHHwGOkLSkuTPoZmb2civJXtR6z4tb0jwlfjObis+SnwksmBkAXIlvynYw8GilinPesmewN3CJmV1kZveZ2dG4qdIRkpY1s+uBk4GjJc2J27hXhCL3G3nLHpixETb/gUJAbs96Kr6sPSe+gclvgd/hTk9f4B3bXS3K/z+HSjwSw83A2niYuk9pc6isaoOdvLlD9p7HnfgHAJfiQR9+YmbvSpoDj7KyLLAN8KnV4FQZz7Qx3JJmw3e+fR2P2X+bmb2clPUl8Ug/L5nZUZKWB6ZUq/jnJXsZ9wXAPWZ2i6R+ZvZ5yt8f3z9gczP7TNKcZvbvKrkL22/kLXtgxkZE+wm0POTOa0sA/zaz30gaBvwXd3iaycwOyJStxSExF/5S2dQZrwh8lzaHyk9xh8rfUINDZZ7cIXvP4y67T28zmyJpZ+AS4EBJJ5nZvyRdCPzKMrvCVsgZz7QJ9QI8gYfu/BC4T9LPSCEyJZ0EHCLpeDM7uEK+hsmeKfsPYAdJ95jZ55L64s7D9wETzENaUoPiX8h+oxGyBwJNdzqIFKmzhC91vorv5PgZsHzKH4Jva34JMH8L8+fmUJknd8je87jL7tMrfQ4ErgYuBOZq1Tovcr3nzL08buozCp/ty4JPagAAIABJREFUvxh4Ft9kawywMrBYK8kODCjJhK8yrYPvQrwP0D9TbnXc9n8w1TtUF7bfyFv2SJHMLJT/SK2b8PjOtwOrpuN9gBeB5dLxUGCeFuZfGF+m3R2PYnErsHg6Nxq4BxjXatwhe8/ipoPdW2kbAAzCHS2riqASz7Tp3CWz3SOBVXF7+1eBnyXei4AFWq3OgbmBJ4FzcXv1pYDvpeOrgNWALdNv2bQG/sL2G3nLHilSKTVdgEiR2ku4bel38GXtszP5e+Hxn1docf7F8ZjMh6bjOfGIGzcCS6a8fq3GHbL3DG5gIeD4zHFHA4De6XOmVqzzotV7I+slc5+d8Nn+l4B9U15fYL5Wq3PaBiw7A58Dp2bkXQr3K7gFX43aIHtNhfyF7Tfylj1SpGyKaD+BloT5tuR34qHr+kjaO+WfhUcpmbmV+XEnvE+ApSXNbW6vejnwDB61YgBu19pq3CF7wbkljcLb9paSrob/7Zrau7xsyu9jZl9J6ivfSKlpsjeBv6jc/4OZXZY4XzSz01Pel2b2djdo6y57xodgPuAdfDfaH0raLck7ycwOMrPNgO3M7K5q7dmL3G80oE8KBP6HiPYTaGkkZWQ9YA3gbTM7KXOu245OefAnh8ppqYO8BJ+1KTlUzgnMamav1Shvbtwhe8/glrQ6bjd8Gq6wTTez72fv1c69BwOnAwdbFbu/xjNtPHfZfXqZ2XRJa+IRmvYEao7hn5fsGcV/E+AgYCcze0nSyriZy09w34V9gH2Bz6yGSFOZ+xWu32gEdyBQQij/gZZHehluDKwJnGC+CVFL82c65YG4vewU4Agz+1crc+fNH7I3hlvSUDP7r6ShuOOgmdnW6dxAM/soc89BwE3AMWb2x2bL3kj+onK3c6+hwP3A1mb2Qh346i57UvTPB35gZs9Kmt3M/iNpCeDadI/jzOzW7sqf7le4fqMR3IEAxCZfgSZC0nySRnZVznxXx9vxzucfrcKfuU975hTTUwf6Ee4wNwx31moZ7rz5Q/bGc2f4/pv53B3oJd8YaCJwsKRBGcX/VuDIShT/eKaN5Zb+t8HWApIW66BMr/ScVyop/pIq7tsb0R4TZgXuBuaXtCdwm6SrgA9wh+XvmNmtpd/cibyF7Tca1ScFAl3CWsDxINKMl/CoBtOAO4AxNVzfqRNYA/hzc6jMkztk73ncVcjwGDAd3zQJfJ+X84BV4pm2FnfZ9Zvi0XGuwTfX+kZUJqBP+hwIzNkKstNmWTAIt1dfBA8POgnYDo9ZfwKwehWche038pY9UqRqUpj9BBoOSTPhEQxmwWeTZsdNDv7eQfmsXfIB+GzI1CbyjwJ+jytST5jZNlmedsr3MbOp8s1r+pjP6jScO2Rvjux510slkLQkPsO/h5ndXrIdljTEzD5oluxFrfecuUtle+Gx+s/Fo8Bsiu/au5qZfZgpX3p/DcJ3f/2JmT3RDNnbuXYzYFvcOfhaPJLNx+abzC2GR/XZzcwerYCrsP1G3rIHAtUizH4CDYeZfYUrIqeY2X54yLfDJI0tX65OHU/pJXgjcG9XL8G8+fFNbi7Dw+H1lnRNuu83Iqqkl/jUxH8hPgvWLO6QvedxV4q5gJ1Lij+gJEOHin+DZM+Tv3Dcctv9uyWNM4/+8gXwAPBD3Cl2czP7UNJKqXyvjOJ/Ex7qs0PFvwH1kr12OeBgYDc8lOeuwGTgC0mr4TsFH1qJ4p/kK2y/0YA+KRCoDtYCyw+RZsxE2mQofb8AuBK3C10J2CxzbjC+2Uyn5gmN5AeGlj6B64BrM+cGZu+Pd5i/p8Ll7Ty5Q/aex11tokrzgXimjeUGjsVNtMbhSvM1wFPA+HR+DTzk5oIZ7seBic2sc8pMg/CNu3bBdwl+DBiV8ocBo2nbMKza9ljkfiNX2SNFqjQ1XYBIM3aizaZU+AYvfwTepW2Dl5mBeyvtkBvNnziGAtfjO2pOTPcZlM4NSves6SWeJ3fI3vO4O7hfyR68XbvuVpK9qPVeb27gUFyhnxuP+HIHcAiwH/A8sFGm7Bq4s2/T6hz3IbgVt+HfIeWtijv4/hkYnfK2xGf8u7W5GQXuN/KWPVKkSlLTBYgUKfMyXBV3iMp2bMOBka3Mn+GqyaGy2dwhe3G4qcCZs6x8qe0PwTcQGtzqdd6K9d4obmDmzPeDgT+ld9RSuM34USWlkDaH2ro4gtYqOzAeeBgfnOwEXJTyB+PmRacAqwCr4bH8N66TvIXtN/KWPVKkrlLTBYgUyczAlz4PAbZIx3WNbNAA/iWBN0sdW6ZjHtLK3CF7cbjxmcI7gOuyeZ2ULykYJROCNVu9zlux3nN+psOA5dP3DYCrgBtwZX8wcCCuWC/QXnuoR313p15wX5LJwK7peDHgadw/YQegH3AEPtt/A0nJrZfsFLjfyFv2SJE6SxHtJ9AykDSrmX1Sckg0d3grBL+k9YGvzOx39ebPkztv/pC9PtxS286ekh4BHjOz/Tspn40WciMex/+hZsjeSvytxJ0iwPwfbtrzZ1xhPhQfBAwG7jGzGyUdl/Im4rv31rzzbb1kz1w3C3AF7sC6K67kgw9izgZ+aWZHpbKDzGxyti3XSfYi9xu5yh4IdIRQ/gO5oZqXvNp2lKzmmlz5a0We98hb/pC9NblLZSRNAPYAvg/cbmbfL+coU/xvAQ43swebJXur8rcCt6SFgK1wB9hPzGyPlL8zsCM+Ez9Z0hjrICxkvVFtvch3oz0LD+l5oZntk/LHA6cD25hHKKq0Tgrbb7RqnxQIlCNCfQbqDkmzASRlpdPdGlP53ta22+iPJfVrJn+1kNSndJ+SXEXgzps/ZO8+d6lsautL4Y6ZFwArAGMlXZnlKFP8b6LOin880/pwK4V3NLMX8Ygv7wBLSFoz5V+Km9MsnY5zU/y7Wy/mcf/3wmP2j8q8k8cAAzLluqqTwvYbrdYnBQJdIZT/QF0haQjwc0nbQtcvwzJl5S7gr2b2eRP55+zqN7bDPzXJdVu6T8O58+YP2ZvCPQw4TtLMKasP8Ccze8rMngOWB1ZTitOur8d8vxHfGKhDxT+eaeO5S0iK38qS1gJmwh157wc2kLSDpEXxHXHfq1KW3GVvD2kAsCcu77WSVsft2U+2zIZknchR2H4jb9kDgVxgLeB4EKnnJHym5/+Ak4HvZPK/4cxEWwjCUhzpLiNi5MkP+TlU5skdsjdH9gbUy5zAgsBIYAFgPnwH13GZMvsAb9EWA34g8CRdxHyPZ9qceslctwLwH9wu/nFgXdwB9BjgZXwWfb1KuBotexcy9Ad+hUcN2rArGTLXFbnfyFX2SJHySE0XIFLPSZnOZG3cPOEevh7CTO2UnZ0KlJW8+cuufQQ4tUJZBnf1Es+TO2Rvjux510vmuuHAvniYzgG4vf+juJ34trhpz7cy5RcGVmhWnRe53htVL8AcwHrAaul4YzwE5nr4KsDxpMFcpalR7bFCWfqX2iSVKf5F7jdylT1SpLxS0wWI1DNSpmNbK3VkW+GmB2dRNhuSeQkOSh1VlzNcDeSfAPwS+Bi4pvx8+p7tOP8IrNos7pC953Fnrvs2PgO8OHB0+t4f+C4+y3gbX1c0elXIG8+0edzr4aE7nwF+Dsya8jcGXgc2LHFXkxr4TBcAFqukbPrep0LewvUbecseKVKeqekCRCp2Sp3BiPRdwJHA/ul4CLA/cDOZrcvTudKMU1czK3nz98l8Xwpfcl8aj1f9JHBlWflsx/mHzjrOPLlD9ubInne9ZK4bi8dFXzQdj8RNQq4C5kp5M5f+FxVyxjNt7jNdDrgcD9l5OHAhsA5pt1tgU6qcgW+U7Bn5ngSuwd+5i7RTpsQ/AJijE67C9ht5yx4pUiNS0wWIVOwE/Dh1an3T8Q64E9PIdDwb8BfctnXulFfxdvd58uMb7JxEmxK1XLazBHoDb5Bm0Egzq1Rgr5knd8jeHNnzrpcMzyzAL4C/AWtl8kek+9+UylQ8QxzPtHnPFFcQBwFP4LH7S/kH4ZGbNiINAErlW+SZluzTewHjgPtwn5Lt8JWLwWXls7PbTwDLdsJd5H4jV9kjRWpEaroAkYqfcBvWv+H2xsPx7dz3x2dIRgG3k2aJUkdyLLBys/nJ16EyN+6QvedxZ65fElfy58OVh2P5uk3/SGBsDf/ReKaN51bZ5+qJZ+9MmSOBS4FhrfRMgaG4sj8u0+4Oxf1PHiPtOAyslD7LBxaVtJlC9huNkD1SpLxT0wWIVOyEOzotBpyI71I5ClgROC51Mk8Cm5ZdM0sL8dfdobIR3CF7z+GmTTlcDDepuAdX5EYBp+ImIhPq8F+NZ9r4Z7p6en5bAPPi4VmfAvbIlF2wFZ8prrA+hs/6901t8ynaBhJr4CsAC6bjQXjkokoU/8L2G3nLHilSI1LTBYhU3ITPUt4ELJeOj0ydQ6kzGAnMn76Xti9vJf5cHCrz5g7ZeyT3xsCfUhu/Ed+Zd1RK5+D2/rN1478az7Tx3GsDLwDfA14BDkn5KwIvAvvU+jwb8UzTNYfiCv3cwJp4KNFDgP2A58v41yCtBHTBWdh+I2/ZI0VqVGq6AJGKmXB70+eBq8ryDwNeAxZucf66O1Q2gjtk75Hcwp0/v52OR+GRYG7Gla6xtONc2QqyF7zec+FOz7MfvmqzOLAMbgM+TzrfB3f6rdnxswHPdObM94Pxgelw3Kl4L3xTstWz/JXchwL3G3nLHilSI1Ps8BuoGKVdCyUNMLP38WXPjSRtWipjZsfg29UPazX+zH1mAXbHd9CcK/G+gYfIewc4L5WZms5ZK3CH7D2PO4Oh+EwuZvYPfLZ1OP4f+NjM/lYDZzzTBnKX3l/m+BwP3XkKcD6wsZm9I2kLPMzjw2b2cKXyNkD2YZKWT983AC6WdIOkpYDz8Nnum4EPzewsMzvCzP6Y5ejoPkXuNxrVJwUCDUezRx+RipFom91ZDp/9WCUdfw+PcbxJR9e0An/mmlwcKvPmDtl7HnfZfRbCTSp+ko6XxpXGS6lx59V4po3jpu39tTEeqakPHrP/j8B26dxSuBnQt1upzvGNxQ4CzsT9BB7BTXhOwQcU30nljsNXMGalwkhTFLjfyFv2SJGamUqNOxDoEpLWxR3XFsUdxzYxs0fSbNZpwL5mdkur8UuSmZmkxXB71SHAj/AO+qfAR8BtZvZ0K3GH7D2LW1JvM5vW0TlgFVyhewF3DF0P2AV4ycwubKbsjeAvKnfmHhvipjc/N7N7JfXFTWTGAOPxSDtHmdltLSj7QriT8GjgEzPbI+XvDOyIr1xMljTGzP5eJXch+41GyB4INAth9hOoCJLmx192V5nZROAI4DeSJprZTfjM0X9bkT91nBsDFwMvAZ/gTpSkzzmA70iarZW4Q/aew52Uq6Mlje7gntPMzSgm4rbiqwCzA+vioRObJnuj+IvKDSCpF7A+8DPgKUmb4DPnk/ABwb7AlmZ2W8mUpBVkT3JjZi/ipivvAEtIWjPlXwpMxleiqEHxL2y/kbfsgUBT0eylh0jFSPimQpfiy8qlmM5nAv8h4+hEjcueefKTo0Nlntwhe8/gTnzHAl/icdfbdQwkE40Ft+e+GliiVeqlaPWeNzeZd1HiPwG4Djf1ORJ3yL2o1rpu4DNdGVgLD+k5Mz5YORXfvGpR4FUypkVVche538hV9kiRmpli5j9QKXrjy9Zbm9n0lHcjHuf5JknDoGZnx0bw5+JQ2QDuvPlD9py5U5t9AHgZ+BawlqRx7ZSbnsx/wJ1F9zGzZ5opexP4C8NtZiZpDUnb4GZah+Gz8z81syPx+P6LSJq3GzLnInsJklbAQ4JuhkcKWj1xfoabGB2C70nw1xrlLnK/kbfsgUDTEMp/oEskm9OPgQPx5eUzJB0DnA78BDdL6Neq/OnlfBiwmKSfpOzJuNPWNNyWs+W48+YP2fPlljRQHnUFM7sPd+jtj4d+3ELS2LLyvc1smqTZ8ZnXr5olezP4i8JdGqBJWga4Ao/bfwiwn5ndZ2bPyaPB/AY4ycz+Wavc9ZY9yV2KYDMHMBjYwsz2xFenSiZnR+MrF0eZ2T21yF3kfiNv2QOBZiOU/8D/0JEtaprh6mVmr+HOT88BnwPb48vOq5HCyjWZv3cnp1/BO7bdJV2Ph647C/gQXzZvGnfI3iO55wH+DvxS0o4p+ybgrsQzHh8AjE/leyXFfxBwPXCDmX3QDNnz5i8w93BJQ9NzWhV3kN0+Kc5HAitLOiwVXwBfubm9K95GyJ65R8l5eL3EcRKwkqRZk6wH41Gm1gEOM7OXKuFsL78I/UbesgcCLYs8bIkiFS/hsxgT0/eFgZXbKdOr7HgFvFNarAX4F8JD0Y3uotwgPHTbCNy58nlgTLO4Q/aex53hvxH4Le6kuR/uDPo4sFLiuxZXtmZN1wzGZxRXaQHZC1fvOXMvDNwNLJOO9wWmADuk4z54KM/fAQd2VceNfqZlHMsBl6frD8f9CdYB+qXzm3bVBjNche038pY9UqRWTk0XIFJrJGAePKzgLbhtcoedECnGMx5lYmiz+cnRoTJP7pC9R3LPlvm+MLA/Hr5zL2Br4APg9HR+cWDx9H0m3Mxi1XimLcc9Dt/hdrey/D1w5bu0y25vPCrOMl3VcyOfadl9BgFPAPdk8g8CLgA2Ig0ASuUr4Cxyv5Gr7JEitXIKs58AAGb2Dr6suQnwhJm9Dm2h4ErI2CUPBLbBl52bym9mRk4OlXlyh+w9i1sezvNOSWdK2tPMXgAeA97HI7TchZsLXJFMCp41s2fTvb7ClcsHmyF7I/iLyC1pFPBn4Hgzu0BSX0m/lLS0mZ2LO8n+WtIS5uFanzKzJzuTtVGyZ37D/0xbzGwycACwqKS9U96JwL9w85bZMmWtAtmL3G/kKnsg0MoI5X8GR8b5a2HgGnz3wuclnSxp3tThDFVCegkOxiNEPG5tURAazq8cHSrz5A7ZmyN7ztwL45FefoPHdv9Wus8juA3/dNwp9L9m9nS2XZf+I2b2fjNkb0DdFJI74aP0OSZ9/gb4ysyeSvc8MeXdoCrj7DdA9qyN/+rAYfLNqV4BvgtsL2mPdP8jgeM6a4PlvOmziP1GrrIHAoWA1XEZIVIxE7AB7py4VDpeGd+g5ni8kzgXmDOdG4zbMVdkE5oXP75k+/+AXwE7przlgO1w29vLcBvr8elcKU7zINyueo1mcIfszZE9Z+7BwD+AM9LxUDw2+lF47PeZgQWBM1LqRxWxweOZNoV7AWDb9H1O4A18Q6fDysqNTp8jKn2ejXimZfdaG981+nu44n9Iyl8ReBFfQZgh+o1GyR4pUqunpgsQqckNwO2SX6LN9ngOPLbxcrgz2Iv4lubgs1L3Aqs1m5/8HSpz4Q7ZexY3biaxILAnbgKySrrP5bgN9WXArfgq63LAuBr+o/FMG889EQ+nuV06HoYrzsdkyqwKPEwNG2Dl/UxTeeEDzVNx/5JlgL8A86TzfdLvnFiD/IXsNxohe6RIRUhNFyBSkx58mnlML7xLaIvt/GfcbGHhdH6OzDVjgLHN5CdHh8o8uUP25sieM/d4XLH/Od6+9wTexcN0lsrMB/waGFjDfzSeaXPqpU/63AGf8f9hOp4TeBOPub8A8CSwUSs901RWZcd74ArsE8B8KW+LamXPclOwfqMRskeKVKRU+jMEZhBkbECH4h0N+BbmQ3Hb5Bvx5c8XzezcUvlW4Jc7VF4IPA383czOlrQyvvPlIDzW9ih8lvVZK7PNlDTMOrBpzZM7ZG+O7DlzL4Jv8HQRcL2ZTZbUF/ghbmZxkpk9LmkN3NRnIzN7qz2uRsvegLopJHdZuQ3xOP7gSvmeZnahpDnxCD9DgQ3N7O5K32GNkD3z/t0YWAPfpGpd3Mn3EjO7StJS+IB0TzP7XVdyl/EWsd/IVfZAoIgI5X8GhHyDl8Nwu+QpZrZH5tzieMewm7mzYkvwJ+esX+JL4VPwmMw/zpz7Ib7b5dlm9nbZtZ2+zPPkDtmbI3vO3APw8IBXm9klmfxtgOHAW7h99WPp83gzu7MjvkbKnjd/Ubmz5XCl8G7gUDP7raTVcKfew9IAYBiwiHURmanRsmfKbwgcA/zczO5Ng9K98Fns8biJy1FmdlulnIm3cP1Go2QPBAoHa4Hlh0iNS3gUkueAtXC70luB+9O5FfHlz01aiZ8cHSrz5A7Zex534uuDz/oPyuTtBPwVtws/Bd8J9CPabIdbRfZC1nve9dLO/S7GzUNK8d13xSM2/SBTRpXco5Gy46sG5+CrT8PwMJZnAmsC8wITgAWqaZOpbOH6jUbJHilSEVOE+pzxMA3+f3v3HixZVd1x/PuDAYeH8rgijgpCEkWNIg81AR+AhCgSAgjCoBIsAS2jaA1FqbwiIj6gUIpI5FWaRCWoxNcERCnGGh4BnHEAByQVY0CJGF7iBIUggr/8sXZDBwfm3pk+93b3/X2qTs3t0+euXrd76uzd5+y9NlfZXmT7Ntv7APdLmk9NNvsr2wvbFbAZj68qnzcBfBKYkPRq6graldQY1mdSt25vpRa9+YztB21P5ipfZ7GT+/jFbvFFTfLdgaoQ0tu3PlXD/1XUKqA3UAswLZzCVed8pjPzvvRKP24h6Tlt993AO6gvegDLqKv/jw7dcjOTuffn30uLurNwODVHYAeq0z/f9u2uMrO39PKf7GswYu3GNOceMXLmrPqQGGUr6Xg8ALxWtUjNsrZvKbCua4zpTTD5hqHL+JK2AU6lVte8qu3+CvCvtt/WjrkBOIWaSLdkMjl3HTu5j1/snvb/doWkM4EDJN1h+zpJZ7vqge9ELQL0c0+yZvp05D6q7/t0faZtqMzJwLL2BeBNVGf8c5Luoa4av932kil8mes89778dwPmAbdQw1t2A/7b9k2q+SnnqmrY3z6ZmCPebnSae8RY8BDcfsjWzcZjczr+nJqYeBqwPfB6atXRN1ON3HJg12GKTy1fv5Rafn2jtm9d4F3A14A/aft2A34AbDEMsZP7+MV+gtfbDPgocDY1pKJXNnEZsOewvOej/L5P12dKDQu5mhoSMh/4SdsvYE/gbQzR+avvNXpDkl5GVSH6NPAvwPv7jtmHmqC89xTijnK70Wnu2bKNy5YJv2NO0muoMaCfpIYmnAzsTXVWDqSqTFxg+1vDEl8dTqjsMnZyH7/Yq3jdzVu8d1EduK2BT9j+xhRi5DOd5tgtzqNXhyVtRQ3ZepiaGHuw7Vsk7WT7msnGnMbcNwMesX1vO//uDVxse7GkHala9d+3/RFJC4CbXCsIT+VvGLl2Y7pyjxgLM/3tI9tgN+pWZv/jw6mqFb3Hu1KrPc5rj3srR0524l2n8duxXU6o7Cx2ch+/2JN8/c2pyZXPHqb3fJTf965i085H7efdgf15bELojbTzG3UX57tQK/hO8f9Dl+/LC6lKRC9rjxdQY/wP7XvtHYDL6LsDMIm4I9tudJ17tmzjuGXC7xhpY0zPl3SspN3b7jnAjr1jbC8GrqAmLeJWS9r2ZMZSdhq/vUaXEyo7i53cxy/2ZNm+0/Y9buOph+E97zr+KMZuV8yPkfSMtutPgYdt30gt9jQP2FfSe4CzqOo8t64q3+nIvcV5Pm3FaNvfB7B9OvBB4P2S/tj2w9RdqA9QX14mk/PIthvT0SZFjKN0/seEagGZz1PjTOdRYxyxfTawqaQLJPWqTbySKic3NPF7XFZQt20PkLRDO0mfbfteamXN3oTKKTXMXcZO7uMXu2v5TKc99vOoyjdHStqI6iROtNf8CjV8a7sWf4FXowJMV7m3oUlLqCFCZ0taV9J5qkmsfwd8geoEv9T2I7aXuX1BWEXckW03pqtNihhLHoLbD9nWbKPKxd1Ku9VJNXLLqMbsL9q+86kT5feY+pL0ncZ/gtcc2ITK6Yyd3McvdtdbPtNuY9M3vAPYGTidWk33NGoC6FpUrf2nDetnSq0NsAI4qj3+JlUWtP+Y46hhRRtOMubIthtd554t27hvmfA7BlQrRB5FLRzzz9RCMfdTt39fClxn+xRJ61MNw11THD7Qafwned01nlA5E7G7jp/cpz921/KZdhe7dy6S9GKqw7gjsC813n9D4OvUWPqNgf1s/2hN8x5g7n8A7GT7/BZvCfBU4HTbH+k7bmvbt0ra0vZtk4w9su3GTLVJEeMinf8Rplpmfq7tn0najiph9hZgke3DJK1F3Qrdz/YRwxZ/CnlsTi3U8hTbtw/yJN5l7K7jJ/fpj921fKbdxJb0emoc//6udRl2pirAbAQca3uFpAnbvxhEvoPKXdKrgIuB99j+QjsnXwN8yfYJ7ZjXAB8D3uWav7CqmCPbbgxLmxQx6rLI14hSTXQ6F/iOpMW2r24nvo2AX6kt6NL2bSNpU9eY06GIPxW273zc44FO1uwqdtfxk/v0x+5aPtPBx5a0JfAJaiXX69rvXy1pHarz+EFJJ1DDagZudXOXNMf2VZLeC5wsaV3bn21fCJZKeoga2vIp4MRJdvxHtt0YpjYpYtTlyv8Iarc8v0Sd9L9o+5HHPXco8BvgZqoU3EmeWp39TuNHREwXSc8FTrP9pvZ4ru0HW+d/B+A+2/82o0k+AdXKwwe1h/OBI22f0+4m/JCaC7CX7UtWdUdhlNuNtEkRg5XO/4iRNAf4IrVE/Kf79r8N2JYq8fZc6gT4ZuAQ2xdNYSxlp/EjIrrUOxe1K+cPS5oLXEUtuvWpdswe1Oq9R7uVfhwmkkR17C+hJrVeKmkX4ELghPYF4OnAi2xfMYl4I9tupE2KGLyU+hwhktZ31XGeAyzq238o8D6qwsQF1KS2s4FdpngC7zR+RESX+jr+ewAfax3EdYF3A7tIOkvSAdRCW5cPY8cfHi0Z+gtgObBC0tq2LwdOAM6S9FbX2hJXqHmiWKPcbqRNiuhGOv8joJ3bNwEWt6s9/0NVq+j5CbCP7UOo1R5fYPtG28thUguldBo/ImI6tI7/64D6SMlVAAAINklEQVQzgMVU+cuTAAHvpdq8bYFjbH/zyTrN062Xi6QtJD2n7b4beAePzc9bRl39/6/e77UvCr93Dh7ldiNtUkS30vkfcr0rGLZ/SZU1ew5V43nL1shh+3Lbt6kmgv0hNfZxKOJHREwXVWnHQ4ADgAepc9VGwGHA2rbfaftvJjNGfrq1Ly57AQuBEyV9m6risznwOUlnAP8AfNL25au42j+y7UbapIjupfM//Dbs+/nXwBuAbwP3APtIep+kLfVYKbuP2v7xEMWPiOiEpA0kvbz9/FrgWdQQn/uBD1M1/T8I7AMc0a4mA8N3dVjSS6g7FfsAl1FXs38F/CU15v16quTnElhl/qPcbqRNiuhYJvwOMUkbAldSC7usAO4CtrJ9pKSnAG8Edgf+iGrszrX9zWGJHxHRFUnzqJVePwLcB7wEOML2tZJeRHWYdwbmUcOAju8NCxkW/XcfJG0F7AI8TA1ROtj2LZJ2sn3NFGKObLuRNilieqTzP+QkvRTYADgYmEvdvj4fuAP4LnAD8Fvgftv/O9Vb2V3Hj4gYNEkvoFbmfTuwBXAO8HXbb5e0lu3fSfpb4BXUyr0LbF8ycxn/f70c28+7Uzn+iJq8amBH2w+1YS0nAYfZvnUK8Ue23UibFNG9dP5HiKq284XA0dTS9JtQt7X38ySXdJ/J+BERa6pdIb8ION216NXWVNWX84DzbZ/ajpsAJoANbF8/Q+n+HkmbUZN4z7N9l6TjgJvaBOQDgc8Afw08A3gncJzthWvweiPbbqRNiuhGVvgdAX0ToO6UdDfwLNsfaM89y/bPhzl+RMQA7QYsah1/URN6Nwa+DCyQdC/wU+BYagGsB2Yu1ZV6HvBs4EhJp1Ht8ASA7a9IMrA9ddV7ge3LVufq9ii3G2mTIrqVzv8IaFUgeif/G4Bt+p6+Y9jjR0QM0C3A4a3yy0HAesB2wNeo6jDzgYeAM4ep49/Xob26Fep5E7Uw1YbAg5LWAtYBvmP7wv7fXZ1hLaPcbqRNiuhWqv2MiL6T/xJgZ0lPbSfHgSxS03X8iIgBWUoNBTkFeBo1TGZn4KvANcCBwJttf7XdGRgqkl4M/ICas/A06kvAp4FzqTHt10h6/iBea5TbjbRJEd3JmP8Ro1rwZHPbPxzF+BERgyBpU9v39j3eFfg4sK/tO2cssSfRV55yf9vXSdoZ2JsaunSs7RWSJlyr+w7ydUe23UibFDF46fxHRMTIkrQOsAfV8T/W9sUznNJKSdqSWsDrSNtX9u3fhbr6/2vgBOB3th+ZmSwjYjbImP+IiBhJreP/CuAoqo7/UHb8GwH/0ev4S5pr+0Hgamo14vts/3YmE4yI2SFX/iMiYmS1LwATtu8YpprvvVwkzbH9sKS5wFXAP9n+VDtmD2BP4OiMZY+I6ZLOf0RExAD1dfz3oIYk3UxVI3ohVYL058Ai4HjgQ84qtRExjVLtJyIiYoBax/91wBnAYuA4aqVeAe+l2t5tgWPa4l5DV5UoIsZXxvxHREQMkKT1gUOAA4BnAr+hKvocBnzc9jv7jh2aoUoRMTtk2E9ERMQakLQB8CLbSyW9FrgNuJtaefiLwJ+1n28EPgucavuXM5VvRMxuufIfERGxmiTNo67uf0jSfcBLgCNs/1jSs4ENqOE+6wPXAhek4x8RMylj/iMiIlaDpBdQq/LOBT5PVe5ZavtaSWvZvpmq8LMYuAQ4y/bymco3IgIy7CciImLKJG0FXAScbvuzkrYGNgPOA863fWo7bgKYADawff0MpRsR8agM+4mIiJi63YBFreMvakLvxsCXgQWS7gV+SpX23Mv2AzOXakTEY9L5j4iImLpbgMNbSc+DgPWA7ah6/v8JzAceAs5Mxz8ihkk6/xEREVO3FLgQOAX4MVXT/yZga2Bd4OPA72yvSDnPiBgmGfMfERGxmiRtavvevse7Uh3/fW3fOWOJRUQ8gVT7iYiIWE29jr+kdSS9gboDcHI6/hExrNL5j4iIWAOS1gFeARwFHG/74hlOKSLiCWXYT0RExBpqXwAmbN+RMf4RMczS+Y+IiIiImCUy7CciIiIiYpZI5z8iIiIiYpZI5z8iIiIiYpZI5z8iIiIiYpZI5z8iItaYJEv6Qt/jOZLulnTRFOP8RNLTV+eYJ9l/oqSjp5JHRMS4Suc/IiIG4X7gxZLWa4/3AG6fwXwiImIl0vmPiIhBuQTYq/18MHBB7wlJm0r6hqTlkq6VtG3bPyHpUknXSzoHUN/vvFXSEkk3SDpH0tqTTUTScZL+XdJlwDYD+esiIsZAOv8RETEoXwLmS5oLbAt8r++5DwPX294WOBb4fNv/IeAq29sDC4EtASS9EDgIeKXt7YBHgLdMJglJOwLzge2BNwIvX8O/KyJibMyZ6QQiImI82F4uaSvqqv+3Hvf0q4D923HfbVf8NwJeQ3XQsX2xpF+243cHdgSWSgJYD7hrkqm8Gvi67QcAJC1c3b8pImLcpPMfERGDtBA4DdgVmOjbr5Uc68f920/AP9o+ZjXzyPL1ERErkWE/ERExSJ8DTrJ94+P2X0EbtiNpV+Ae2/c9bv+ewCbt+EXAAZKe0Z7bVNJzJ5nDFcB+ktaT9FRg7zX4eyIixkqu/EdExMDY/hlwxkqeOhH4e0nLgQeAQ9v+DwMXSLoOuBy4rcW5WdLxwKWS1gJ+C7wb+OkkcrhO0peBG9rxV67RHxURMUZk585oRERERMRskGE/ERERERGzRDr/ERERERGzRDr/ERERERGzRDr/ERERERGzRDr/ERERERGzRDr/ERERERGzRDr/ERERERGzxP8B+mvlq3Z7gYwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
SHAP summary plot shows the contribution of the features for each instance (row of data). The sum of the feature contributions and the bias term is equal to the raw prediction of the model, i.e., prediction before applying inverse link function." + ], + "text/markdown": [ + "\n", + "> SHAP summary plot shows the contribution of the features for each instance (row of data). The sum of the feature contributions and the bias term is equal to the raw prediction of the model, i.e., prediction before applying inverse link function." + ], + "text/plain": [ + "\n", + "> SHAP summary plot shows the contribution of the features for each instance (row of data). The sum of the feature contributions and the bias term is equal to the raw prediction of the model, i.e., prediction before applying inverse link function." + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCAAAAKACAYAAABNIAmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZxdZX348c/3nLvPPpN9IwlhCwiIKCiLUasiVNG6UwW0Wtu6tbVV27pW7a/WpbXuWhUR91YFBVRAQRbZww7Z92SSzGT2u53l+/vjOXdy585MFpJJQvi+X6/7grlne86a+3yf7/McUVWMMcYYY4wxxhhjppJ3uAtgjDHGGGOMMcaYo58FIIwxxhhjjDHGGDPlLABhjDHGGGOMMcaYKWcBCGOMMcYYY4wxxkw5C0AYY4wxxhhjjDFmylkAwhhjjDHGGGOMMVPOAhDGGGPGEJHLReS2g7i+V4nIJhEZFpFnHqz1Hi1E5FERWTbJtGUisvkQF8mYpzUR+ZiIXLWP894sIm+b6jIZY8zRwgIQxphDSkTOFZE7RGRARHaJyO0i8uxk2oQVXxFZLyJ/0vDdMhFREXl/w/cLk++Hk896EfngHsrzFyLyhIgMich2EblWRFoO1v4e7fbxx/dngXeparOqLj9I21yWVBI+Vvd9i4h8PjnnIyKyUUT+V0SeUzePJtOGRaRHRH4oIu0N61YROa1hm79Ivl92oOVvpKonq+rNB3u9ACLyLhG5V0QqInLFfi67SERiEfnKfi63XwGsZH4Vkc83fP/K5Psrkr9r93ZqP9Z9mYjcJyKDIrJZRP6jfnkR6RSRnyfXxAYRuaRu2tkickPynNopIj8Vkdl1018gIr9PnmXrJ9j2wmR6MXnGND7DpovID0SkX0T6ROT7ddOyIvLtpNzdIvL3ddPOq3u+1T4qIq/ey7E4RUR+k1z3Osk8bxCRx5PjsUZEzku+X5pcR33J50YRWVq3nIjIp0WkN/n8h4jIvhwLEblIRG5LjkO3iHzzaHsGJ8+ruOGcXdYwz5+IyP3Jsd8kIq9Lvl9Yu77EPdsWHvIdMMaYg8gCEMaYQ0ZEWoFfAV8EOoG5wMeBypNY3WXAruS/E2lX1WbgjcBHROSCCcrzfODfgDeqagtwEvCTJ1GWw2p/KmSHyTHAo09mQRHx93G+LPA74BnAnwKtuPP5I+DChtlPS66NxUAH8LGG6SuBS+vW3QWcDezc/z3YY5kPxXnbCnwS+PaTWPZSoA94Q3J8p9Ia4PUNx+RS3Lk4EAXgb4FpwFnAi4B/qJv+ZaAKzAT+HPiqiJycTOsAvgEsxF3DQ8B36pYdwR3Xf5xk2z8ElgNdwL8A/ysi0+um/wzoTtY9Axeoq/kYcFwy7QXA+2vPMFW9NQnmNSfX8Z8Cw8Cv93IsAtzz7S8mmigiLwY+DbwFaAHOB9Ymk7cCr8E9t6cB1+DurZq/BF4JnAacmpTpHft4LNpw1+gc3D07D/jMXvblqWhr/XlT1e/WJiTBnB/gjk0bcDpw32EqpzHGTCkLQBhjDqXjAVT1h6oaqWpJVX+rqg/tz0pEpID7MfxO4DgROXOyeVX1j7jK7ykTTH428Mdaq7yq7lLV76rqULKdMa37jS27Savj34jIKnEZFJ8QkWNF5I9Jy+VPRCSTzLssaYF9v4jsEJFt4lp4LxSRlUkr6z/Xrfs5yXr6k3m/VFtX3bbfKSKrgFUi8mUR+VzDcfqliPztJMdQReQ9IrI2aRH9jIhM+G+CiDxPRO4R19J7j4g8L/n+U8B5wJeSFr0vNSyXFZFhwAceFJE1yfcnJce2X1z3g1fULXOFiHxVRK4TkRFc5WtfvBlXcXmlqj6SXF8jqvq/qvqxiRZQ1UFcRWppw6Tv4yrDteDHG4Gf4yqqeyQieRH5btJK/HhyvjfXTV8vIh8QkYeAERFJSV2GT7L8Fcnyj+Gu0SdNVX+mqr8Aep/E4pcCH8JVXF9etw/jMhFq94qInAR8DXhuck30J9PbRORKcZkEG0TkQw3XWzfwMPDSZP5O4Hm48/OkqepXkwp7VVW34M7tOck2moBXAx9W1WFVvS3Z3puTZa9X1Z+q6qCqFoEv1ZZNpt+tqt9jdyV9lIgcD5wBfDR5zv1fsn+vTqa/BJgP/KOqDqhq0JAddCnwCVXtU9XHgW8Cl0+ym5cB/6uqI3s5FitU9VtMHgz8OPCvqnqnqsaquiU5Zqhqv6quV1UFBIiAJQ1l+Jyqbk6W+VytvHs7Fqr6A1X9taoWVbUv2ddz2IvkmvukuIy64eR51yUi30+ev/dIXbbAZM+xZNoiEbkleY7fgAuy1G/r7GQ7/SLyoBz8TKgPAV9PrrlQVXtVdc1B3oYxxhwRLABhjDmUVgJRUkF7mYh0PMn1vBrX4vdT4DfUtVbXE+cc4GRc61uju4CXisjHReQceXKtvBcAz8K1kL8f12L657jKxSm4ymvNLCCHy/z4CO6H9puS5c/DZWosTuaNgL/D/RB+Lq7l9m8atv1KXKvuUuC7wBtrlToRmZYs88M9lP1VwJm4ysHFwFsbZ0gqgtcC/41rvfw8cK2IdKnqvwC3srt7xbvql1XVStJCCy7r4FgRSQO/BH6La/V9N/B9ETmhbtFLgE/hWmHHpfKr6jJVvVlVP1YXXPgT4Dd7q4Q17FsH7hje2TBpK/AY8JLk70uBK/dxtR/FtZgvBl6MO7+N3ghchMvSCSdY/tjk81Imz/CZUuJS7+fhWrl/wiT3WKOksvxXuMBes6rWurd8Edeyuxh4frK+tzQsfmXddt4AXM2Ty47ak/PZXQE/HohUtT7L4kHc82Jvy+7NycDaWjBzgnWfDawAviuuy8I94jKyatflnGT+PZZLdgdjv9s4bX8kwbYzgekislpcsPRLIpJvmK8fKOPO57/VTTp5D+Xd27FotD/H+Q24gNFc3D3zR1yWSifwOO5+2uNzLFnPD3AZB9OAT1B334nI3GTZTybr/Qfg/2RsNsu+mCGum986EfnPJABWc3ayrYfFBZyvSspMEvhZmPz/QlVdv5/bNcaYI4oFIIwxh0zS4nwuoLjK904RuUZEZtbNdnbSyjT6ARY0rOoy4MeqGuF+OL4xqdjW68F10fgf4IOqetME5bkV+DNcBfxaoFfcGAL7lPaf+HTSQvoo8AjwW1Vdq6oDwPVA/aCLAfApVQ1wFbtpwBdUdShZ/lFc+jKqel/SEhkmPzi/jqu41ft/SdZGSVXvBgZwQQdwP8xvVtXteyn7LlXdCPwXY4MlNRcBq1T1e0lZfgg8QV2L+H46G2gG/j1plf4drltO/bavVtXbk1bY8j6udxquFR0AETk9uX4GRWRFw7z3J9dVD+7a+voE67sSuDQJjLQnmTT74nXAvyUt15txFZ5G/62qm1S1NMnyn0rOy6ZJlj8ULgOuT1qkfwC8TERmPJkVJffT64F/Sq719bgW8jc3zPpzYJmItLF/QZ99LcdbcJXsWleHZtw9U28AF/hqXPZUXNBwsu4Wjfa27nm4ANfvcYHJzwFXJ4HD5rr591guXDC2B7hlH8s1mZlAGhfMOA/XBeCZuJb5UUlAqQ14F2ODuo37OwA0i4hMMK02faLj/GLctfeRfSz3d1R1Td3zdo2q3pgE9n7K7ufvpM8xEVmAyzT6cBI0/QMuSFrzJuA6Vb0ueSbdANzL+K5de/IE7pjOBl6ICzrXj3kyD3c/vBrX9SaPC/IYY8xRxwIQxphDSlUfV9XLVXUeLkNgDq7yW3OnqrbXf4CNtYkiMh+Xll8bsO1qXFbBRQ2bmqaqHap6kqpOWolLUl5fjmvZuhiXNrw/I5rXV/BLE/zdXPd3bxI0qU2baPlmcGnLIvIrcYOyDeJaG8ekBQObGv7+Lrtb3N8EfG8vZa9ffgPuXDSak0yjYd65e1n3ZOYAm1Q13sP6GvdrX/TiftwDoKoPJNfOnwGNmS1nJNNywFeBW0Uk1zDPz3AVhXez9+NYbw5jyz/Rvuxp/xqXbzz2Uy5p9X4tyT2WBF824jJTnoxpQIax+zLuGkoCMtfiKr3TVPX2J7m9cUTklcC/Ay9T1Z7k62HcWCH1WnFjPdQvuwRXuX1vErTcF3tbdwlYr6rfSrpf/Ah33s9JlqVh+XHlSlwGXJl0jTgQtefRF1V1W3KMPs8Elewky+hrwJV1QanG/W0FhpNy7etxPhsX7HpNQ1bKnuzr83dPz7E5QF9D9lT9vMcAr20Iip9L3fNmb1S1W1UfSwIY63DZcq9pKOt3VHWlqg7jnvf7E+AwxpinDAtAGGMOG1V9AriCicdnmMybcc+uX4pIN67/dY59TBHfQ1niJEvid3XlGcENYlcz60C2sZ++ims1O05VW4F/xvW9rtdY6bgKuFjcGxxOAn6xl23Mr/v/BbiuB4224n6A0zDvlknKsDdbgfkN/f/r1/dk1glwE/CShrTmPUoyUf4HWETDNaiuz//1wF+zfwGIbbjWzJr5E8yzp/3bxvjzcqi9CldB/EoSAOvGVdRq91itojbZvdG4fz247J/666jxnNdcCbyP/TvmeyRu8MZvAi9X1YfrJq0EUiJyXN13p1GX/i8ixwA34sZj2J8yPQoslrFvc6hf90NMch0kWSfbkvknLFdStvnAMg5Cpkiyzc2TlWkCHu7814JIjzJ5efd2LBD3et5rgLdOlK12EOzpObYN6Gh4dtTfd5uA7zUExptU9d8PoDy1sTRqJr0ejDHmaGMBCGPMISMiJ4rI+0RkXvL3fFzqfWMf/D25FDdY2ul1n1cDF9X1593X8lws7rVzHcl4Ec/BdXOolecB4M9EpJC0gk44evwUaQEGgWERORFXEd6jJOX/Hlzl7f8mSfGv94/Jvs8H3gv8eIJ5rgOOF5FLxA2Y+HrcmBO/SqZvx/Xr31d34Sqw7xeRdDKY28sZO6L+k3ElriLxc3GvG/STrIZJByhNuga8Bdf6OG4gQVzQ5/n72ef6J8A/Jcd1Li5VfX/ULz8Pl4HxpCXnLIcbCNQXkZzs/e0bl+He7vAMdt9j5wCni8gzVHUnruL2puQ4vxXX/75mOzBPkkFTk6yfnwCfEveq1GOAv8cFzBrdghs7Y0/p59lkP2qfSX/LiMgLcZkcr066KY1KWrx/BvyriDSJGy/mYpLgR3L+fgd8WVW/NsG6veTYpt2fkqvb55W458dHk+9fhete9X/J4j/HVXovS47ha3CV+VrWx5XAh5Lr4ETg7bhgbb03A3foPg5WmDzjcrhsFJJy1WcHfQd4t4jMEDcOxd+S3Oci8mIReWZS1lZcdkQfbpyFWnn/XkTmisgcXBDpin05FiJyCu4NHu9W1fquDwfTpM8xVd2A61LxcRHJiMi5jO1idhWuq8ZLa88VcYMKzxu/mYkl8y9IzsF8XDbO1XWzfAd4i4gsFjeuxwfY/Yw1xpijigUgjDGH0hBu0MS7xL3h4E7cuAnv25eFkxTdhbgKQXfd5xpgNROPYbAnfbgf9qtwlf2rgM+oaq17x3/i3nywHde94fsTrWSK/AMu5X0I13o7UXBgIt/FVRz3pbX2atzAaw/gUt+/1TiDqvbiXqn3Plw3h/cDf1qXxv4F4DXi3tqw1/EKVLUKvAJ4Ga5l/CvApUk2zJOWjBXxAtzgkdfizucKXN/u1zXM/qC4t3P04Srbr1LVXROsc6u6NyPsj3/FtSSvw7Wc/y/7N5Dix3Hp3+twA3UeaCbAh3ABlg/iuuWUaOjXXy+pdL8I+K+Ge+w+XCWxNjjf23HjIfTiBhO8o241v8O1bneLSO06eTcu8LQWN7DoD5jg1aDq3DTR+agznOxH7fPCPcz7YdyYBdeJe1PCsIhcXzf9b3D97XfgBmz9a3XjsYDrirUYV3GuLTtct+z5yfavw7WYl3DnrOYNuABYH67C+ZokeEOyf6/A3ecDuPNzcd199VHcq0k34IIyn1HVxtdsXsr+DT55TFLG2v6VcPdIzSdwAcyVuMDCctxgsADtuOMzkJRrCXBB3RgtX8eNm/Aw7pl+LWPHVpn0WOCeLdOBb9Ud5yf12t7J7MNz7BLcv027cMf+yrplN+ECU/+MexXvJty1vz+/oc/ADZA5grtXHgHeU7eNbyfbvAt3ziv1040x5mgiB95t0BhjzJFCRM7HBVIWNoyz0Dif4rp3rD5khXsaEpG/Bt6gqo0DiBpjjDHGPO1YBoQxxhwlxL0J5L3A/+wp+GCmjojMFvdKV0/cGzTeh0u3N8YYY4x52rMAhDHGHAVE5CSgHzcy+3/tZXZzAETk+vqU/LrPP+P6138d13Xmd7huLl85CNtcMMk24+Qz0bRJB7AUkX+eZJnrJ1vmSLWX8/G0crQdi0n2ZVhEzjvcZWskIl+bpKzjxg8xxphDSUS+LSI7ROSRSaaLiPy3iKwWkYdE5IwpLY91wTDGGGOMMcYYY44+SffcYdxrm8e9eU5ELsSN1XQhbjycL6jqWVNVHsuAMMYYY4wxxhhjjkKq+gfcILuTuRgXnFBVvRNoF5HZU1Wevb2Kyxxm06ZN04ULFx7uYhx2IyMjNDU17X1GY54C7Ho2R5MVK1YQRRFLly493EUx5qCwZ7Q5mhzp1/N9993Xo6rTD3c5DpYL0vO1Z/QFQYfGfVHPo0D9Rr+hqt/Yj1XMxb3hp2Zz8t22g1C8cSwAcYRbuHAh99577+EuxmF38803s2zZssNdDGMOCruezdFk2bJl9Pf3279V5qhhz2hzNDnSr2cR2XC4y3Aw9WiZe1v/7JBuU/q+UVbVMw9kFRN8N2XjNFgXDGOMMcYYY4wx5ulpMzC/7u95wNap2pgFIIwxxhhjjDHGmINARQ7p5yC4Brg0eRvG2cCAqk5J9wuwLhjGGGOMMcYYY8xRSUR+CCwDponIZuCjQBpAVb8GXId7A8ZqoAi8ZSrLYwEIY4wxxhhjjDHmIJiywROeJFV9416mK/DOQ1Qc64JhjDHGGGOMMcaYqWcBCGOMMcYYY4wxxkw564JhjDHGGGOMMcYcsIM2MORRyzIgjDHGGGOMMcYYM+UsA8IYY4wxxhhjjDlAypE3COWRxjIgjDHGGGOMMcYYM+UsA8IYY4wxxhhjjDlQgo0BsReWAWGMMcYYY4wxxpgpZxkQxhhjjDHGGGPMQaCWALFHlgFhjDHGGGOMMcaYKWcBCGOMMcYYY4wxxkw564JhjDHGGGOMMcYcBIr1wdgTy4AwxhhjjDHGGGPMlLMMCGOMMcYYY4wx5iCwQSj3zDIgjDHGGGOMMcYYM+UsA8IYY4wxxhhjjDlAio0BsTeWAWGMMcYYY4wxxpgpZwEIY4wxxhhjjDHGTDnrgmGMMcYYY4wxxhwENgjlnlkGhDHGGGOMMcYYY6acZUAYY4w5alRj5faegOV9EW0Zj7M6fOYVPFYPR/RVoTMDJ7SmaE5Z84QxxhhjDj4V+42xJxaAMMYY85RWjpR3Lx/hO+sCov1Ybl4e/vXkApctzODZjwVjjDHGmClnAQhjjDFPCVuKEbf3hiwoeCxp8ujKelzfHfDqO0Yox/u/vs0leOu9Rf7qviICLGry+PdT81w8N3PQy26MMcaYpwc93AU4wlkAwhhjzBFLVfnK6jLve6hMpSHI0OLDcHTg/9BXkxU8MRzzyjtGuGBmhV+e20zKs6wIY4wxxpiDyQIQxhhjjgiPD0asG44IFH68qcotOwN6KrsDBI2G9qe/xX749faQ/M/6edeSLK+fn+GsTh+xLhrGGGOM2RsRGwNiLywAYYwx5rCoxoov8OhAxCV3jbBqMKZ6uAuVCBX+a1WFL62u0JkR/nJRmvcen2da1l4eZYwxxhjzZFkAwhhjzCERxsrPtlT5wEMl1hefGj0kQ4UdFeWTT1T55BNVLpzpc9XZzXRkjt5ARDWMeHzLCB1NaWZ3ZFm/o0RLPkVT1ieMlPamFNVQyaQEEUEVVGGkEtGU9Q938Y0xxhhzBLMAhDHGmCkXxsrLbh3mdztCnsR4kUeM67ZHdF49wCtmp/iPUwssaPLI+0/dVMuhUsjdq/u58aEeVmwrMlKOiBpiQx5MeM7yaY8zFrXwyKYhpuViLv6P++loSvH8pR0smlFga1+FBdPyPH9pB7n0kRuYiOOYKFJSKW+futpEYUz3+j78tMfMBe2jywwNVSiXQrqmFfBs/BBjjHlaUmwQyr2xAIQxxpiDbsNIxOrhmJNafWblhL+5v8iNO8LDXayD5pptIb/cNkha4OVzUoQK9/dFqMKLZqb42Ml5FjYd+kp3OYj4w2N9rNtRZP3OIo9vKRKEMQum5XnVc2aQTXtkUh6LZhT45o2buOXxvr2uc7KAUSmIuX3lAHHdL62+kZBf3LNz9O9sSvjmTZv40luX0prxWLWyl0zG57jju0ilXBZJb0+RXbtKzJrdTEtLdp/3tbenyNBQhTlzW8lkfKIo5onHe7j1lvX09pYAxfc9TjxpGmedPY+HH97BIw9tZ2SkSntbjraOHMvv30YUTvxTsaUlwwUXHcezzpzLiid6iKOYdBjxiyvuZxiPQITYE7LZFJmsz8hIgO97CLBkVoHO9ixRPsOSpTM4/bSZ7FyxgyiImXnyLNLZFKrKppU9rHqom/5iyJyF7cxpzRAHIe1z2mid1cIdv1rBE/dtJpXyOeWcBYTViE2PdFPuHaE4VKESw9zFnZx63kLuunkdG57YCQrTCj5LKyOkywHTzz+OOa94Bv0PbCGsBvRmcjx86zqK2weZM6+VRWctZOsfVhFs7qf9mA5OeevZtC2ZTs/aXrY9tp3hnmH6tvQTDldpmdHCCS86junHT6fUX6IyUKZndQ89W/po7mzh+BcsoXlaE6pK//pdDG4ZoG1BB7m2HKt/v5pdD2/B7x1ENvcThxHtJ80i8+xFVCPoXDKN2afPHRMECisBwVCFbEcBz/cYWrmd4TU9FBZ00HzsNEbuXo9kUmRPns2OOzcwvLmPXFcT1aEKwWCZ6c+az/Qzj6GyY5DhVTvROCY3r5PCMR0QKf0PbKKydYDm42dQOKYTiRS/Lb9P11/YO4xGMekZrXucr7RlF8X7NuL5Hs3PXkgYxpS3DdB83EzSrbkx86oq5Ue3Un5sK1oN8We2kVrYRX5BF1529092rQRQrEJ7AWBc4EwrIXGxgtdeAFWCnUNEQxXivhFyS+fgN42/z4Kt/cSVAD8IkIEycvoCvHRqtFzBxl2Q8sjM7dj93RPb0HJA5pR5SBJk1KEybB+AeZ1ILu2+G6kQPrGNcNsA/uw20mccY+Pq1FF1zyA7JubpQmoXvTkynXnmmXrvvfce7mIcdjfffDPLli073MUw5qA4mq7nNcMR13cHFHzhlXPTFHzhkjtHuHZbgCdQiZ+eLQE+cPsLmzmrK31Q1xurcveqAX7/2C4yvvDS06dxyvwWADb3lnnntx5lpPF1IVPsvm//FTPyAfPf+K1J55kTlGnvHQJPQJVIYUtnGy0+dO4aJJv2CIOYc85dwKtesxSA2/6wgVv/sJ5KJWLhIlfpKRUDjju+k0ce3sHmTQPEqsRTNBgpgBfHNFWqZMPdGwmB4XyW0G8IMInbt7ZSmbZiCYDBXI50GDJ3YAhPFQEC36O3vQUiJVep0lfIEaRSpMIIFaFQrdJSrdKfzxPXV0hUaS+WUBGK2QyR5+HHMQq7y5LML6qkg5DpQ8NUk0okGtPf1ETo+WiyWk+VRTt7KQThaKZLKZOilM9RRUaPQb4a0FQN8JPfjEXfo5LJUF9dKlQqdI2UKKdTDORzBL4/Wh5NylRTTKdAhGwYMmNwhOFshkomTTqfpjPvoTuH0CBiBBek8lXxgIonRL5PKopoLlfJxPHosSmmU2gq5foDAV6sCEoh45EqVdEgcsdKIEilKQQBXhwTiyBJ+fw4JtWcY+B9p3BydgFrv3Eb5R1D5Ge30XbGPHbctoZyMSRdDWgbKZGJI0in6G5uIsikmX3SDOYd20XlpkfZtXmAqgqh5wakEyDyPHeOyxVmDg3TVKmintCfy7GrrYlMNaRQCQh9N1/tiA1n0jTNaGb+37+E0lV3sOOBLcRAPgzJBCFh2oeZbeQuOg3vlicIV3ZDFBP4PkEtiJCsKwCmnzSTtrntePkM8oKT2PqNPxA9vo2ZfQOj5xigP59lIJ8n9tx58DzIdxYozG0nvHMNsUI2jEjFMZpLk1/YRebRzWjKIwLK86cRbB0gXQ2IPQ8VCMWjWsjS8s4X0XLsdPQTP0fX7qTY3kzR911wpTmHf/JcMheeSnNnE9HXbiLetAud0YocN4vU808k/aenI/mxr0wO711H8T9/g3YPkBoqUd0xSBQDvoc3sxUPdddiRxOZC08jd9m5eK0TB5zCR7dQ+tjPkfvXIWGMd9JsvJPmoo9uQdrySMZHHtwETRlYOpdwxTYYKCHHziD1txfgv+Ck0YBCfNdqgm/fQvzgJnRbP1RCBPBPnkMwvQ29dQV+EOJ1NJFqL7jn5NJ5aBRDSw7vkufhPXfJ+EJWAvi/e4i/fwfx2h1QCWF+JzTl0KESZNPQ3c9t7zyV80fa8d714tGg0JFERO5T1TMPdzkOlmdmZurN099wSLfZvvW/n1LH0AIQU0BE3gP8NXC/qv75gazLAhDO0VRhM+ZouZ4/8kiJz6woI7jfSzHw/GkpfrM9fFoGHRrNzArdr2g/aOtTVT75szXctWqAchAjQCbt8frnzuLN58/h1Z9bzmBpCmvjk9hbACIbhCzq2UXjqBmRCCund5GLQhb29rv9yfhc/KoTWb+unwcf6KZaHb8/ST3/4FMlFcX4GhN6PrEndIwU8ZTRinZts+WUz0gmg/remOUX9PaTr1YZDU1oTC6Ixuy7AlXfp7utZfyOJetxtaS675Lv00E4WqEccyAaW07jmK6RoltF8tVQJkM5kx63zpZyhcU9u/CjiO62Vldh9rzRdWeDkM5S2W0mKf9gLuuORd26RJVCpcJINjtmX2qV7/r9V6CSSqEozZUqrZUqKkIkQimdIvI8ckFANopd4CKpjIeeMJLJjJala7hINoqIgXI65Uaerz+OQKFSpalSJRe6DKyq7xMlmSqokqpL4amdm763Labp+1tcBZBaYCY95rgLMH1wmHwQAErFT5ENQwrVgHImjZdsP/Q8RjJpQlxflb8AACAASURBVN/HS85LOgmcCNBcrpANIyq+RzWVYjiXHXNca8drMJOmpRpQTqfH7WN7sYSnMel47I0xkk6PuUZrgaAZA0MuBdpzY7j0ZTNMK4691gezWXqbC2NH81eluVIhHcVE4tFSrY7uR239fhRRSaVHg1y1a0OScxR5u8vjqTJ9aJhSOu2Ob8O2AFrKZTx1zwu3IYF8Gulqpuna9+FNdxkoxY/8jOIVt5EKAjJxTCmTGXuN1rIMauvPpPBmtdH263/AaxmbiVK+5n5K77mKdCUYvU6kdqvVzSdxjJ/sdwyjgRrxPfw/O5P0F99M9D83E37qauJykJyAsfdGKorGHPfGZ40KkM/ivevF+O+/aPfGi1W44NPEK7uJg2jcNUPdvt/2obM597P3IWcsxP/F3x5xmRYWgDhwT7UAxNE7itbh9TfAhfXBBxGx7i7GmKPGnb0hn1tZphxDKYaRCEqRe4WlBR+c7RUliA5eNsID64dGgw+QVOKCmB/dsY2f3919WIIP+6K9WGKyn7tNQUA5laKUVKqr1Ygbb1jD8vu3TRh8gKkJPogqHcUSbaUyzeUqHcUS7SNFRBsqHMknF0Z0lMpjCtNcqZIP6oIPQCaMx+27AOkoIl1/bdRXCGoVrcZKgogLPtRXsuv/v45XV9aaSmMFL1l+KJclG4QMZ7Ou5b1WQUzWXU2lRuMh4CrUjcEHcNfjmOBDMs9E+++OYUhzNaC5GozOl1KluRrgx7ELPtRtR4BUrKTiePQ1d32FnKug115713gccRknkhwTTbrN1AcfpK5MHpCNIkBGgw8AQWpshklt+73NTUkFXfDjmJZqQCWdGs3YUBGKmfToMe0sllzwISmrJsc/9DyyUUzojT+ftbJlonhs8KGuPGXfJ92wLwCFIBhzjda+L9eCKbEmmSkyLtC2qyk//lWCIpQyLvumFtBpPL/ldBqt7YcIKu44BL7vgg+ye1oswq6mwvjgQ40qsXgu+FC/tVKAdg9Q/uQ1AESbd1G84jZQJRvH46/RxuADQDUk3jFI+arbx26yGjLywZ/uDj7UDsgE+1rLUqldO7VAC1FM9MvlRL97jPCTV6OlhuBDUjZRRdl9jzQ+a0a3XaoS//dv0K11Xea+cwus2T4u+DCpcoA+sAG9e+3e5zUHrPZMOlSfpxoLQBxkIvI1YDFwjYgMiMg3ROS3wJUicrmIXC0ivxaRFSLy0cNcXGOMeVK+u77CEVrfPaJU9OD9MLh9Rd9o8KGeiHDNfTsnWOLI4CcVo3FU8VRHW8NrRkYC/NSh/UHVUqrgx67SWKu8+zr5jyTBVTZywe5xTZrLFXydYL5J1uHXVUTHb+DA9r8+YLAvRJXhXHbCH7IqjGm1nvSS3o8y1+b04njCY5wPJh4vxgVvdt8DkecRJxXZycqknkc1CSBEdYODyiSBrIm+Hq04N4g9GV1nLbugdv2Ay5SpTUtF0WjwpFEtuyK9h4BlarLImwjZCfohjQZVGpcTIaw7nxNtUWHSYxolFR5fx9/X0QTL1KrXgT/BMUwCExNK7o2gds4alw1jwusfAqCaBBH8JLMknuy+alQOCG54dOxqH98G8dijsqf7uHG++nVHV90OexqANwnQ7Gl9o5N9D/3947sn/uI+F9jYw7rHCSN0+YbJlzHmELEuGFNARNYDZwLvAl4OnKuqJRG5HPh/wClAEbgHuFxV721Y/i+BvwSYOXPms370ox8dusIfoYaHh2lubj7cxTDmoDgarucNxZieiv37sTfP6jh4A1H2DgXsGgnGZQB4AilfqE4ymOJU+9wnPkjKU977L5+ecLqvbvDGiX5nl9OudT0bRqMVpWwuRbUaofGh25/Uk8xUib3dld9UFLsKZh2ZoJJWE/j+lGULCYrfcPwmq6h7qhSqAdWUP0mlU0lHuzM5lFo6fMO8k3UH2VM5VceMObB7i7X9GC/GZTHUtplJxsGYrBVQVPFitx03X23Nezg303J4vdXd2xxN/x8vE0aAEiNuLIS6csSe1G1Fx10fu8voKs+xyJhgTz2VpMQTlMOPJg7kuLKP31M/jscEJgLfJxONDWJUfX/ifVZ3zXiqY8b1cGWc/NxPGiSCpJvN+O0Ao2OnTMj38E6ei24fJNox6M510rVhou1NtB5py+Mt6Nr9RTUkXLkdr/5cTZIBMXG4Snb/p6MJBooQxRNmDdW68uztjlEAz0MWdEKbG3iUNTtgqDzhwo2lGp7dRPO2kWQdXbCPA60eKi94wQueUt0H9uaZmZn6uxlvPKTb7NzyhafUMbRuAVPvGlUt1f19g6r2AojIz4BzgTEBCFX9BvANcGNAHA19xQ/U0dJn3hg4Oq7nG7cHvPP2YUYsC2JS/3hchmWnNx209W3uLfOX33hkXKAhl/a4fNkcvn7D5sPS/WVHKc2MfMBPVk+feAZVFuwacN0TkuENVGBncxO9TQVSUcxxO3tJ+UIm4/O+D5zDN792Hzt3DDc2RE4NVaYNVyara01aOYiBYiZNKZu0Xochx+7oG1sRrMuS8OqWG8znGCjkJ6+0J+MejPtub/OODsAY09nQ9UWB/oJLq488Dy+KQWBBzy66hkYIcll2NTe59Pm6dYsqM4dG3KaTTzmVclkFddtNRxGB57mRChtNsD+K64rSXA3GfR9N0sLuunlkXF97VbJhSPtIyY3R0Ng9pW4MiPZSmXQcj44VUUt/nyg7R4Ht7ziO/JWbRr8LalkUMvbY5KsBM4aGiZOsgqZqgLB7X0sp3411IW58i1lDw+OvpyQAlAlDqr5Pf1Nh9FjX7uc4KUPk+xOe/+ZymaYgnHBfhjPp0XOiCp7GzBocW47tzQU6R0rkw93r6M9l6WuaYAyIapV0FKPqulDVrydK9nOiMoa+N2Zg0ho/iihUqhOOT+LFMbkgHA0ejZmeTZF+8znk37mMqLufvuf8K8QxTUGAAsVkrJDGQWPGbD2fpvX7f0X62YvHlKnv859FHtlEqhZ4S8aAGLNsss5UrWw0BOZyaTI3fYDwkq+iG3uJJ7h/Vd09UH/HNN6zo/vdkiP1yL8jhWS/ig/AR79FVKyO63404RgQ/3YXzGgldd8nkIxV/8zhZV0wpt5Iw9+Nvw+tCdEY85TzohkpXjc/Q1PSSJYWyPvwtoX2wwbgZbNS/PtphYO6znldOd7zsmPIpIRCxqOQ8chnPD7x+uN4xZkzWTLryGrVGiXCxs42tra1MpDL0p/PsaGzg96mAgKcGhQ55pg2zl+2kH/68POZMaOZd7/3LBYv6SSV8kilBM8T0mmPXC5FKu0xY0bTgfZSGFO+0JMJ/3EOPDea/2hFoG4a1PWlB4JUii3traOVsEiE0PdYMXMa3a3NlNIpSqkUPc1NDOZziCpN1SrpMBy7/lpFpb51WZVcpdJQQHUV/zBEonj0/1tKZXJhyHA2MzoPqrSWyjxn7UZO6N7J/N4+Fvf0kq1UGclmiERoKVdorlRc1kYcI3GMJ0KuPc9AU46q7xEDERB4QsX3icT9HYnQViwzc3B49zbrizrJyUqF4YSDepTTKTd2Qt3xVqCYZGmIumyC9mJ5tHI+dhBP1xKeC4LRecH96E1HkRtbYJLzWqtELnrL2WSnu0y1fD5FvlJ1FdHYDYyZDUK6RkaoplMM5LOj4z3UlzebZP7UMj2GMumxXR6ScvphRCmVQhRSQTg6qGHtvwD5ahUvKXv9x0uyGWLZPa/WfbzM7m4gKpDLeO6Vmc3Z0U/XJWextauN/lx29HrPV6s0lcpIHI9up6kakKkNDIpSSvljjqPWsiLqzmmtO0cmjMZNk5RHZ0uGlkqVgozdL1ElyKYJW/J4Kc+legGkPGjK4i2dS+4DfwqAP6udpr97CXge5XQaScrvJ2UnOQdjtp9LU/jwxeOCDwCt3/oL4sUzCbPp3WOMZHzIpKAl5/6bSeGnPUh5aMonrPXFFyDjk/q31+AvmUX6x+9EFnS5wEGqLiNOldSx04kXTBtzHaqApl12lBYy0JqH1jz+9/9md/AB4GWnwV8sw8v4o69ABdxx8j0oZJK+ZO7ekDMWkvrV+yz4YI4IdhUeei8WkU6gBLwSeOthLo8xxuw3EeFbZxZ4++IsV2+p0pwS3rggw7HNPhfPrfCqO4ocph4Bh5UAX39Wnrcvzu113ifjgtOnc84JHSxfN0jKF561uI1s2rUlfPGtS7l2+U5+dNs2eoYCPA/a8inam1Ks31nmEPZoGE+EoXyOobw7LgJMb0rx/osW8MwTusbN3tqW4z1/+1yGh6tUqxHt7Vk2bRxkZKTKMQvbKRTS3H/fNn5z/Sp27hwhSi62hsbOyYqCKvi+0DUtT3EkYCjK0l4c+6aHWGAonyUWwY8imivB6NsLQk8YyiZvgqjb4FA+x2YRWssVQt+j7PtUcxnKM1oYrAR0tmV5yZ8sYf4J0/AFMtkUxVLITT9+kK1rd5FK+3S1ZSmkYO2KXkaqMV6sFIIq0zrzHHvhUm69fhXlUsBoW2lTlqbhEs21AS99eMkHX0BJhRu/fQ/x1j5yQUh7sYSvStfwCJkwZEtrM13FEuGcDpa89zx2/fhevMe2US2WCFryLHrdszjl0ucgdRkRG+9Yx2NXP0y5e4hsDE1dBU581lwWnHUMLcfPJCoHVItVbvvs7+l+aCsaK17W55TXnUF51whrblhBHMWICJ0Dw7SNFJMskgwgpFtzpH2hqVil0JXHmz2THfdvRmLX/NzRkWfuy59B2DPCzGfOZdZ5S4irISuvuocN1z5CMFAGjckAqZYs6VkzmH/RKbRnhB1fv4XqtgFaFnYx4+3nuywKgbBnmJ6rHyAYKOHP7WD6q55JOd/D4mXnsfjt57lKtQjltTvZ+p07GN4xRNey4/HacuTmddL+jLkADNy6it5fujEJWs+YT/WhzVS39tFx+gLKpZD+P64l1ZancPx0ir9+GO0rjg5UOXLmseRe/xxGVmwn+u3DaP/uxNm0JxROnEnQ1Up1bQ/V3mH8ljxNJ89h1uXPI3/8DIYf2ETfbavQW1fidw/gdRRoe+eLaHvNxBnZ8a4RwltXILk0qfNPQPIZOj9yMcP3rKN4/0aaTp1PJgho/uKNFFZvh64m0mcspHLHauKeYbzmLNlzjqPpTc+D5izlH95JXAnxcxniXUPIUBnd3IcUsqROX0Dp2gco95dcq2dnAX/xDHJnH0vrm56LP60FjWPaPY/WgSKlax8kWLGNuLVA63MWU3jeEhipEG8fIF63E920C+/kufhnHTvmbQ75v7uAzKvOpPzlG4h6R0gf00WmLY+cfSyyZBaVr/+eeM12/BNm4y87kfQz5iOF7ITHx5/bQcct/0T44Eai7kHSJ8zCWzgNSgHxo5uRziZk8QzYPgD5DLTkiJdvIL53HTK9BX/ZSUinC155i2aQuetj6AMb0f4R5MQ5SNpHO5vwapkpG3vR+9cjM1vRuR1IOUBntMLtqyCbRs47Hsk2vD5TBD7+auQdL8S/aw3amoeT5sD0Vtg+gG4fQE6YDcUq8vC9pN7z5gn31Rx8e+oSZhwbA2IKNIwBMayqn02+vxy4EGgClgA/UNWP72ld9hpO52hIWTem5ulwPVdj5QsrK1y1oULKg0vmZ/inh8vsYcisp5S0wJuOyfDRpTl+uLHKjTtCTmn1+IcT8swrHHnJhdUw5g+P7WJTb5kTZjdx1vHtPLhhkH/54UqCA+xGM9FrOHNp4U/PmMaOwZDBYsiS2QVecHIn1TCmGiqz27PM6Tx4QZooivE8YWCgQirl3npQLAV0dRXwPKFajVi3to9UymPR4o4kU3/3D8StWwa55aa1DG7uJyuQbsnhdxTYubNIU3OG9vYsGzcMkMv5PO9583nG6bOJY2X96l1se6wbL5Oic1En8+a1snr5VtY/vpNsIcWZL1rC9LltT3q/qqUqg93D5FqyNE9z3XniKGbnlkGy+TTt0913pf4Sm5Zvwc/4LDhjHun87spKFMZUi1VyzVlGdgxR7CvSMr+D7g395JszzFzQPnoswhHXyp9qnrhidqCiICIsh2SaM4gIGiZt9r5764SXGj9misZKqWeYTEuWVD4zbvpUOBTP6LgSEgchqebx94FWQ6KhMl5zFq+x4mnMfjrSf3Mcba/hPD0zU38385JDus2uzf/1lDqGFoA4hJIAxJmq+q59XcYCEM6R/vA0Zn88Xa/nHeWIM24YZEv5cJdk/6UELpyV4stnFJib946496gfiJVbh7lnzQCFrM8zF7WSTfl0NqfJpj1GKiH/d+d2Hts8zI6BKqVqRD7jM701Q/dAhaFSyF3ffAftmSrv+PQ1PGNBM2cf304+c/AG3zTmUHu6PqPN0elIv56PxgDETYc4ADHtKRaAsC4YxhhjDokZOZ/NL+/gsYGQv3ugyF29EQNPgUEsf3p2gZfPyZD1j56gQ73j5zRz/JyJ38rSlE1x6fPn7nH5Zb9qor8/4D0XHjMVxTPGGGPMUcQCEIeQql4BXHGYi2GMMYfV0rYUv3l+K+AGLftDT8h12wLu3RXy+GDEriqE6ga3O5wEeMfiDK+ZPzXp6MYYY4w5+tgYEHtmAQhjjDGHjYjw/Olpnj99fD/nIFb+bvkIX10bcCjexjhaJuAlM30+tLTAudPsn0ljjDHGmIPFflkZY4w5IqU94UvPaubzz1Tu64so+DA9IzzjN4PsCg/+9hYVhPcel+NdSzL43pE3kKQxxhhjjnDiXqdqJmcBCGOMMUe0jCc8t2v3P1ebXt7OjzZV+c+VJR4dVA50KOWuDPz63CbO7Do0I+wbY4wxxjxdWQDCGGPMU0ohJbx1UZa3LnJjM6wZjlg5FPHzLQFXrKuOedVnexqWNHk8OBATKcTArCz81eIMXTmf86elOLXd/ik0xhhjjDkU7FeXMcaYp7Rjm32ObfZ52ewM/3JSjt/vDOlIwwWz0mR915Vi3UjExmLM0laf6VnrXmGMMcaYqSAo1gdjTywAYYwx5qhxTJPP5U3+uO8XNfksmuD7p6tSKaR7+zAdHTna23KHuzjGGGOMeZqwAIQxxhhzlKpUI+5e3s3W7mHmzWnhzFNncP0Na7nhd+tJpXzCMGbpiV287bJTyWbH/iSIY6VaDsnmU4i9UswYY4zZK8UGodwbC0AYY4wxR4D+4SrLV+xizcpeioMVjpnfynOePZvt/RXueriHzTvLzJ9V4I0vOYaW/PjXljbatmOEj/znPRRDN1BnOo757g8eRiI3PQzdq0Qef6KX7/3oUd522WkAjAxXufJr97B69S6IleaMxytefwrPOm/h6LorpYDNT+wgnU1xwKOAJlT1oAQ6+jf107N6J5lsit57NrD1j+soD5VJFzIsvuhkTrrk2fiZsdkwlb4iW29bQxRGzHneYgozWw+4HMYYY4wZzwIQxhhjzBTqG67SvavM7M4c7c0Tv2njqhs2cPUtm2gdKiKAAA8/1sM1v1nLjuYCQcr9c33P1iJXL+/hM5efxNKFbVSqEf/767Xces82giBi3owCKWCoGLClv0okMlqpr3oeESkKUTimd2oQxix/cAeVSkh5JOCTH76JKIgBF1sYKYf88pt3c93/3E1rZ4Hps5vZ8nA3fspDgC2rdlKYvu8/J8JqxMaHtxEFEXOXzuT2qx/jvhtWQRCREaW9LUtl5zCe77PknIWc+xfPIduU3eM64yimOFDmxk/9lt6VPSggcUxztYqnCiJUqiVW/GQ5a25YQbGQoxLGdJwwg9l5n21XP4iqEovw8Jdv5djXPpNT33EuwVCJnrs20PdEN5nWHHNfupR8EpxQVdb/+jHW/PwhgmKVOecs4sRLnk22Lb/Px8IYY8zRx8aA2DMLQBhjjDFTIIxivviLNdz2SA9p3yOIYs4/dTqvO38uP7xhA8tX9qGqBGFMECktpcpo8KFGgPZyhZ0tuzMeIlU+9L0n+NmHz+Kz//MgazYOEgQRqShm08bB0eWzQCRCNZ38Uy9C5HlEIqR0bNpCWA357Ed/R9+uEoowOkynKn5SDlUY7Bmh1O22EYcuSBGFSlCJ+OO1T3Dmi5eQzoz/aRFFMb+6bjV33rCKad19eB6kUz5FhUChpVIlFccoUC5VUSCOQh6/ZS1P3L6ObFOWpo48Z7zyFI45fQ4P/uQB1t6yhhhFOpvp2TqIxm6fMr5HJopJx7E7FiIoEPgexODtHKaSLhMD1U097AhCdudDKKHCmh/fR3zPWooPbUHVZZCUCllWf+9uTv/wy8i15Hjwo79EdwzhCVRzWVb/Yoh11z3GsS88nvkvPYmmRV2k87sDTkMruum9ZRXpjgJd5x9Hri7Lov/hLQw+0U3LcTNoP23eXjNBouEyiODvJTBTL+4ZonrXWqQlR+a5S5C0jYlijDHm0LMAhDHGmMNuZW+F2zeVaM54vPTYJlqzYytHpSDm0e4iLVmf46fnDvqYBOt6y/x4+S62DVY5Y26BC05sY2ZbljhWHl7bzwPrB9laUqa153jOohZOnVsYLUMQxQyXIloLrjvC9fd289v7dtA7UKFYjohiJQhdv4c/PLST2x/cQRTEaBIEEFygYCSbwVelqVLFr5uWTZYdJUIxVG5dvp11mwcJwhhRJgxe+KpIrKi3e0rkeWSCgFQUE3tCKEJzNaCv11X8xxxaESKgmE4TeR5eHNOsVbJRQ5mAm3/6EI/etYnLP/xCNj6xk0fu2MDQQJm5J85g1Y4SDz+yk2O27cJXJY5hBCHwfQpBQCoJFtRvWnFZBhoqpYEypYEyN37hVpqJiaohKFR8n2pxAABPFVGo+h6ikEvWGYpQytR3WfERVbJhRC4Ix7VTpaOIaUPDlJYPgeeNlqtQrDAUKfd/5Ff0ZZOKf3srTZUKXcNFRjJpcmFE74/uZteP7qbqewTHzeL0tz2PTV+4ifLm/tFtrP78DUw/azFUAnY9spVyqKjnwj7ppjRL3nEehWNnsPZH9zK4eidNCzo47vLn0tSeY8s//YzSo1sAKJw2nxl//xJGVmwHgfZlJ5CZ3uLO80iFgauXU35gE96a7ch961FcNxfJpeHZi6g8shWvkKH5z59LvGQm3VfcQdQ7THZuO+0vOonOi09H0j7BtgFSnU34LTZgqTHG7I2NAbFnFoAwxpgjRDFUiqHSlZVxFeyH+wKu3lhhdsHjssU5Uv6eXyVZiZTVu6p05H3mNB+cR72qcufmIqpw9rw8nrf311k+srPCNx/sZ8NAyFlzcrzttDamF3aXR1X559/v4OerhgkUPOAjt+zgX8+fxmtPbieKlX/8xQZ+v34YFDwRpjen+MZrF7Kgw1UCl28c5iu3bmPXUMBzF7fy9vNm0ZrzKQcxP717B9c82Et3AKVYyKWEVz6jg/ecN5NsypX/h/fu5D//sJ04VnJByPIndvHtmzazcFoOGRhhYKBCrBCLUE6n+bEIKV946wvm0jcScPU9O4ijmJQvzGlOs6OvRBiB6PgkzCBUAlUXGEi+K6ZSxCKMZAQVoae5wKyBIQqBG6NhsiEWPvfTlYikyEpALo6SOcdu0Ytj8tUqpUxmNAiRr1ZpL5VH1ytAx0iJXU0FwomuK3GBgtjzwPPoS6VoKZVpCoIxs8VBTPfGfj777msol0JU3TFY+1A3Fc9jZhiOCVxEsRCnfLLh+CCATPCXqhJHMUEU4SV7W035eKpkGwIJgSfEIsTggg8N95MC+SBgoiu4dt5aKlWK6RRhavf1mg1DRjwPP1bClAuSjWSzZMKIpmowpgyZKIZV23n8gz/Hj+Ld01TJhBEDt61yQSKgCSglQZ5guMrKz9wAIlRTHrF4lHcMMbh8Ix1DRSIFTzyyYcTAA5voecsVkPIQgY2f+y3HfOBldJy7hPWv/QrRUBlvuExrubo7wKMKxSrhH1bS15SnbXCAjV+7hZG6/SzuGGLo3g1s+fSvSXvJ2BxBRKqjQNurn0XXm59HqrNpgqMHWg1BZEyGRdgzROm2VVCskp3TRnDXGqKV22FuB/55J5BeNI2RGx5Dh8vkl52IV0gz9PGrCZ7Yhje9hdYPXETuT5YSP7QZ4hjv1PlIqi5vRZXSH9dQunUl6UXTaL7oNLz9yA4xxhhz6IjqZD9tzJHgzDPP1HvvvfdwF+Owu/nmm1m2bNnhLoYxB2QkVG7prlJ69HZuyJ3G/TurBJGS9aGkwqYK4HnMynt86exWXjg7SxgrF9zUzx07A2qP65TAXy3OsGM4ZMuAq1i8cH6ev3xGK115n0/fvYtvL+8DBEE5fWaOL790Fl35yVOuh6sxVzw+xLXrS7RlhFcsLHDBwgKdyTLXrRriA7/ZRhTraMW1bXqBd5/ZyRuXFAhjuGHdMHduKXFMS4pXn9TGvd0l3nnDDoLYVYw9oDkjXPfa+cxtcZWda1cP8a6bdhLXmt6TnUxHERfOSZP7/+ydd7gdR3n/PzNbTr1NV73asmwVy7LlbjDugDElEDCEDoEQCPklARKSGEgCARJCIAkmxRCKgVBCIEDoYGNw7022ZUlWs3q57dxTtszM74/ZPfe0K8nYGNns93nuI91zdmdnZmf3zvt9v+/7Aj/ZPNluQBrDrLLHD99yAh/83nZ+uG4EqacMeiMg9F1yYYwwhsnUW520IYBVs3K8+/w5/MstB7h1VwOMYbDe6FYRGEN/3cr1A9fFCGGNq6QfqSEM1thPPfnN83vMtQGkUpaEMOAmEn8BhI7DeCGHMIZjDo4hgEnfY6xUbBu/9eDHqIQEmjlZtSqIdIzGMGOyRj6O0QKEgYOlAmPFAoO1OoHn4itFfz3A0RpPaXJxzEip2NNY19D00Kftz56oIIGrrvkg+RmSV57+vqZiQkvRdj/76gH5OG4z+A1Q9T36gnDaeYqknWEv1uSUsqEfaR+EnZtiDxWDAWIEA40GjYSAENrgJgSIciTlekChh5JDaE0uVkSOJUdcpZohGrEUTPo+ntJM5HPUczbEYvZEhXynUqVl7mQSvedanwAAIABJREFUBgLY9nqQUxqo+n5zfp3k/Ibr4GhDf6OBpxQyaUgJMKKbrBSew+xzllK99kG0MpQbAflYdV1PCdg10A8Ym2Ok4xkTCVEijcFL5ykdh4DC8nnM+9BLCO7eTrRrjNyKuVT+62aCu7ZbsrAvR+nCFTgLhxj7z+shUjhRTCm0xJUgzRZv5xRXgjaInIuoh7gtRBOAl3MoxAoEGFfiPuck1B1bMQLGJyOiatjsvuPAnN87H1n00XMHcc9aijN/CGMMje/fx+TVN6APTOIsGkLvq6C2HgBjcI+bTf+7n8/NZjfnn38+0f07UPsriO/fg/r+veBI5AUrob+I1hr3mSfgP3c1wnfR43WCH92PqYf45y3HPXZW+1qoBuhtBxHzBpBDU+SNMQYqDSj4hw2LMRN1kAJRzpQoGY4cR/seWghxpzHm9F93P54onJyba344/zVP6jXnb/3YU2oOMwLiKEdGQFgc7S/P33RsrCjuHo1ZUpScOdxdsm9HVfHjPSHDvuDCuT793uE95ymMMawbiwkVnDzDxZW9TJUnDtVI86NtdX64K+DW0ZgIwQsX5rl8SY5Vgx5F115fG8PPdgWsG4lYXHY4b26OiVDz97ePccPOBv05yZtOLHPRkiIDvsP1+0LeeOMEOlJ8oLSOD1RWIXq8fyMpUY5DwYGfXTqDT6yv8cXNQZdxILVmsBE0jQpPwmBOctLsPDc8MtFmbBhgZsnlJ69YZBPv5R0CZXi0EjOv5OBJeM6397CrqogCK0t3tMY1hoIneemJ/XzxnjFr7HS0Wx0ocfpsn3t21QmUwTEaRylcY9DSQaf9Trz+jlIsLHucOK/AtknFlvGI8ch0Gb0Yw3DQQIRqyphtP4DfP2MmV9+4G0/pLk92LC2VYNIwCSmtd19MedNNkhMBIfDjmGIQdnvEE0MfIHKmjANhDFJbAkLQm3zo1iMkfUsM82IU4Zj2YzTQ8FyqvseciSr5OGJfuUScXNsIgTCGoVodMNRdtxlqkXq5AWZMVslH7Qa/BvaXi+SUvcexlIwW8wxXa/hKUwxCxopFKx1tmW+DDRFp/UxozYxqDT+O+dTPPkRuhsMbT/4LQsexaolWJYXWzJqs9VQbKGGVCr5SXXOnhCB2pE0imcCPVTMkxQB13yXXw7g2yU8sJfk4xlUav4NsMEC5xz03QN11MI6D0LaloWqdXBwTug6B61IOIwxwoFyi7nvMHZvA15pOaKyhH7leU5LbX2/Qy8y0hIxv77HWOMkaBTvf/Y32HCHpGJUjm89ZOleO0Rhjv59VqVFM1nArlIA9fWUCLyEfejyDfhQjk+ScypHWSNemeR1hDL6yJIWjO0iVJPmnJSzsui03gmZ4Ueu4I0fS8P22c704bpsnDfQ3AkuGYZUj0hgmfY+67zcJr8Fag1JoyQgBGCmYLBVwTz+GYOM+wkqjyWo0VUCxQqTvmZzLQx88lxX/ch96tEr/2CRC6Z7PshYQuS75NYuobtiDcR1Qdh0ULj+T/g++1JIeH/sBwX/8DByBrEc4K+aRe/vFUMoTX/HfmJ1j4Eqc563B7csj7tsOqxbA25+NWDYHs2EP5u2fh/u221GdswzeejHxJ3+M2XIAM7sfUw8xO0cR8wdx3/0CvJee0T7PSoPSiB45WjI8vXG076GfjgTEDxa89km95oIt//iUmsPsLZThl0IzdvlxxmFPRIatVcXiomTQP3KjtBNKG/Y0DEO+aBqIv25snVTceCDCEYJnzXJZUOzt2XgiSs+NhZodNc0xJYey191WqAw1ZRjwur1lKRrK8N1dEfsCzXmzXFYPuKwbi9nV0KwddJmZE9w7GjMRGU4ftoZ4pDSvvKnC93dNebSOLUuuvXiQ2XnJWKh5/rVj3Dk6tfF3gCvPKPHG4wo0FOSd9nW0dVLxg90hoTKsH4v4ypaQWBs8YSg5gs8/a4BYG664a5JdNc1xfZIrz+pn2YDLl7cEfHtHyPpKTE0ZZuYk1dgqBl4432NJ3hrQ68Zj/ndzDaVtn10JC8suL12S53PrJqjHNhEdWEP2qrGIf1tXIQfkpGFe0SHUhtHAEIcxXqwwxm6iZWJQjoWav75ljCtun6DueU0DIZ8YKQKmNvwt8f6+0kTaEODy4p+OsDPsYRgIgZayzcCNNOyvK362ZZLOAo0COFCNWfu5LXhSEgGpyWYw1tuZGA+5xFBLDZ1GpPmve8ampNsdfdH1kBt3GYQR4EiUkUjh4DcaxOkjbWxoQ+r13TsRsnciJJSCwOuWx6eIlMHvMIabMPD5W/ZaY6hlHiD1kLcoFbAlKIGmbL6VfADaFBSdiKVsKh9aLo+W9jx7frfxmXp4O/9f91x8pXE6JPtgQ1AKUUzVc4kciYPLYCMgcBwmcz6h66KFNbykMRSjmNhx0ILkcxDaUOihCpDArMkayrF5DVylmFup2vuPDVXwVEzous01mfZdYkNQUqMXKYmkJN/Rfk4pNLQTEB3EVVufjGGikGOoWrfKkJZ5ipN+ts576Do4xuAmBqHXQ3WQ9hmSewddBEezPUeSU7oZdmGAwHMxKeEjBRg42FeypUzjmGIYMVbI4xhDX71B3fcIXQcv7G2khq6bJOhInrkWZUhPJPc2vS+0EDS91DVhooJwtEYBjtLIhLzQ2PXWqT4Bu1Yck6zbaZ5BJQVKyOYxTktiT9L5cl0KYdh9cjJOT+nk3WjayKTWcXhK0+g4t3OeBDBeyHXMAhTDkNJklYPlEoUwohR2kEraUJysM3HLZiLXaSfSkjEo16EQRjZRaRCj9oyhdo6SCyO0NiBlc+ytV3e0wQkiwru2UtKaqu/ZYwwEV99A7Xt34bzibILPXA/1EC8ly+7dTvjWzycEV4JYof73DhRWAebcvQ399dtQz1uD+PZdyBYSxFz/MOb6h4kcBwebYLR5T7YdJPrDq1Gfvo7ccBFTyKHv3gbbDtiTZ5SQn3oT8oKVmFihf/IAeuMe5PJ5yItXtYW2PBaYh3ZiNu1FLJ+HOGHe1Ocb9sCjB2HVAsS8wV+q7QwZMjy9kBEQvyYIIT4PfNcY8z+/7r48FuxtaP7w7hrfSQzOF833+OTaInPyj4080MbwZ/fW+PdNAb6EQMMbjslx5anFx+zh/uLWBu+8p05NGYyBVy/x+eSpJXLOk0NEGGP44raAv3+owb7AcGK/w5aqYkfdbtUl4AHvXJ7nQydPyS6/tyvkXffU2DCpmekL/mJFnncsf2zJ9cZCzYXXTnDfhGrGEv/hshz/uLaEEIJAGd5xV5Uvbg1QBuYXJJ88vcSl89pLAd43FnPxdRVCPWV4FyU0YoMnBYHSDGCItCHUEBtrmCtHJvvDKe/bhorm4mvH+MsTS/znhlob+QCggLffXuV991YZCS05sLzf4e0nFNjZ0PzDQ3WMsWuCRKIuAWUEYWR4yc/GaDWt7hrTnPvDUQo5h0DZjPqpoH00tJtrRyk++2DQ3JRqIBYS4wg8pTAaNo9HfOLuKUVB+q+rDUIrXGk3xIGCrRXVLPPnasOk59n4+PTcxOCWgKs0uNZw7/T8TQdPa3QYssd4cIjnoduQESgpCB2HQhx3XS8UknpbP60RYoRAuwJXK6QyXZvsQyFOPPCph9NVCpKQgnySw0CTJAhs7TvgaUPY4uXtRCmMUEksfy8DSajeBo1uIRaax2LnNTb2u842Y0dCRE+kHtz2BlNj3I4rVShIY7qUEKEUSATCaPxYM1Bv0Nscbm+/1WPvaU3Dt0SWHyvGioVEIm+9+9LY5JIK8FDTqi9MMvbWJJfpGIWwYTJS6zbCxRpUBm2MVaMk/RsrFagU26XgAsgrRWzcNs+3nmb9x1KipWSkXCQfRjhag7FkittrDEIQOA6e0hisN75rfZgpEiOnFYHjUup1c41BC0ngShvyoBQNz0V05jZpaTtyXUaTXA2ipR0l2skmsOu+7narCwLXwekgiAxWGaOTzkutbchLcl6XuiCBwobwtCoLlBDUWoi9Sj5HKYysUoGpflZyPlpaYkD3IBfBrikn+U4Y0yRY2+bGGJSQuKabhAObN6McKiZy0+dk6FoZyftCJO+Hdhqi5dpAzfeJpZoKQwKqnkfddxEGimHUVDH1gqM15TDCMYa8UlbtY8CPIvx07MmVe61HMEmok6AQRpYcti9Fwn0V5D//CBwHkVR5kekCVaZtHFPjMwSOrT2jlEF89157vpRtqiaDvfeql0LMgL57K3Wt8XXHvR2poi//BOb7f0b09qsxu8chtPMjPAf/H34H+apzpp2vTphqgHrNv8Mdm23sS6zgGccjr3wdvOnTcM828BwIYszLz0Z8/FXdz1iGDE8zZPEFh0ZGQGQ4YoTacPY1FXbUddNI/dbOiDtGKjz8vH78x0AcfPzhBlc9EtDQ0Ej2LF/cFjCcE3zwpOKhT27BT/dGvO3OGrUWG/fL20MiDZ8/q3zE7Twe/N1DDT78UL3Zh+sPtG50BNoYAuDKDQ2eOcvjsvk+1+6NePnNk9STcw6Ehr96oE5VwftOPLIa8toYTvzBOHsCDdgNWmwM/7IpYHFJ8sfLi7zptkm+szNszvG2muYVN1b46YUDnDFsH39jDC++cZKDYfvrsq6s8S+UjQ8f77i+o+2mu2kgJ0YGwIMVw2tvqVjjvUffDXAwcZhFBtaNK952+2THRpOmkadJPLDJT68Y9ck2GX/q17KbYz/xHLUaCK4xBFJS9z0KoZXCT4f02l3eR9GSnK/DO97wXAqJAZ4aE0cc8pZsXv3YeqNVD4N6Om+iFoLQdQhdh4EOubOSAsHUHGth2sIKYkdab20jJK9iS04kbaby8XSDD9Z4TJEPQ/qCsM3wTWX7qdFjsMRV63meUoQArRtSY3C09eKG0ml+1qYYST28QnTNw6FmWbTkWzAtbcZSWmNLtycLTA2gnm+3VlIlaUdjQzW8lnwFRkicOLbx6+m1MW3rsRVKCPoSub31MDuMlIpoKa2RnkrbhVWQhK6tnJH2M3Kcnl52g82ZMFIuMmeigtfj+WySBj0InFbyAcBISWwMsZS0mpYynRshMIk0v+bZsIVWwgOg5rtNwqrue8gk/4IA6KEqAZrvCTfW5OOYwHVsnoeWtdn8Vxsiz+0mZIzB0y0kjBBErttmoPdEYoin62JqLhwmCg65KLLkiLD5PHqFNoSui6NNW0LOuuNMlUsFAimbawgsIRML0bwHUtuQppR8aB2zYwzlMKSSy9n7KAR7+suUg5ByGKKEYLyQbxrWvtI0pOz5jHlaN9/rvULG0jlRjsTo3goQT9sSsfk4pskOdbwvwx5edz/J96BalSMt12z9f+Q6uHXb14OlAnH6DACR6zTJragj+EUYQ7kjB4mThIu5revjMJAtC0y3vi+MfU4E9rlwktXVfDx7kD4GgRZT402f61SdU4ji5nMqsSTUdBDTLWYD0Sv/FVMJ2j8OY6J3/he+APHKIyMh9F9/A257BIKYJot74wbMC/4RsWMEQgX15PP/uQ2zaj7iLRcdUdsZMmR4eiKjIB8HhBAfEUL8QcvvfyOEeJcQ4qNCiHVCiPuFEK9IvhNCiE8KIR4UQnwPmP1r6/gvie/sijgQTpEPYD3hB0PdVEQcKT72cKONNACoKbhyY+PIjTTggw/Wu9qpK/jaoyFjYe/N6xOJWmzayIeeSDYRVQ3/scmKTN+3rtYkH5ptKfjow3VCdWTjv2Zv1CQfWq9lDHzowQb7Gppv7Qi7rlNX8A8P1Zq/rxtX7G/0mivR3LRPtwFzWg2Ers3hkRNSkBhqPe69EUzrIZ86ppeBOOU5nA6p/Dh0HSJH9jQ8Og3MzuvqXp6cxDjUibFSjqzhdbhxTHXAbiwdY1UEIjEG7DH2/331RpdBYKAtz0HN85qfR1IiEil1kyBI+54aSUmfazmPmufZ+HUppnICJEREjN30Sm2l624cNxMJtoZDND2r6fVEQj60XM8IYcMj0jEmxl0pCKn6HcEkxqCxhl0sHQJH9rxvh5rl5sa9c60JwUTOp+E4zX64WlOIYruGeqxN20Z3O81PTZInwhgKcbuEvpUQ67y3+TDCCMFIPseOwX729fcROw4yyQvQ6YE2QjSNtPSzA+ViM1Y+HbddH4LBeoPA86j6XpLk8fBojqmHEkR1tKGhjcAQWKXMZM4nktIqkKSkkvMBgas1jjZ4SVnMXKymD1EwBlfbl1rq0S/Eqq3KRKu3WhpL1nauCdnDuJQtx3eOPYUfxZTDiIFGwEC9QS6Kpu5bUhWk7nvU0pwESZ8756yW8zlYyDOe86n4niUf2p4Lazin55qUfEifU2nzYzitIV0t44eW8AoAKZnM+ewvl9gz0NckAdNnNs37Qsu7Jhcrhqr15ntm2iAlY1rmyLR97mqNqzRjhTyVfI7xfK4ZFpOuTyWsaqv1HZCLbX/SY9re8b3eo8YQOZJJ32sjH9K5q/tezzXl9VBGtLYeuA51z6XhOs3cLZ3XbZKypgd5ld7TFmXU1Dg65qu12Za10DwqeT+r1u8Pg+mebgOYiUb3F0LYkJMP/O8R7cWMMZiv3pKQDy1oRLB5vyUfWlEP4aprD9tuhgxPZaTvrCfz56mGLAnl44AQYi3wz8aY85PfHwQ+ArwGuBSYCdwOnAWcA7wt+XwO8CDw5l4hGEKItwBvAZgzZ85pX/3qV3/1gzkC7G4YdtV7G/XzC5J5+SN/AO4aVdN6mU4b6vaETE5OUi53KxruH1f04hmkgFX9DrlfMcXWULC+ojhCzoA+F07oc7h3TLUROSmkgNUDDj3SOHRhT8Owc5r7IYAV/Q4bp+lb3rHzA5b42HCIMfQqJZgifclOh2k9ZofCoS72y7Rl6KkUgPQPxFTbvWTO5lB9Oky30rmTiZc49UovcBrsVo8ti3mqRJhK9tYpTbYGQmftabfFg9nV5mH+aInkWun40z60H5OGV0wzx8k3slW+3wPSpMEMZsprJ9o9eEbQPKbzntpQndRQSk7u7Evz/KnxdOrgU2WJMKbtu+Z5ovXk6ZZGYpSkSgWmX4O271PftTYvsMSRkQkZeIi1LHooYmRTSWLHrhE9OyzN1JxPzUn7gfZZ793/D//de3AkvO9dHwCst77VcJrWCwtd6yYlDO066/3ukUnYRTMRIpAqYrrab3l/tX07zXuty9jt0Zam/dkRWDK2ixA85LvRXu1InkHB9O/S1nvXCZU8b21kV2vbzXbb+5A+476KESZVcrT2uxNTfWib70RJoHpukO056edS6zaD2ipMQDdJUzP1UDR7396em+Sa6H33pvLc2JAdkuv2XgfVuSUKe6tdK7AzlCztq70Czee9Fw71Dkg7ZNp/7X1kL6I+ufbUB9Os+9bjD/GtADhp0SFDAJu4d/vhj2mFI2H1wsd2TobHhen20EcLLrzwwqdUAsXDYU1urvn+wtc9qddctPmjT6k5zEIwHgeMMXcLIWYLIeYDs4BR4BTgK8YYBewVQvwcOAM4r+XzXUKIaSlgY8yngE+BrYJxtGSu/caOkPffXqXSQXT3ufC51SUuWOj3PrEHrrhmnFsOdssGVvVL3nVBd5Ki6TL4XnXzJF/fEdLp5C67sP/8oV95HojRUPOS74zZfAWHgjHkJXx8dZELji/wV9dOcMOBbs9LnwsHzh/CO4I/+t/cEfLnN032jJ09viy59VkDvOLbo3SKGxwBr12Q4w/OtH+MlDa84TtjHIi6PTtgN01+jwzghjQPhNN+TssmSCYy+g4bb/qNP3R5ddJeOUmiuF6SZitn7/AWtcxMr4R8Buvd0lI2JdVerChG3ffFliBsv65p/a6XNyqRRvtJ3O9EIU+YZNX/QHkdH5hYaTe/rWNKLIXp5ieUkuF6ve17DUzkcj0rRcgkc37QWWIvOa9n7DAt98EYclFMX2hDKyZyufaxJmtkRrWGO82mOJaSgUStcaCv1NvgMoZiEDbLDsJUeEfqNTTG2Ez3QDlorwaQXisNrwgch3wct4UYRFLYPA2da8fYfB2unipviIF8HFt1RYvXM5VWp4abJSt63C9jc2F4ST6D0HEoRd0JJ8Heo0KPNddwHA6WCywYGWe8WKBSyNs12mGopdfzoxihFeUonjLqjKGvEeAr60nWsodpZgyO0hTiuPlsxs0YdprrQAtBw3Wa4Qqt59dGDaVBwfYf1ZqVK+Ikhp2WuWpF+sy1hgg5WlMIo2ZZ0tCxYTESENqSKYUoJpJTuSo6n+1ISmLXbm0cpdqTT7ZcSypb5aUz1EQDuwf7AJsYMRaCoaqt4FEMI1sJogWBlESOw8KxibY1mV4pSJIepsSG03K/W4mBuud2PxvGlsH0krXUa/04SlHqkcxUAyPFAiJRmNgXS3f7+Sgmp1QzbEdjFRzCGI49MGrXgxCMlApNFYGvpv6opHlItJR2Lo1h3thE832ggYPlUs9ra2yYQ5pnohiEzfUQS0HN95v3x4kVEtNOere8h/xY4aqYWkfJ3dbrFcIQI2zFEJ2QG55SFOLuvw+3/uWZnPixu7sUbkJr+usBKZfXJMyw67U1b0fn9XslQjVTX1v1AUxT9WeKaMuHUTOsI4US7eRwqipqe+o63ttKyh75U+yz6pdz8MhrjihXQ/yPH4NbNnX3N+ciGh3qWCngt89A/uEFh203wxOHo70KRobfPGQhGI8f/wO8DHgF8FUOyVv/Uj7cowYvmu8xMydpLTLhCpjpS140vzPv/qHxT6eUKDpTC1AARQc+sbZ0qNO68DcnFig67ZNedOADJxaelCSUQ77k5Yt8CodKGm0MjoCTBiRvWGq93h88qdB1TtGBK1YWjoh8AHjBPI9hv8O3lXhtrzq9zIAv+X8n5GktviGAggN/vnIqz4QjBV85p0zRoakYyUu7T3AEIIQtT9Y6pOSnTXrdwwDVUloJf8tnw4dTyiTGR5OQSCCBAoZ3rsw3N2JNyX7KQKW/G9M82ZUC48qmcZC2G8skfMIYZBKLHXkulbxP4EhiMZVzwm6sO8beMqdd4zeGQhSRa5HcxkLgKk0xtrkVPG0lubmEpGkd7XRagkLUHeokITEwuuexEEbThqD07HfntYWwFQHoXQki/X/gONO+3EqJUZEajNNJ6w1T8x332MSbZK31ykSfInBdKoUCoecRuW5iCNufzjCB5hBINusJkWB/DLGcCqPRSaLE1tCa1rCH1hGlRIgkWf+OVTBo0X1fDTYHRq+5iB1Jw/N4dHiI/kbAwrEJ5o5X2sNxoPl/TylwXLSQNkygETBUreMm5EPnczg1ATZ+fjLnU835VJOkoilhYBIPdt1xmjHxneEyKeLECHW1mQodSibZdPxoyyo1FScyIeJC12kaRb62oSu52BIJ1shUDDQC+hpB0/Bu/fG0blYk8ToNvqRdq3Do9mRrbDhW7DjEUhI4Nulfw/doOE6zekjrT05riuFUFaDmpZJ/Ha0RWlMMAoaqNYotfW49zp+mmofUGj9WvZUHLZ73zjUYJeVQjWDaZy6d75REMMZYxQ3Y35PDXGOYPVlj8cg4i0cnmF2ZBCxh0JfkHmmqsYTgQF/JllcFGu70fi7XTK0zJSWVQp6x5Gcyl5saU1OV1KraoLkGbSJWZSvq9BprQoJ7CXEik2v7Wrf9TWidPwM9w+uMEJZUMlY9YbDv9tCZhnhomevO67Rez3ZQTks+NOdBayYL+eZ9SuEYOz4/VhRi1cxv0lYhqOXd0fbuaZ1PwHMl/NFzjjhRpPOPr4S+POSSe513YaCA+NiroOBbxQPY7weKiPf+1hG1myHDUxnmSf55qiFTQDx+fBX4NDbc4nxsqMXvCyGuBmZglQ9/hp3r3xdCfAGb/+FC4Mu/lh7/kvCk4OaL+vjje2p8a6fdcP3WfI9PrC0esdGc4qxhl5sv7udvH6xz75jixH6H96wqcNqMx7Ykl/c73HLxAO9dV+OmAzHzC5IrVhZ42aIjV2M8XnzqdEumXL3VeomHPDh/lsdNB2MqMSwuSN6xPM8rF+fwE1LkvFke33pmH++6t8pDE5o5OcEVKwu8bdn0WcI74TuCO57Tz8tunOTOJKRlOCf47Bklzp9jCaEPrSmypCT52PoGBwPDOTNdPnJKkWV97ezHxXM8Nlw2yBe2BOxqaC6e47GwIPjXjQ22Ve3vJ/ZJPvFQjVtHYiJE4j23C3t2XvC8eT73jUbcPtaal8IghOSey/poaMGAJ1hadrhqQ40/uXNyaq8oQCI4vs9hS00T6MSQE+AJwUvnO1wyx+dFi/MM5iR/tFLzkfsnuf1AyCkDLvePx9w6psDYDaJIPJufOrPMcxbk0QZibfjqIzU+tzlgR2AoOAIUzHINY6EiTDZbWkoaOR8JDEjDZbMc9tcVFy3M8/rlJb66uc4Vd02isAlGXaWS8AHbZ0drilHU9BIarIEuoK2qgYBm+IenNaFwmEqP2A1hbJlPeiRzL0aRTVLXokYphBH5JO9AMY6Jcx6uFNTiRC9ioBBa4ypNxnioP2LThXEghE24GXd7dWMh6E+MQIONKa/53cnu/FihO0mMVHre8jtMNzu0Gc0IQSilvTct36nOMSQG9HTJPJuf9jjPCJuoMRJWQdAkUxOVQquB6WpNw3XbMtgDaAwakep3ppoHxov5poFY9z2KibKhvxFQzflNhYg0hlIQNCe95nu4ShEJ0cwb0UjImOFavXvijC11+vLXnsy3f7CJkbEArRR+cr00bMZP5sjVqReaJMxEN43jhudZ72niUfaUIkoMUINod7SmBE6sGKw3bJUP17WJbeneUAmgEIa4iRojcJ3m+u48zlX2eT7UX6X0vrQmRHUwxMK1eR20TfBoDUKba2G6p9PvQSKl1xAGSlHUmyRsOc5JjcMWxY2rVId3ursDjrFGvsAqEwxWwTCZKAEcZQkZ7UxDwJmp8qPCGJtDBuvZDx2HXAuJkx5XS6qAwFTyVoOtwmSMTWy7a6DPklDTjnrqfdmaCLcrb0YLyZXOZ+e0XDoGAAAgAElEQVT3CIFyHVxj71ks2vOSCKDUCHp73ISg4bq27GWL+mLa9x1gHIdGZ8JaKfC0wcSqq9RnikjKZjngTrhvuxjvL15I5dy/xewa6/o+Vc5IY8i5EvORl2Pe83VMqJrzIxPiE7CKvd89H3HjBsQj+yCM2wwVJQTSEeQcgQ7jZkiTdCTiT58Pf3LptOPvhFgxH+fmv0F//hdw36NwymLkG85DzO7HnHos5qprYNNeOHsZ4s0XIGb1H3HbGTJkeHoiywHxBEAIcT9wwBhzobB6wX8Anod913/QGPO15PMrgYuADcmpXzpcGc7TTz/d3HHHHb/C3j818FSQjzWUoRIZhnMCeZi43ica1qiEkvurv64xhocmFJOxYc2gS75FaWKM4f0P1LlyY4O6glMGJJ87q8zy/m5iaW9d8bmNNW7YHzMzL3ntcQUumuOxoaL56Po6d4/EnDTo8O6VBVYNHJqYirThw/dWuGpjg6qCRUXJP53Rx7Pn9yZ0NlYUO2uKEwdcZiUlZA8Gmj+6vcJ3doQo4NxZHv92Zpllfd3X3l9XnP/DEfY3NI3YKlwAXGxme78RIrXBdwRzB3w21TSRnpqnKwbX8wNvDVrCA7umjMLIkS0bXyuXzyd7c2msKiUOI9xYdxmskeOghEAoTU6ptlzvBVfw3y9dyPaqYudkzMdvPkDQUM1zg8TI7ZI2YyXHM2p1jBRM+Lne8n+lcOMYv7mJF03FxKzJarOvoSNpuC6h61hpvbFhLxjTVDi0etRby1karIGLsRn+O1e6AeqeTUAnBSwoSvaOBS19soSISVQv6fmlFtl365ia5f+mCa+BdgmhSHJteEr1NIwxBpN4MF0zZSgbY6sxuMY0c1QcKBWYLOSb5/XVG8yu1olbvKOpGZNWbQiT0AORqG/SeSw3GsyoNQgcm2i1LYQpOSYfRlz6stWsWDuPD/3djcTaEmuu6VAJpPxOc0g2WeiXfvTXFAcFl5/1N802U7WODf85BHGkNcOTVWZV60kFEclIsdgV0uOHIYVYUfc8ajkPV9lypr2MyljY6iD5KOpZ+tNgDbD+5N638KAYYCJRg7Te91wUUw66jViTzONgrbsvBktklZL1mj6n04U9RYliTBi79qWxiRUHq/WkEk7L8SItbyqp5H37fmi9X8YmQE37HKYERIfcvhhG5JRKnh+Xuu9bsjCK6K8H5OO4LeQidCQjpYJda64DkcIxGpmqCzoIPZkQjL2eIUfZkLdKPtdUTzTnFEvspYE8IsllIjragKnKEum5xpOIFQvInbGU6J6tOAtn4N++GbYdIHCcnmEHKVmZcjy3/+WZrPr4Pd19Tp7V5rVcSe7ClfR99s1orTEv/QSTt27umGsDA0X8t14I37sXs343NJIyUAUfuWoBuf97J8KR6PEak5d/Er1+FyTvUP+lp1N8/0tg/W4o5eCEuQgp0bc+QvSKK9G1EFe3hDNJgXj38xF/9gJMEMG/XQNfvAGzbwIVxmjXQSydjfuxVyIf3gNfvcm+Fy8/C151DsLLfJNPNxzte2ghxFMqf8HhsCY/13x34euf1GsueeQfnlJzmBEQRzkyAsLiaH95Znj6QCUeXvcwqp5abPjyI3V+uCtgfsHhLcsLOMDN+0LmFCQXz8+RdyWBMrzux/u5fV9oFRNS8K6+h/it51zI/JLLrmrEx+8Y5+sbq8QGGq6Dybk4UvCHy/KsmeHx7EU27ORH2+uMNhSjkxGfvmecKJUAJ/HbButVX+QaaoEmVIYVM33ef/4s1s6dCruJlOGabVWu3VbjkYmY7ZOKA7WYipuEUrV4YfuM4j8unMnxAy5/evMYd+0PaaQO38TgySf5DYROlQBTczdcrTW9vwZrwKQez9QL3iQFjDU6lEhL1k0h7wqOn13goQlNXA9wotaSltagTCsP5F3BPz1nLu/5/g6qsWlmc5dSsGKGRy3QBKFiYjIi1ys3gzFN7/iREhBS2VCBSMqm17iVPCHpY2vOAj+KCJLqB4GU1D2v23tqbB6HmZWqLeUq6A5PAequzSHgak0ujm0IQxwzd7yCxApnKvkcWgjcNOwhyauQemXHSgVC6SCUotQjLj69WPq5oxSFKOYLrQREOn9J3oIgMbgPxclKrTlh7wEElkgZKxW7DE0tBKUgmJojYGal2mX0a2Ay5xO6LoNJbpLWpJIpKWCEwIsV5Y6wJgMcLOSnqlIkEMYwXK31Jr4ch1mTtTblS6u3uRBFzX5GPdZUemwnqWiAOAmR6K/VbS4PKUBrRkpFqvl8h5IoxlOWuHCT/BdeSwniqEMF4ceKYrL+7bzlCF0nUbhI5kxUmiEPIrkHWkoqxRwDzzqB/DHD1Dfuo3TSAtSeMca+fS9gcMMpNRSAF6tmiE3aV2EMuSjC10mIj+c1k2YiBYNvv5h4vEb9SzdBrBMFVUxnFhPZoR7Ccyh9+HIKl5/Rlt9DXf8wjddfhalHhCkJkSAXx3ipcgHAd7n9ijM5batL7Vt3IaTAaIM3dwCx7YAN+dMahssU/ujZ5F9/bjNcwRiD+s/rqH/0B+haAFIiT1lM6d9ej1w4A6M08VduJv7SjRAq3MvPxH3jeYh8exir2rgH/egIzsr5yHndebGa66Qeon9yP/rWzeBI5HGzkS87A1HqneTYVAMIY8TQYwt3zfDUxtG+h84IiMePjIDI8IQiIyAsjvaXZ4YMh8Pd+wPuPRCxqOzgPHJr13qOtOG7OwJ+vjdkUdHh1UvzzD1EcpF6rPnALaN8fUOVQBlOn5PjQ8+cwaphG35kjEGZwxMprdhVVfzHAxVu2RdScgSXLvB51Yo++ny7uQ6U4V/vm+DLG6qM1BUqVEgVIxGUPcFlx5V51Yn93Lm7zsMHQ46f4bN6yOV939hCpA1hbPAcQaAMlZxvjYCEfAAr2R8se9RiwzGDPsuGXO7bWcd1BC9ePcSrT52BQfCLbVXu2l5l2/4a9UizqaKoGIGUAqXhry+YxUtWDLBjLOSqW/dz544q8/o8fu+sWZy9xCZfrYWK9333UW5+eLRNFi2wcmenVcrdK3SD9vAQR2nyLSX90u9TQzI1eKYjIAxwsFhsJxgSj+tAvUEujilGUVuYTXpMmslfY43des7HCMGMyRp9QYCSgt39fU3Pb2pQDk/WqPseg3Vbjq/hOkwUCtOqTOz1psbtxjH5WHUTEICrFfPmlRnfNkrdc3uXq03nyhiO33sAx9h10fC8niSLmyRLTJOn5sKI/kbQnG+b60IyWszjKc2cyiRKCKIkBMpAM5cHWAKlHIRNzzfQLMM6Wi529SEfRpTDsO2zWNhsEo4xSdhThDA2x0WaXLEchG3EREpspV5/RXs+pLQvUUteAYHh9Pe/kMLKuey/bSubP/ojxvx8ezUOR1BeOMTA/lGivRW7TrVu5u6w69ASD36LSspgc4SMJYSGStZJXin6avXm+bG05UNF0WfFl95MYemstrkId45SuX4jaqxG7br1NNbtRDiS0iUr8WsBtWvWg9aWNBDCJn8UAiJlyUggOm42M977IooXr0LXQ3a+5lOEWw5gaiGOJylMNmxhBgHuCfMQvkP80C5wJCLv0feRV5B7zuqe60zdtpnwI99Fb9gDi2bgvHAtzoEK4qs3Y6ohesU8xOufhXPaMVy/62EuuOACTD1E7RnHmTuAKPjo8TpmrIpcOAMxTVhLCr1vAlwHOSMz9jP8enG076GffgTEPPN/i55cAuKYTR95Ss1hRkAc5cgICIuj/eWZIcNjwRO5nk0iIX+yw34eC0arEd+7b4RtIwGr5xdZs7jMTzZOcNfuBhOhYSAneeaiAi9cNchA4bHLf40xPHQgYDLUnDQ7T8E78vzKWw42+Oef7uTe7ZNIAReuHGJBQfDNW/ZgDNR1S7LVNNRGCDxHEMUaIWycfS6MmmHpnit47UWLee4Zc3jbv9zN/uqUR7g1Lt5LK20k7SshqOT8pkIkF8eUginv+bteuIQHRiN+/rNtzUSLjtZNLzeAH8VUClbpMHOySjmM2Fsu0ejw6KeJ/TylGaw38JO8CWOlImY6AiIJrxHJ//04Jhcrrv7x33QpIGYNF/i9Dz+XG796D3f/8GGqfjepkKJVATGeT9QHnZdOxhrLdlLIUYpCGCONJnBdAtexcfJRzMxa3eYs8P2eJFIuIXRysUILG46Tyuv39JV7zlnR2JARGcU4sWK8VAQzVf5WJuSVo7WtemAMpTBqC4+wSiWo+/5UOEByTio+ak9GaDj2VWdy3NsvaBvCrp+u574rr0OFCqMNgyvmcPpfXwb1kA3v/G+CHaMgJcIRLPnjS+g/4xi2/eU3qT+8G78e4iTVOJQQ1F3X5omYP0R59QLmvfYs6g/sZvKBnVANqK/fQ1xpUFq9gIV/cgnF5XN73su2KY6VDQdoIZ+iDXuIt+zHXTYHZ2YfwTdvRz2yD++UJfgvOKVLCWCUpvbzh6nfuRV33iB9LzgZoTRIgUy8+GrvBKZSxzl21mFJgSNFtufI8HTC0b6eMwLi8eOpRkBkgV4ZMmTI8BSGEL2r3h9NGCp5vOacOW2fvWW4t0T4l4EQglWzfrn2jh3O8y+vOK7r80tPmcWtG8dwHUGoDLc8MkFf3uV1z5rHcNnj5+tHqdQVpx5rFSJfvvZR1m2ZYEafx8vOW8gzThwG4H2vXsF7P30fYTSlskhp/9hx8JQiTI1pYLDeSPIKYNUhCaSAc85ayPJqxPdv28vwyARd+hhj8IThJefO5xs37abmexTCqNuQtpNGmi42NYjDVIIubNWLYhLKkbYNII2Ny/fDCE9rehWHLJR93vzh55IreJzzsjVsvGMHeqxOQ3SHHwhtmFWZyhPiqpjAc3uu6VgKHG1QLTamchwmC1a1UCj7FGPrYc8JD2p1W/FAqfYSrAkZUA4j6p7hYLnUzIUya7IGwKzJKnv6+4jTUqzAwOwyz//wZRQHi4xeu57ahr24Cwa549O3oIIYtG5WPMFxCLEJKqu+RyGKm6FI3sIh/LOPIx8pxn6xKemXwcSa4976LOJ9E2z/+l2oWON4DktedQZLf/+8rvmYf8kK5l20nOrOMdyiT3449bSXWPO136exfQRVDykeNxvh2kk74YtvorHlANG+Cg6GsU9dR/TIfgZWL2DWn1+Gt2hGs/2BkxZiq4j/chBut4LLO2Eu3glT5EXhjd3jamvDkZQuWknpopXTHuPM6Yc5WWLDDBkyHD3I3PuHRkZAZMiQIUOGDB2YPyPPS86aMpReela7x/cFa9vl5396+Qk921m2sI8PvOkkvvijrTyyo0IYaVwgNCTefJcBTxAbQz0yichAWMahBWtPGEJKwcw+nz99xXI+9em7ELGaynqPlfGfee5iXvzbq1i6cjaf+Mw9hI1D1Qi28JSVwNf9qepBkecSGkMuttUwpDHkBAwO5fmD95zP5z5wDeMHa6Dat1nL187j+a9bS75gPdmFvhxv+OjzufenG3nohq1MjNSYjA2xgVI5R//eEfrq9WZlDSMl5ZlFGhMBKkzyfBhDSRoOOB7FMMJTui2fgRCCNZccz/lvOadZMlgrzU/f8z0qd2whlyQYjJJKK65S9AUBIknCyGSVsf4yQ2cey8pLjmf8Fxuobj3IklXzKJ+9lEjDrONm0j9vysgdvnQ1w5daqf+5K+Zz2198C6NsvpG4EdFfr1NqBISuS62UpzFUYuUfX8T8S1a0lTVWQczI7dtQjYgZpy3GHyoCcNz/u+iw9w1ASEF50VDP7/KLZ/T+/NiZ5I+dCUDxrKVHdJ0MGTJkyJDhiUJGQGTIkCFDhgy/QpywuJ+//b01AEzWIm68Zx8HxgJWHNPP2hXDyMQgfXRfjSv++Q5qhmbiTCEEQ/0+b33xsmZ7566cQfTCpXzlO5swyuZz8DD05SSXPu94ANasnMlH33suN9y2i2uuf5SRatQdgqEN5YZN7Fjz/WZegjQ3QeB7zK7VyPXlGZo3wJqzF3LqM5aQy7v87l9dzP995g423bfb5ruQgrd/6NnMXjjQNf5c0efMF53ImS86ses7FcRsvXYDux/cQ/mYYVZetgop4IEfP8wjN20jV/I56bKVLDltIRvveJSb/vte6nsmGMq7zF0xh+PPO5ZjTl3UZtQDSEfy7L97AQ9/+XbWf/F2vEjhak1QzMPsPla9ZDXjm/YzcrBO39x+nvXcFcxekah0zlvW1c9DYejEeTz7m2/hwN2Pohoxw2sX4pVtBZ54MiCqNMjP7ke63eEBTs5l1rndCpwMGTJkyJDh6YosB8RRjiwHhMXRHr+WIcNjQbaeM0wHrQ3X37OP2x48SLHgsmbZEGefOIzXw3h9eP0BrvnJI4yO1jlh+Uwuec5xDA0Vuo6bmAz5q4/fxshYo/mZSEpoOsYQui5aCGvEOzZnwPBQnre+bg2LF/Qdsr9xpLj44osYnxjnnnvuOeSxvy4YYxjbPsr+TQcoDhWZf/J85BOUKyDD0xPZOzrD0wlH+3p+uuWAOCk/z3xn8Rue1Gsu3fj3T6k5zBQQGTJkyJAhw1ECKQXnnzqH80+dc9hjl6+YyfIVMw97XH/Z5+PvfSbX3bSDn1+/ncpIjcG8ZNHy2YyO1nFdydnnLuH0sxYyNhFgjGG4B5HRC67ndKkPjjYIIRhaMoOhJb1DEjJkyJAhQ4YMTx4yAiJDhgwZMmR4mkNKwUXnLuKicxcd8rgZg09cctAMGTJkyJDhNxFZfMGhkREQGTJkyJAhQ4ZfKYwxVLccAATxrD5+fsceDowFrFw6yJknzsTtEWKSIUOGDBkyZHj6ISMgMmTIkCFDhgy/EtRCxS9u2sGjn7+ZY3bug1hRN4IH581mvJjnxoE+/rOc5x2vXsVJy4cfc/vGGLQyOBmBkSFDhgwZjhKYztLXGdqQERAZMmTIkCFDhiaMMTQizcSBSR794UMUo4hlLz6ZrSF898ZdjNUV+1yXDQcCnCBm064qw4Wpc1WlgSz4fPnm3Vx52yhSKVi5ArliOW+48U6OGRlj7kSFb689EZ1U3njj/+3ipG9u4p/P7EM8vAdnTj+F561BFv22vmlteGDdPrZ/6x7KP7kPrx6yZXiIzcfM5wVvOJW15yx+8icsQ4YMGTJkyHDEyAiIDBkyZMiQ4TcAcaXBtrt3sO6aTfxU5blneCZO3uWlqwd52zPn4ErB9+49yFXX7eT4+zfzO3fcRyGKiaRgwyd+wnUnLOW7p6xitFzEiBiEi+MKJhT0BzH/+eLP4MaKUiPg66euZsusYZTjgJxSJ3z23NN5z/eu5QvnnEboOG2lQde5BT7ypQd56/W3Ebkulb/9Hv/+5t9iX6FA/mCF1QcPIusRCzfv4oxHtuNpDcDwZI0Ve/bzFQXf+Mr9zJ+oUHLgfreIBnJKMTSU55IXrWDN2YtxXInIvFMZMmTIkOFXBJP9iTkkMgIiQ4YMGTJkeApB1UJwBHv21RBKMXfxIFJKjNJUbnqExiP7yB87k/Izl7Fz40E23fEoEz9bz+TOcSIp+e8zTmbfYJlQOBAYPn/rfr593XaWLyxz96hi3p4RLr9rHeUgRAKeBiUEZ255lPVzZ3LbsYsIPc/2xXHQApSUjPs+AzpgX7lEIVLonka+4KbjllD3vDbyIW3rziULuX3bTuZOTPLu376UuTvG2d+v2d/Xx/3zSrz25js5a9M2xgs59vWVkcaQi2O2Dg2yfcYgWgg2FsoYYNZEhRn1BgKY3F/lm5+9ky986X42zR7mlGVD/PGLj2PWQO5XfbsyZMiQIUOGDC3ICIgMGTJkyJDhKIEKIoINe/HmDaIGiuyqxHxjS40fb6/TqEU8++d3cty23Xz0ueezZeYMpDGcsfUO3n3TLQzvH0diwIDIu1yz9Bh+smwpQmsunDS4fWW2Dw+yp7+P2HWa14xcl719fWyZdHBdh3I+T18jINUtVHI+lXwOYeD56x7m+ese5jPnnsGm2WkJUBtG8e2TT+TszdtYODZB5EqM7M7LoIG67yVn9Bi/lFy/7FiGq1Vecdc6hDEYIfCjmM+ccxrXLT+OwVqdeZUqjtYgBIHnMbNWZ8WefTw4f26z5QP9fQw2AhxjP5EGSmHEULXOyK1jfOCWzQypCNGIUFJSy+foVzE+mupAH6NIhgbyXHb+QlYfP4Qp5Ljrvn1EkeKkE2cxf275CbnnGTJkyJAhw28SMgIiQ4YMGTJkeBww2rBz3W7u2huwYPksTl1UQhu4dSQm0nD2sEvOObQe8/sPjPDBa/awsVhmwfgEZ22+j7rvc/uxixgv5EEIXnfTHZz74AZ+5y2vpu7b3AgauHPxAj5qzuIj3/xBs71N+RJfOHUNkZC8/K77cY0BIdjT104+pBDGMKtWJx/HzKrViB2JGytCR1LJ50AIjIB8rAB40w138FcvejZRS1uFKMLVGiMEC0cn2DR7JrHTfi0jBadu28HNS5d09cFRitU79rB2x260ENR9r9l+6Dq89YbbuPqc05CAozWt9IanNadu38XDc2ejEuJDGEM159PfCKauYQx9QcDOoQHO2LqD/kaAwJZMM5M1ts4YxNWC4zZsZ/VklV3DM9h80zoeAWJHsnH+bEZLRb7zvY1ccN5iLn/xCtu/UOE4AsfJkmFmyJAhw286DFkMxqGQERAZMmTIkCHDEWLXxv3c8r8PMLJrnBmzy6wyAf++U/PZs0/Hjz3UzgmG6nsZLxepeR5KCKSAN8wRrC3Bmjl5zl5YQCbhB3fds4cvXn0vbqXO8+p1zi0U+J9TVnP1M89g4ego52/YghaCXyw7ljfdcDvvf+ElBG77n+7Qc7n12MWsnz3Min0HqeZ8PveM04gch0IUUwwjAKTWLB4Z5eG5M4nc7j//0tgt0+6BPr52+hruWzQPg2D1zj1c+PBmcko1jzUYlu/dz7oFc0krno8UCwwmIQ8LxiaYM15h70CfJSGMwVOK07fuYKxQ4MSde7h38XwMAiMFrlLMrFRZs3MPAksUlIKQKj6R66ClZPPMGZyyYxczanV6mfkGKDcCxouFts9aoYFYOiwcGWPNjt0s238QV2n29pdZP282C8cm2Dh7mPsWzWfVrr3MrNYIXcfeR2NYvmMvOwf7qPs5Nnz9Hv531ygP7A/YcaCBFoJB1/C7w5qZZY89S+cx87QlzJ3f95jWWIYMGTJkyPB0RkZAZMiQIUOGXylGA83ehubYsnNYJcChoI1hLDT0uRAbyDmCamSoxYbZhe7Egpv31tg50mDpnCJe3uUz945z884azsFJirtHkK7D5LFz2F4qM68oueKUPs6a6XHdzgaPVmJOGvZYPuRRSEo8/uTqO1n344fBgBfFrP7F/fx0yQI+/+JLCT2X0HMxQKWQa8tvoIHP7NYcv+8A+ThmadTg9csKXLcr4Nooh1m0EEdbU/m377qfN956J/908bnsHhjg1mMXc9z+g1yyfiMTxTwb58xC9wht8OOYTXNmsb+vzJfPWksl56OkZCKf47PPPIN54xO846c3sGrXXq5Zuaz9ZJP6agyhEHhScvNxS5pjuHPJArYND/GW629r+nQEAq9JSNhPtZRUPQ9XayLp8IxN29gz2MfW4SFcrelrBDjAxnmzKcUxp27fSd11EQYWj46xbP9BZAtjIIBCGBG5Dg3Ppe77OAaqvs+OwQF2DfYDsGhkjGNGxnCMoZHkpgBbBq0chG1DdYxhpFzkrdfdzHH7R6wyBFicVOa4ZsUyfKUQBspBSOBOJcrUQhAKwWCtwd7BASraZ/TuvdQdBykdhmt1Lr/jXm5ZvIAH58/BuXcD+rubWTIjx2IT0jhYZe5wgZPXzqV82RpEXwFjDOamjZiHdiGOm404fwVCSowxMF6Dch6RqEDMZAOzbwIxfwiR98iQIUOGDEcfjMiSUB4OGQGRIUOGDE8hjAaKDz/Y4Bf7QublBO9eVeQZs60c3xjDTfsjNlYUqwZczhh2D5vtfzzUfPDBBl97NCBU4CjNWKzRSIo+LCu7rOyXnDvT46ULPa7c2ODj6xtUNQx5gjcvzXHpPI9b9kd8amODRjVgjjTM6POIfJeR0LB9QpGTIMOYVX2CUt6hWPJZ2udScmFZn8tJgy6f31TnvpGIs2a5vGNVifWjIZ++b5w7D8bs1g4jrocR1jjrCwL6oggMuErhKY3vCJ65IM9zjinx7Zt3s2UiInYke3MFgiQUIHAkUX6AeNkMOwEGqBrWT8b84kcjrN25G5Nz2V4u44YxrrIhBUoKnnf/bhYbaxifsO8AhSjia2ecTMNvNXp7TLIxCGOouy4vuvchpNH8aGuOm5YdQ+i5CK1Z++gOTtu2g4brUqyFrH10FzctXcLxe/exfu4c3vnTG0AIVu7ex4Y53aENkeuwYHyCUhByxpZHWbVnH/ko5vrj/z979x0l2VEefPhXdUPnyXk255y0K63SopVIAsmSMMFIGMOHCSYZjMnYB9uYYDBgDAbLJhqDZHIQAsVVQHmDpM05zk4OnbtvqO+P29PTPdO7ytJKquecOTt9Q3Xd273TXW9VvTWbe+bOpGAYNGWz2J7Ph26+i29tWE86ZKNE0MgvWCaelBj44KmqAIpnGIxEIxxobWLewDAQTIHY09465TpHYtFyox6gJZ2lczSJa0gGEgmUDMqNFIq877YHqcsVQCn+sHTBlKSUOctkMBYlZ1t4AvzS7u3d7dTn8rSmM7hScryxnoFEjLZkmqJpIHyfsOMyr2+QbNjG8H1MzwcBaw4fZygaZt7AcDk3BBAk2/R8Zg2NsLOrnZDjYPoeRTHpa5IQweobSuEYBnnTJF4oIjyfgmXyo/Vr8IQgZ5lIoC2Zwj7ZR68K8lsM9WfY92gfV37sehJXrELdtgsxkALAD5nQ2YjxjovgC7+F0WzwfoqGIJlD+QrfkOQsk1wsgprfTvMnLsfsbkTMaELUCEw9Gf7OE3j/czdqOIPxihXIy1cjrKnTdmpRRRf1m62oO3dDdzCu9+kAACAASURBVCPymvMQ3U1PS700TdO0F4YXXQBCCJFWSp0yc5QQogG4Win1H6XHXcDXlFKvFUKsArqUUr97gs/5aSCtlPrSU6i6pmkvcpuHXS64NUnRn2g4/a4vyQfn2XxseZxX3TrK/pRLMN1fsKzB4DcbG4hbtRsmjq+44LYkB9I+BR9QCrO0tCH4pPOwueDw4Ijkf48UefeDPp4olSUEQ0XFF3bn+dKuHNL3acrk8IFHYxG8jAGZoJ4GEE1mkcDefDAiALL8OhbBl5KwUDje+DUJ7uor8pXtWVAKEPjCJG9ZwXD6UlLCZCiEi6ApkyMVsilGTKLFAncdSHHXgRQgUFaIZMieWAZSKQQiaLxPDswIgScEm6d1cdahY0RksEqDKJ0nPcVvVi4GIbhk13427tqPBMbC4apibNed6IVXiuZ0lkQpz4D0Ff2JGNNHk/Q01FOwLAzf55M33MbcgSEirotbes6GbJ6j9XXsaW9n5vAoUgV37fWbH+HGZQvxhCgneTRdj+UnTlKfy9MxmuSvj5xAKoUE1h8+xqM7OvjJmmU40sD2fOYNDPPFn/2O3roEhvIZC4f46ssuhNI0g1oxFNeQ9CXizB4YxjMkv1q5hGzIJlooYrkupunz/tv+iKEUA4k46fDE6hJFyyIvwJcT9/OqrTtoyObLQQDb8yhWTAvpi8c41lSPqnidhFJYrkfnWApBEAiyfJ9QKs1gNIorJctO9DISCWOUgiEIcKWkO5Nk4+79/GL1Mhb1DuJJgeFVT9AwlKIlnaFoGFyzZSs7u9pr3ImgPOH7OJZVfm3Ha6lKr59QkDdNOpNpfMRE3g0hyEnJbxYt4A3/cw9CTqTjlEUXlTqJ+tsfV70GopidqKPnE/WKGJ6Pu+0wY2/8Dwohm+aoif21N2G8ZHHNOj9e7vX34X7kOnBc8BT+TdsR396E/YsPIOzTf2VUmQLeq74EhwcgUwDbwPv6zcgf/hVyw6KnVC9N07TnE50D4vR0tqSpGoB3jz9QSvUopV5bergKeNVzUitN017UlFK85o8pioqg8Vz68RB8fV+Bv7wnya4xl4wLWQ8yrmLbsMuntqVPWeavTjgczU4NPoiKH6PUe+8pguDD+HND+V9PCOL5AlIpxqJhvPEGfumnrrSiwvjH8fjviXzQ+130Kp611HBW4+ULKJhm0BNcKk+U9uVCNkPxoIccoCkT5AYY/zGUoj5fwB2vrlIULHNq8KH6RnOsuaGqUTleu7DjkbUsfr1yCX/x1tdxqKmBDXsOEMsXMDwP0/Ooy+QQpUZ1aypTXk1CECRgvHfOTAbiMU6Upg+cv/8w80rBBwBTKQylWNHTx/tvvwfHNHAMozw1oT2V5ps/+gXrjhwn5Dg0ZrJs2HeQVz26G+l7dI2lkEqRtS1SIRvL9Vhx4iQL+waxK3I4CKAzmaI5neVwc2N5uy9EKfBTTfqKVNjmd8sW8PErX8GW6V184Oa7+Pvf3sqMkTGk7xNyXaRSzBgeoSmdKZ/rCcGcoVGEUvhArFhkzlD1CISTdQnc0uviSMmxpoYgwFLxPlJCEC8Wp7w2EmjO5UAK5g4MIQhGbSBL/0cMg56GOu6eN5usbZEuregxmQ/01iVoS6VZ0dNLrFg9fSNvGhxtrOdIcyMhzyeRzyNL/2cKpdEQXun9afselEZtuJX/HwCEIBuyOdjeUnV94wGacjCjxntw/F/D9zF9RchxGbMs/L4xin/xX/gH+qZe2OOkMnncj14PeScYBQOQLaB2nsD76QOPeb5/7e1woC8IPgAUPcgW8d/1XVQ5sKlpmqa92L3oRkCME0LEgV8BjYAFfEop9Svg88BcIcQ24GbgG8BvgTXAPwIRIcQFwOeAxVSMbBBCbAcuU0odFkJ8EngzcAwYADaXjplbKrMVyAJvV0rtfnauWtO056tDGZ++fI1WkxAUkNx0ssikDl0KPvz4UIGvrqtd5gNDDmm3VAzV/1aSvh806Go0TCk1WEOuhy8EjjF1qHbY9aaUKwiGvE+UKWrWQxH0nE8OGpRXLhACIQTxQr72RUK5sTkeuChTakq5IIKgC9UJDBUwGg1GbCAEvfV1vOeNV9CWztCRTOFKieV7rDh+koW9Azwwezp729umXLcnJY90d5AJBdNmzjtwhHAp+DDZ1hldIARHmxpIhkPYaRcJzBwe5V9+fiOuEOzuaKO/Lo7wfdqTGbK2RV8iUfVCRgtFFp/sZ3t3O0tP9GGPNwaVwjMkmxbOAaB9LMnb7n6QazecQ86yyiMspO/jmAY/OGcNrmWSyBf4yvW/Iey45V4MATTkCgzHIhRMk87RJCOxKEoILM+nvlDgwr0HGUjECblu1c3tTcR5aOY0usaSLOgbJGeZ5TwSkxUNo+qenqivY39bMwXTJFossvDkQM176UrJ0aZ6lJQMxWMMxqO0pjJV00U8Kblv9nRmDo9yoKWJo40NxIpFDKVwhaCnvq58TwRg+gpXSpKRcMXlWNiui+26QbDrFL1gvpTsb21m7uDwxEYh8GUQ7DmV8dIMBR5B8KVrLEVfIk5nNov73buwP/PaU55/Ov5Dh8Cs0S+VLeL9cjPm1eed9nz18weD4MVkmQLsOQmLu59UvTRN055vdA6I0xOq1hfKF7DxKRhCCBOIKqWSQogW4D5gPjAT+K1Salnp+Fnjj4UQbwHWKqXeW9r3aWoEIIBm4HvAOQRBni3At5RSXxJC3Aq8Sym1TwhxDvA5pdTFk+r4DuAdAO3t7Wddd911z9j9eL5Ip9PE43rNde2F4cm8n4s+bB/zpmT1h9LYgVP8LRcCVjXWjjUPFBTHcz7j7Z1TlQFUDYWvZTwhoWNUjnWY2FczNQKl4eynLbnUK38KslRnw/cxfH9KWQrKyzJCcB2nK0+UVmsoPaqqgy+rpwMYvg+IKV80pFIk8gWS4XDNLyFSKVBBXdqTKWKlXv3J9e6pryNnWwilqMsXaMzkyrUSTOQgGBcrFEqv09TSPCkZSMRI5ArEC8XyfSuYBoPxGG2pDJYfXLcrJSPRSHm1DcvzSIdC5euvz+VpzOSQpXfjJ/71H1CW5LPv/7tgaogQCKUomib++IgA1w3yM6jg3sULxSDZI5C1LIbi0fLr0pTJlvJTTL15Qc9/EEApGkZV0snxe2N5Xvn6Km+oEhPBKKl86vIF7NKyokoE02kyIRvL8/GkKAVPPGzXwxMCr8YSm66c+n4fj654UhKruNeThVw3GAU0yeP53joefBv/3TUktutDXRgxu/W0555Stog62A9ejdEKDVHEzJbTn7+vF7LFqdulgIWd8BhTOM4k+juH9kJypr+fN27cuFkptfa5rsfTZVmkU/109tue1edcvOufn1f38PnzafD0E8BnhRAbCEZedgO1J3w+cRcCv1BKZQGEEL8u/RsHzgN+UpEYLjT5ZKXUtcC1AGvXrlUXXXTR01St569Nmzah74P2QvFk38/vvWGUA2lvSi9+WPmsbzK4b9CtClBI4NXTbD6woaFmeaNFn7k3jDHqqPIUjJoN+FKjvbxv8iiCUoM7WnQYSMSnjFioz+aIFJ2qOX+KoPGbioQxxhs8pdEUk/MQZC0zaGxVlKlKAQC7FD0JFx3ak6kp8wrHh9VHXLdc9lgkHAQlSs83HngxlKJjLIXp+xNTQEqGY5GqxI/12Rwhxw1Wvpg8OsP3WdTbz/7WlmDkyKR9XaNJhuIxPEOy/PhJPnzTHYRdr+o4H/jbv3wjs4dG+PiNmwCFUEHOg4e7O8hbBrlQCHAQvh9MN8nmmT00UnOKiQ9c+7INOKZBx2iSj910B54QHGqq56yRFI3ZHH318SDBIsEHYtGQoOBQSyN//5pXlZNtvu2uB7lkz9GJsgccvI4wf59ZBsCcgWEue2QnnWMpGrI59nS0cs/MaSigJZ2hI5km5XpcuP8I9fk8A4kY173yIhzTpHtkjA///n7+9RUbqnJCABieBxjMGEkjlWLTgjk1lxMNOQ6zhkanXH9PfRzXMOkcSxF1HCCCXXRIFIrEikW2TGshFw5NBDnG76NSNGRzU14jR0rGIuGa99sVgrxtYbou5x46NuV9aXoeL921j2mjyeodSmH41SNwKktXpZ98aSqRKwT7W5tZ0D+EFTIwP3451pP8rFS+T2H1p6B3rHpHxMb6wTsxHiOPg3/iHvx/ur46CCEELOzAvPvPn1Sdniv6O4f2QqLfz9qZ5sWcA+IagmkQZymlVgF9QPj0p0zhUn0PK8+v1eUhgVGl1KqKn6eWMUrTtBeNn18QJ26KcqMfpTBRfG99nP9cX0eDLYiU2rtRA5pDgi+dlThleQ22ZNPGBHNispyEcbyBAxONHV8ITCGwhV9OIlj+KcmFbVzToC6XK508sS8ZDuFJWS4vGJUgyokKQ5YojQqoKLPi/NB4w09N1Gw8v8P4trxlkrdMKvtufSBjW1XXkTcMovkC8UKBUNEhnsvTlkrTOZpk2sgYdmk6RDJs4wuq6lxpfLRFrT/0SkqONDex/ERv1XUI3yfkeVz94Da6RscwPI9Hp3Vyw/LFFA1JzjQnGpi2xfpDR/nY7zcRdRyijkvEdTF9n5XHT9KWzAQNZddDlae+qNOOVKnP5RG+Tzpk8/ErX8FXLzkfXwha0xkkCk9Wn2t7PnZpRQm3ovd/X3szuVLDf3wVimCEiMSXkgOtTXz3/HU4hsFwNMK8/iGWH+th9bEeVh7vpXssRWsmy+7OVh6c2U3BMPiLezfzpvu2sOJ4D6byueb+bViui+04QZJLz2Pd4WOMRSL01NfhSFlzug8EIw+sUsDJL70PhuJRHMtCScHJ+jjKDwJPSkrCrstgPFrukTEmT80RgsKk99bj5Zom26Z1BvktlML0PAzPZ0lPL9NGJjX0lQqW+jQMvMoYX8WPR/CedqXElYKRaIRI0cEyBDTGMK8+90nUsnSZUmL/6D3QEod4GOIhCJkY73npYwYfAMQb1yNevQrCFkTtoIy2BMb33/Wk66Rpmvb8E4ygezZ/nm9ezCMg6oF+pZQjhNhIMPUCIAWc6hv75H2HCaZcIIRYA8wubb8T+J4Q4vME9/hy4D9L0z0OCSFep5T6iQiGQaxQSj38dF6YpmkvTMvqTU5e0cgPDxe4c8BhYVzyvgVhGkJBQ2z7nzTzw4M5to94rGoyuWZOmLpTrIAxbnmDyb5XN/B/Rwv8w44s+1M+YXxmRCXntFgkQhLPh4V1Jn82w0ag+Oa+HMdziuaQ5IFhj6ghePvcEBe0NLF3xOUPx3N8+ZDLmBcMt7eVYmF3jLfNCaFcnzFf0Bo3cRQczfjMihu8ssPkiw+n+f2xHHFDEAlbbB91KfoQNRSzbJ/ZjRZtUZPzWyzeOMPG9RXvvGuE35wMRn70JeI0FIuE80WUgFQoRMa2uLTb5r3zI7zx9hE8BcrzMHwVTAEQgrxpEvYdhArm9J9sqUd4inQ4hOH5yNLKG5U5IwqmieHVGG5eYnkeZx05zsPdHfiGge26LDnZz1/ct4WZw6MsO9HLty9Yxz1zZ3HdupXctmAOf3fDrZAnGOovBG+95yHMyYk9CBrI8waHmTs8wt7WZo43NoAQHGluZObwWM0h/AJI2RZKCEZjERCCVCTMw9O7OevYSSzXq5l7wJGS/W3NLOwdYG97K45pcO+cGVy1dQdmxmd7dzt+j6jqpldSkrMstk3vZMbIGIN1cRJFh2jFKJjyu1II6vN52ktJKx0hCLkeC/oH+cSNt7Orow3XMJjTP8jejmBqQX9dnP5EDFlqsE/WMZbiQzffwedfcRGDiQQ52wpyd1TcC4miJZUl7Lr0J2KMhUNEi0Vylonh+1XHA+Qsi1i+WE6SChByXIhMvdfjU4vGpcIhHprRxXtvv4eo4zJtJEm8UECZMohPlYNuQd18Q+AYJoQszGvOxXzNOkjmYGk3ZlOc9FduZuzegxRDFp29Q3Qms8jXbsD665cjEjUq9ATIpd2Etn0W/+49MJpFnj8f0Vb/uM4VUmJ8862ov7kUdf8BaK9HbFyMMB/fEp6apmnai8OLOQDxv8BvhBAPAduA3QBKqSEhxB9L+RxuJEgYOe524GOlBJWfA34GvLn0+EFgb6mMLUKI60vlHgHuqijjGuCbQohPESS/vA7QAQhN0x6XqCl4x7ww75g3dcBWoy1536LYkyr39TNCvH7GlBlhNX1y2annkq5rN1jXHuJTZz3xOnxhfQNfWF97ukhtgh9f0kzRUxxMezTZgraIwVDe40cHchhCcM28CPV20Bh86DUWP9id4VDK5fyOEOd22nx/X46BnM+aBoMFCRn03krJ+mYT11fc1lPgYH8Wdf9+vhJuL+dFyNpW0KD2Fb6kqsfc9DwW9fSxp70Vxyodb5nMGRiiNZXGkZIj3W1snj2Dg82NzB0Y4ks/u4FZQ6Psb2spF2V7PmaN+fgCcAUUTYORaARVGrmwr62Fgmny8l37q4IQnoDjDXUoKYKRDBV1PdjWjEIggWON9UwfGcP0fSRQlJJUOMRgNMrb7n6QX61cwn1zZ1I0Db654RxesXMvg/FYzd4XxzA42VDHjNEkSghM36k55FIqRc62CbvByBlLKYqGxPJ8wq7H6uMn8YCiZXKkqXFilIYQhIsO2ZBddT2243L1A9sIuT6ZkE0mPPU97QvB/rZmTjbU4QtYeewkmXAIBUSLDobvTykXIBOyKZgG9bkCTZksWdtiLByirlAsvy4To20oBxYMFOdNi5F/yRKaD50kOnM+8u0vQa6Yie+4qHv2gQJ5zlwwZPCTdyBk1my8d3/4lTyT6RyFZWBsXPLkz5/fgZjf8TTWSNM07fnlxZVh8Yl70QUglFLx0r+DQM2xikqpqydtWlbaPgxMzif/8lOU8c/AP9fYfgh45ROrtaZpmnYqtiFYVD/xcdYcNnjf0qlBkmlxk0+sre7N/ew6+zQlC66aFYFZETi7mQ8pxVe3Jfn+njRjeZ9cJASuF+QLKC2fqYCZQyPkLYvbFs+DsIWrBBuGB9iwrJnut7yR7nUzOCtscaWrMIRi+3A9u1f/Jfd9+y6yRY/1h44R8rxTJsvMmwbXr12JUD5NmRxWKWBg+T4/W7Oc/ro4r92ynZDj4knJnfNmMRINBzkcJpV5rKmBnZ1tLO/p5byDR/nZ6mU0ZnPECwX2tLfiCcH5+w9TCNm8but2Xrd1e/mL1bcvWMdIJAy3TK2j5Xk0p7Plx+MN88lX5Eo5ZXWVnGUxFLOoyxcwfZ/jDfXs6GpnOBomSL8ZGF+6NG9b+ELQnkxzzf1bWHWsh+1d7cHqK75fXrlinCzl+ogXily6fQ8PzZxozgtAKkjk8mTCoXLuk0jRIVJ02DK9i+ZslvP3HmJPRxe+EBRcyYr0GAXTZHZzmNe862ycRJThVIGYLWlpjGDUSGAJIC0TXlJjJmbs8QUDNU3TNO355kUXgNA0TdO0J0MIwQdX1/PB1dVBDKUUW/sK7DuZxjMMprXM4NyOEGlHcSzjMTNuUG93TikvYgYrVqxpDbHmJd14617Dnk/9is1jDcwaGsExgrwZIc/HR2GoIPiwp72V3kSMt93zIF2jKW5cvghfSub3D3HP3Jncsng+tyyeT9hxcaQg5Pn88t+/y0dfdxnJ6NSRM/9+8bn89W33ML9vkCu37WRPWzNSKV67dTvNmRwZy2RfW3Mw2qFi1ZI3PPAwv1u+kN2T+nqk5xMrFpkzNLHEZN6ypiRxDLab/OOrL+HLP71hYulVKRhKxNjVPdGLXlcoUMiZ5VwUspQo1PZ9rFyeyx7Zxat27EUoxY7ONm5asoB4oUhdvkAyHCqP0hDAnz2wjT/dtpOT9Ql+sWopJ5omRt14UuJJSX0uRySVCVb0IBg1caI+gW9Ilh/vRQrBmmKGK9+yhuXL2mq+XxoSpwtuaZqmaS9ElasUabXpAISmaZqmPQVCCNZ0hFnTUd24bwwJGkOPP9ezEbVZ8uXXsTBdYGjfAMnhLJ0LWpF5h33Xb2bz/lFuauvkSGcL//bbm2jJZJCOw8W793P/7BmkIiGu3LqDm5YsIB0O4UpJ11iSj/7+djzb4pXbd/PL1csoWhMf/dL3mT4yxsPTu3h4ehfS91nS08faIyeC6RGmyR0L5rDy+EnCrkd/IoZjGIRcl1mDw5xz+BgPZXIIO1h6U/qKFcd6eOWOPcEKIaXRB54hydgWsaJD3jRLy5MKvvzSCzjeWMfmGd2sPXpi/I7SH48hfB9Zim3MHhymJZXhrvmzcUwTvyIBpRKC/z1nNTesXMz7br6bWxfPwy+lpegeTdJomaRKQYiMZfHt89fyhyXzibouhpoYKutUrMIiDcmi7ggDWQ8iNpGF7Zy7uJ1uQ1F31XQWz65HSv0FU9M0TdOeKB2A0DRN07QziBEP0bZ6GpX96is+dSkrgDf7CimADywl/8AhnP19tM5qZeWyLhzD4N5hjyO70uw7kiTpBrkq9ne20VUs8LJ9B1G2yW+WLkQh8KRg5uAIc/uHQEpMzyPsOCzsG+CWRXPpTGf4vzXL2dHZxt/fcCsdyTR1+UJVXXvqE4xmw4Qpksjm6RxL8sqdeyuOCCZeKCAdsrlh6UKGEjGKpsn2rnYc0wCluHf2dFYd60EAu9tb2DpjGi2pNBfv3k9jNocQgkixSHsyTW99orwkqvR9YoUiOdOgLxHnmxvP5YO33M226V0ca2rAcl3aUi49dQm60yk80+R4PI7tecyKSehuIlwf5vxL5uIUPfpPpumelmDuwhaE7sHSNE3TngSdA+L0dABC0zRN054njIpe98g5c4icM2diH7AxDhtnRIE2HF/heIqotQwAlXd42+27eFMyz0hnE+6vtrDt4AhJFSx12jmWpCGT4xuXbeSNHzifdTPirMg43HfbQdL3JvCT6apEkr5lcNu5KzB+dh1CKa7Z/DDzkkkKHggJzUu7qDtvHo/+31b8oTQ7Otu5dcl8Clb1Vw/L83BMg/2tzSQjYQY6mwnPa2WmG6c+O0Qo0kbsDWfTs/UkXQfGqMvlOd5YT94yQUHnyBjrjhzH9HwaZzbS/O23cunBfuyCQ+xlS9jZX2BgIEN3dx2LFk0k+awVYFi8tPZ0Ck3TNE3Tnh46AKFpmqZpL0CWFFgVAQsRtghduoIQUAewYR5zS/tU0cVL5RENEb5cMb2hOWbx6ssXoi5bwNjtuxn6zt0UDw8RmttK+/su4fNrZ3HfQ59jdGSEd/7Xa5HNCbyiixACaQXlLL5yOQ/92x3I3zzKqfqFXrFjL525HGv+7lKaXrW8Ys9Ezua1fwZrgRM9Kb7xwx30nUzhSMnRJbN45VXzOWdhI2L8es+eVT5vVdeTvYOapmmapj3ddABC0zRN017khG1iNp96eVUhBA0XL6bh4horNgQHIJsTABi2OWmXYN0HLmLhxfMY+uo9fOHstcHqFwSTM774099xcdjF+NdrkOvnPWZdu7sSfPYj61FK4XoKy3z8eTY0TdM07Zmmk1Ceng5AaJqmaZr2jKtbMY13f+f1vM3xuGl/GtOSvHROHOsd73lS5QkhsEz9JU/TNE3Tnk90AELTNE3TtGdNyDK4fHH9Yx+oaZqmac83Qo+AeCw6AKFpmqZp2nNOKUX+j/sZ+6878AdTGLaBGTIodLcg5nXQeMVKwl0Nz3U1NU3TNE17CnQAQtM0TdO051Rhy2EOv/MHZPIeyWgEJQShokPBMvEPp/HvPcLAL3aQbW/g0i9cRndX3XNdZU3TNE2rSS/DeXo6AKFpmqZp2jNGFRyGf3w/x27ZQ+7IEOSLHGxu5nhDHdGiw8oTJ3EBEwsnHmZ8ncxcyEb6PkPRCJby6R4dY8Rx+O+P/p6rPnghy1d31FxKU9M0TdO0M5cOQGiapmma9ow4+u+3sf26LQigIZtFCMHP1iwnE7JRUoJS7Ops44LdB2jP5srBBwCEwJeS9nSGkONi+T7xQpGu0SS//leP1OgQjRfMI9QcJz6vlZZzZ2NE7OfsWjVN0zRNe2w6AKFpmqZp2tNKKcXuHz3E8R9vJuz71OfyeFJyvC4xEXwAEAIlBPcsnMNlj+zC8icNXBWCommys6udHV0dLOgb4NyDRzjn0HEGbYv8rx8Jkn0pRcjzCL1kIas/+ydYlv56o2mapj37FDoJ5WPRn9Capmmapj1lO//5BrJ/2Enag7Rp4ivFrLEUS3r7QQAKFtsW27s7OdlUvQqGJyVDsSgdqcyUciUwd2CYPR2t7G1vRfo+5x08SqxgkLVtHpw5jeF4lK7RMS64eTt7b9yG9b6XkprehtsYY/GSVurqw8/OTdA0TdM07bR0AELTNE3TtLKhgs8PD+V5uCdLKJVl8cgoq8wibQd76b1lN/GxDJbvo6Rg//QODu8eINYAx363i4ZsHsOQ1BUdbM9naW8/hlLljFyxQpG/vv2PfOKqV+KPj4IoGUjEawYgADwhaMzmEArOPnwcgIjrYXs5Lt5zgF+sXsq+thZ66hO8ZusOmr76B0brEoxFI/jJIAiydeUCjs/tZub5s1l31TLCIf0VSNM0TXv66SSUp6c/fTVN0zTtSfCVwvUUtilPe1wy57L5aJpkzmNpV4TepEOu6LNmRpxQ2CRqBAMEHj2eYXNfngWtYYYwuOFYgea4wUK/wLSIwTlz6oiHjKdc74EjQ/z8oQH2Fk3a2qJcFSnwyECRO1JwYNjh7oZmioaBJyWGijArmWXVoT4uPNhP7+xZIGD2wBDHGxsYqItT3GoQEYrfrFzM0hN9LOgfBGDW8CBCVX8Nk4DteizoG2R3Z9vEDiE41tjAkpN9SBXcj+rzFHnL4uU79mL5fnm7oUB4HusPHGEoHmP6yBipcJicbTMaCXPvnOm0JtP86OxVgMDF4P47jvPLO4/ziU9vpLktRrHocXRXP5GGMF0zGoLElp4fVEKe/rXVNE3TtDOdEOKVwL8BBvDfSqnPT9pfD/wQmEEQH/iSUuq7z1R9dABCuGHSsAAAIABJREFU0zRNe94qeorjGY/WiCRhTTQWRwo+owUfS0LeUzQYih09OaIhiRsJEbMEYaH4zrZRHj2chFSexphJtD7MmGExryNK1Jb86JExQkNJbM8DBb4QmAKEUoy3rSOWQAgRTDloCvGna1rYML+evOPyoZ8eZv9AYUpvSGlGAkUpMJVCCMFIOMRwJEJzdhDDVxRNk3ihwG2uBwRzSjfOS/Cei7r47j19bD6SoiFq0paw2HIkRc6FXNhmJBbBtCTNlqBoW/TkFUVPES46GL5PJmTjy3oM36dlZ5r7T/SyoG+A7XNmsrynl43D29jd0cb/nLOKgmVxtKmRl+/cz66udkzl4xgGw9EISkiUnAgVeIbB9mkdzBgZJex62K5H7ea7Il4oVjwM7k42bLNpwRw27jlYFYDwgXQoRMayqMvnp5QmgaZMlojjBqMtSveqPl9gYd8gW2dOQyhFXTZPKhLCl5KsEHzm729jWkhwwDNAgVQ+sUKRl+3Zz/TBEY411vPwkrnMuXA2G+fXEb11B8f7MtwabaC7kOe8la00XLEaoiHwfYjraR6apmmaOKNyQAghDOAbwMuA48CDQohfK6V2Vhz2HmCnUupyIUQrsEcI8b9KqWKNIp+yMyYAIYRoB74CrAdGgCLwL6XffwUcKh06qJR6qRDi08DbgYGKYi4CVpWOPwhEgT7gX5RSv30a6/o74Gql1OjTVaamadqLWcH1+Z97+/jtoyO4nmLFtChDaZfDQwWaG2yM6c3cn1SEJPzl/AjvXhTl2p1p/mFLkqwwSh/2inV1kt6sx2A+6CVXlBr7SgW9+oYB5BC+IlEo0J5MY3seecukf6iIOVAA4I6+OhzLYs7gKKlwiOMNdYxGIziGgQCa0xnmDI4glaJfScKuj6EUO/vy7LrxONx4vHxtgqk9+uPbbV+hgLRl4gpJx1iSAx2tFEyzXP+WTJa5A8OgFLfsT/HzE0eIFYrYnsfgWIF9fRIlBAqwC0U680WEUvTHowwkjCDhoxR4UlA0rdI9ANcwGI5F6R4ZZVdXO9/9/k9oTWcwPB9PSj580x1c8VdvxvI9hFK8cuc+bM9DCdi0YA6jseiUa5JK0Z+IM2NkjKF4lJZ0BnPSKAjb8zlRn8AojTKIFB3qcnl66xMsPDnAlhndLD/Ri6F8hILhaIT75s7ANSSqHLqp5pjmlOcRwIzhMbbMnIaSktFYpGqVjbxpcsArJQsTgCf4i3s3M2dwGMv1mDk8yoX7j/DbQwv5h/lzyFshGnI+V96zmZUnelHXCYof+RE7O9uYOTJGgyUQn7oS9f82cPudR7n5lkNksg4zptfx2tcsZtbM6rwXAM7uk6T+8Zc4Dx1GJMJE33IBsXdfgjD0yAtN0zTtaXE2sF8pdRBACHEdcAVQGYBQQEIEa1vHgWHAfaYqdEYEIEoX+0vg+0qpq0vbZgJ/QhCAuEspdVmNU7+ilPrSpLKoPF4IsQr4pRAip5S6ddKxplLqCd9cpdSrnug5mqZpWm1KKT70k4Ps6MlScING5Ka9SSDo/X5AxHFOuuUehc88kuFnR/Js789TMCY+xkKuxyPD3pTGviLIIeBLWd7XkM0yfSyJLLVZzUKxHKzoi0dJxaJMGxnlYGsTBcMgEw6VG68KGIpFKRoGS3oHiJdGKIhJzzkUizIciwDQlMnRnMlOqZsAkiGL/roECjja3IBrGFUN5aFYlFihSGcyjaUULZnsRGClNEWgHOQoXY8nBAOJ+MRqE4DhK/J29cd+0TL5+Vkr+MF3rifsuHhCEvUchOcxZ3CYz/3yD3zp5Rt4cNZ0dna1864776clnaFrNMlotLpBX/k8AH11CaYPjxErFssjE1whON5Yz3kHj5KxbQSKWNFhNBxi7eFjPDB7Bn11cQ63NBIvFHENSd40kSoYNZG1TBKFYtXzOlLiC1FztIWhKkIWk+sqBKoiaLFh30HmDgwT8oLX0yi9rhv2H+aWJQtACEZjUX60fg3hPz7EyuMnAVjZ0xfc+xzwkR9z4KZd/Gr6XIrFIAh24OAoX/naA3zkQ+vp7kqUn889OsTIn/47KhMEvdRQmsw3bsU7Nkz9v7yhxtVomqZpzwfq2R8A0SKEeKji8bVKqWtLv3cDxyr2HQfOmXT+14FfAz1AAniDUsrnGXKmhNgvBopKqW+Nb1BKHVFK/ftTLVgptQ34R+C9AEKI7wkhviyEuB34ghAiJoT4jhDiQSHEViHEFaXjokKI/xNCPCKEuF4Icb8QYm1p32EhREvp978RQmwv/XygtG2WEGKXEOK/hBA7hBA3CSEipX3vF0LsLJV73VO9Pk3TtOe7HT1Zdp7MlYMPlUaiERwpq4YzZj3YMuxSkKV8CEJgelODAJUcoyJ3glJ0J9Pl4MP4eQLwgP66BAhBzrJwDYNijSUdlZSkwyHyljllhIMCDrY00VOfIGfb5GybnvoEh5obp/TdK2AsEsGXEk/KKcEHAF9KeusmGq6IYMoHlT+TuKWRGuPqsrkgiFJDJmQjgN0drWye2c0Ds6ZRNCS25/OKnXuD8qUgE7K57qwVNGWyrD5yAsOv8d1EQUcyFfwqBJtndrO/tZnRSJjBWJTt3R0caG1GAPFikVjRAaVoS6URQH9dKWgiROn+WiAE0aLDR266k4V9g4QcF5TCFQJXCPa1NTMYj9VM+pUK2acfClux79wDR8rBh0p1uQJtqXT5cdE0+dXKJRNFTDp+9q0PEx2tTqbpOB43/v5A1bbstZtQBaf65LxD/pdb8PqTp66zpmmaplUbVEqtrfi5tmJfrQ/ByR+ZrwC2AV0Eswm+LoSoe4bqesYEIJYCW06z/0IhxLbSzycrtn+wYvvtpzl/C7Co4vEC4KVKqQ8BnwRuU0qtAzYCXxRCxIB3AyNKqRXAPwFnTS5UCHEW8FaCKNJ64O1CiNWl3fOBbyillgKjwJ+Wtn8MWF0q912nqbOmadqLwp6+HL6q1XwMGseqRiLAco92qQEpSz3dp1RxrOn7yBqN58mBhFQ4hBICX8iajXyhKE+VmFznrG1V1VtJSSZkk7GtKdchK/IWnIpfyrXweDtVTN+vKi/qOLQm0zWP7RpNoqTEMwx8KcmEQmzv6gBA+pVRGsGJpnqO19dhKsXZh45h+H6p/grL9bhg/6EgMKEUKIUvJcebGtg8cxoPT+9iKB6reZ0h57EHI/qAZ0hijkN9vkBdPs/OzlbuXjCHbTO6cKWk/KoqhfR9Nu45wBd/cgOLe/pqF1rxvjvdvZ28byg+dfpJuUhgXikRZ+XTHD02VrXNeeQYuDXehyET79DAlO2apmma9iQcB6ZXPJ5GMNKh0luBn6vAfoLUB4t4hpwRUzAmE0J8A7iAIA/Eh3kCUzBOVeSkxz9RSo13c7wc+BMhxN+WHocJMoBeQJAtFKXUdiHEIzXKvQD4hVIqU6r3z4ELCYawHCqNvgDYDMwq/f4I8L9CiF8STDuZWlkh3gG8A6C9vZ1NmzY9jkt8YUun0/o+aC8Y+v1cLVzwuXp6gVod6q7RWz164RRE+PQBCH9Sozcy0znFkZCzB8pljudWqBkcMCHa7kxZ6cE1JI5xombZVtjD9KovtGBN5HvwTrHqgiU87JlTe+dPxzF68WSQDEtEFa3pDIPRWNW9kErR7qTIvnlG1bkZFGOF2aRDId7cUP09xXnzdIY9n1bgUpFk0y0+SMFLV6YRK1vJPo66BQGkIIgjlU9BgScF54cLuNKo+tQWShEtFNm2cko/AE2mybmxIiAZvHAeYcfB9oIEmLbrsU11ArBcQEciQ960ThlpeHD52ezLBUt9VnINyZyGEHOYyMVlux6bFp5f+9oEJBIxzrWqc3dFIn7V/3vvDTNRL2+Z2g8lBWbqMGw6hvbc0H+jtRcS/X5+9j1Gl8iz7UFgvhBiNnAC+DPg6knHHAUuAe4q5WVcSJBP8RlxpgQgdjAxQgCl1HtKUxweOvUpT8hqYFfF48qxkQL4U6XUnsoTSnkpHsvpjilU/O4BkdLvrwY2EOS3+DshxNLJeShKw2auBVi7dq266KKLHkdVXtg2bdqEvg/aC4V+P1dzfcXr/3MXAykHb1JjzJGS3R2t+JW5DAS0hyU9Gbc8ssHwPEzfP+Uf5aKUQRmlP+1dI2M0Z7JVwwDHn/poYz2j0QhCKaRS+CKYfgBMjLjwfZrTWeYNDledL4DBWJST9YmqOgMI36d7NElzNlfelrZMTjTWl8t1pCQ1PlVCCKTvY3o+K070Yvk+qrRixmTjz115HQC9dXGGo1GUgDVHT3DxngP839oV9NXF6RxL8ab7ttJ6bHJHSHB98/sG+as3XcXQWKxq+2d++TCJfKF870InshS7IsR+cHRKObXqGeTkCHI2mZ5PpFgk4npkLJNkYwMHO1tZ2tNHYzaPJwW9iTjLDh4lPClCpYBvbTiHsahdcY9tvvizG4KpHZOMhkN8/9yz2NPZNhFQUqp87w3P5H23bWPm8Ai26+EYBr4UfPWSCzjaPPEcluvy9rseZHlPf9V9H5dLRPn4Va+gUBEvsizJ37z/bGbNaihvc/f3MXT5VyBXUdewRejixTS855LHvJfaM0f/jdZeSPT7+cVNKeUKId4L/IFgGc7vKKV2CCHeVdr/LYLR/t8TQjxK8LH2UaXU4CkLfYrOlADEbcBnhRB/pZT6Zmnbqcc3PgFCiBXA3wF/eYpD/gC8TwjxPqWUEkKsVkptBe4GXg/cLoRYAiyvce6dBC/W5wlerKuAPz9NXSQwXSl1uxDiboLoU5xgioamadqLkikF37pmHv/426M8ciLoP2+MGmSLPo6nWDw6Sl9bI2lf4APrmi2+e0Edx5IOL711DKUUXikvgqEUkolGoSGgqMBAUTl+oKc+gVQ+jdlgWcfxRIU+0JTOkArZeOPJDZUini+Qt0w8KbF8n46xFF1jqXJ5PsEoC08IYrk81FfkbCgRQEOuehnJsOth+ApPAkJg+T51uTyOlIQ9j/pcntZUsJJEedqJqp4WIX2fgmlQlBIlJWORMHbRoaFQpD2ZJpYvIH1Fxra5celCXr5jLx2pNFundeLKII/C5BUkcpbFn7/1dRRCFXkjlGLd4WNVyTwfD1cIRGk6hun7SAjyb5Qa/znbZndHA1tmTiNWKLBxz0GsUrDB9BXdYymGEjE6x1KkQyHyloHtBgGn9KS8FhHHwXZrjxRJFIqle+GXVwKpnFrjGZKvbzyXcw4eZf2hY/TWxfnZmuUULJNooUDesmhJZ3jZ9r1k7BD3zp5OMhziJfsOI5XCEgrR0YB9/Xt5yd40d9x5lKLj0doS5Q2vW1IVfAAw57XT+MN3kvrUz3F3n4SQSeTPziHx8cufwN3VNE3TziTBqMnnuhbVlFK/A343aVtl7sUeglkBz4ozIgBRavhfCXxFCPERgqU1M8BHH+PUDwoh3lTx+MrSvxcKIbYSBDH6gfdPXgGjwj8BXwUeKY16OAxcBvwH8P3S1IutBFMnqiZwKqW2CCG+BzxQ2vTfSqmtQohZp3guA/ihEKKe4LvoV/RSnpqmadBWZ/P1q+eRLnj4vqIuYuL5irGcS13YxJDQm/OxDUFzKOh7744apK4O8Y1dGb61N0/MhA8sihAzBZ1Rk7WtFkIITmY9Hh5xabYFW0c9jqRd1jRZXNjawmc2j7FpfxLDV5w3I8a502P09KTwCg6RmM22jMA1JPMabXp70xw5Mkqq4OOUEmYqgiFumZBNveHTYEpUwSWeGeXRaD1eaQqH6fvMHBpFlgIJ4819qRSN6TTDsShKSgxf0ZjPk4qEESpYPcMoneMKwd6WRlpyeepzBcJCYQuFKvh0D6fYNqO7PHoiZEjqHYe4KTinM8T+EykSQ6O0pdP8fs1S9jQ1AnDX/Nl87frfEC06WL6PR/DhdPOiuQgmgh1CwdITvVy6fS9KCIqGge15pbwZpaupGE1Q6WRdnJFYlJDnMqd/GGtSsEMJgSslniGZPTgyJT+HIAiIHG5qCKbESIkojXaJ5Qsko5HysUHiUFkOYFQaikXZMmsahu9juh6uGQQhDM/Dk5KQ67Jh3yEue3Q3B1bO5ZaVy5h7coiXP7yTFt/FaYgRbUsQ//SliFevougqcnkHKcDecRyiNiyfjiEEVy2GKy5fgOcpLOvU6bbss2bTfOOHUI4Hpqw5ukXTNE3TXkjOiAAEgFLqJMGclFo21Tj+08Cnaxx7GJi62PbEeW+Z9DgHvLPGoXngTUqpvBBiLnArcKR0zqyK878MfHlSmYeBZRWPK/NUXHCqummapr3YxUMT+R4MKWiKTSRt7IxOzQUhhOC9S+K8d0n8lGV2Ro3yuetaq/d97cJmuLC5euOiU5XVQJC7CfKuT3/Ooytm4rg+piGwjOqGpq8U9/cWGM46LGu2ue1YjJBQvGp2jAePpMkWfZZ3R4lHTCIhg7gp2DNcZPfJHIaA0bzDgV6QYZO1XREODxeJhEyuWtpJQ6T2x/dIIZimUW9LMgWPWMjAkFMbtT05n5/tTtJ/7wj59nr8gSSRgoPleYyFbY62NLKwb4AL9x3iWGMDcwaHaSyN3pC+jyMFLel81QgEMXmURin40pLJ8dDs6XSOpUCMVI/gIAgwmKXVvhpyOU6V8aNyCo2SEqUU6w8e5ZYl88vTXZQU3Lx4Hq9+dE956U8IliX945wZxPMF0uEwQvnYnksiYnHW+llMm93AvJExGrNdcNabWDytqeYXjEq2DbZdqu36eVP2SymQNe59LcJ67DwnmqZp2vPDGZYD4oxzxgQgzkBRgukXFsH3o79SShUf4xxN0zTtRSBsSmYkgkavadduPEohOLczTJDbGN7aMNFYf9mSxprnLGoOsai59nKZj0djaCIIUneKIAVAV0TyvtUNsHoNvHsNSilGtx4jtbefSGc9rz57FgdHi2R3LWTRzY+SlzmEEcNN5lFjOaYXsjTmcsQKxfIXLQXYrovwFZ4UuKbJ/tYmdnW24xkGA4lYecWPSq4UnGgI+g1GohGa0tnaQYjJowOEIFEo0pJMMViXQJQSWT4ws5vLHtldHmVSNAyyIYsLXr2AK166lLTjk53RQmtrDKMqaNT92DdY0zRN07SnRAcgTkEplQLWPtf10DRN07RnmhCCxjUzaFwzsRrG0ogFnXPh4rmnPC/h+sRe8gBeKsnCaTF46BBDsWh5uc2Zw2MUTZO9HW0UTJMdnW0s7+mr6hsaC4fpaQiWG9/X3lKehlE+5hRLtI5rSWfor69DKoXp+WzYe5hDb3oJ097/UuzNBwkBoUuWQkuQl6Ou9KNpmqZpTztx5uWAONPoAISmaZqmaU+KNCXSMkAKpv30vaAUjfv6af/jfk4cG+PnRwtcfc9mLn9kF+mQzZ0L5rCnrYWF/YNVq3aMJ+LM2TabFsxh1bEeWtMZpFLYjosvBEXLrB4FoRSOlGRCIdqSKaKOy6Urmlj2jb9Fjq9AMq/t2b4lmqZpmqadhg5AaJqmaZr29BCC2IJ2Ygva6QCWFVz++Nd5ltz4EFLB8hO9DMSiZC0zWAFEKVqyOTbu3s/+tmZGo1HaUmkW9A/SPTpGrFDkREMdGdvGMyRe5dKmQtD+matYWYTWligrV7SfNuGjpmmapmnPPR2A0DRN0zTtGREKmVz8rTeS/e1ikh++nlnDoxi+T96yKo5SLD/RywUHj0w5X/o+PXUJCpZJpOgihEIJAUKw/LNX0nbRqaeHaJqmadpzQekVjU5LByA0TdM0TXtGRS9bReRVK/APDzItFiaVdxk9MEjHmumEGiIceMu38e7YBQQrVighuHHpAh6d1oUnBasOH2X+wAhKShKL21n2D5cTnVY7kaemaZqmaWcuHYDQNE3TNO0ZJ6TEmBPkZKgH6mc2lffN/d7bGLn3ALs+9WsOGTb3z56JZwjCjsPluRHWfe01hLsbMUL6a4umaZp2Zjt96mRNf5JrmqZpmvacazx3Lufd+kHOA64YyZI5Pkrz/FbMsPWY52qapmma9vygAxCapmmapj1lTqaIMMTTEjCIN0aJN0afhlppmqZp2rNHoXNAPBYdgNA0TdM07QkbK/h8bvMY205k6TYcfnXFtSgBm1Ys4PaZMygaBmt6enmznaUhmcV3PeoXteHlXCKddQzOaudExqetMcx5y1sI28ZzfUmapmmapj3DdABC0zRN015gMgMpnF9sZmDbCf6QaGL7kjlcdXYbL1vUgDxNz0yq4PH7fSlOjhVZ3hbmJfMSNY/vPTTMZXemSCcLSMfFMyUPzujmh+esIhkN45jB14veugR35/N8ctv/Z+++4+S4qkSP/06Fzj09Oc9olLNs2bItZxuMMdlgkzFh2cdjdwkPHmx6Gz77dtnwgA0svN1lWWDZBUxYjI3xMzbYssGWJVvBkqwcR9Lk0DOdu8J9f1RPa5JkwFm+389nPp6pqq66Vd1W1z117rkPULAsevbsZDgeY+vCborbMyCCAv75O7B6coJb3rSMNa9Z+VxdFk3TNE17zukaEOemAxCapmmadp7YPlTio989SmpwnMacy2DzYvpTNZijDg/fP8iKb+ziPZLj+hsWUXvtMsQ0cAplTvzsIEe2n+aH40JvTRLb9XgQ+EdDWLGsnkXtCV45MUL90DgP3/EUx+MJkheupU75nLQsfMPlRxespLZYIu44jMZj5MIhXNNgPBblv9av4dP3PYytFE/0dOJaJlIJbIhSIMLBeILbv/MUDV/fhoQt7MYEK9c2s/6VS6nr1jNeaJqmadr5QAcgNE3TNO08sOsne3n7YZuRRA2FhkZQCgGaMjlijgPA/rYWHt21j73/tpPx2w9woLmJfMhiMhohX9NNvjHE6r4BVgwMcaC5kQNNzRwYA3M4wxdViLdsH+JVoxPsS9WRjYYp2MFthAKMSjtWDAzz0QceYVX/EEXb5jsb1vGl6zby6JIFrD09yOnaFJ4ZDLewXY9ksUTBMlk5MIxZaTMFB+/EKCNPHmP7lx9kYFkH2xd1E4qF6G5LsChlYT56iAODBSZSCZqXN7HbjPDUcBnD81hYyHPTwjjRkIEdslh3dQ9Nnann+y3RNE3TNG0WHYDQNE3TtBc5z1O4vk/YPlMnwfMV6YJHxBQ+8I0DHJr0ON3WgG9UQgGV4Q0jiRhdY2ks38dH2NndwQ37j3CwqYEti7pmFMu64GQ/tcUSjZk896xpRBlCrFTm1U8d5ILT/YzEY2TDISajYcqWiaoca2oPzZMZ/u67PyLiuBhAzHF4x+M7WTw8wlevvITmyWywva+4eecerjt4rJqq+mRnK3vaW/ENwRMBw+R0XYqLT5xmyfAYtUcG+NbGizg+VODnQNgJE4sYGEWf/icHsT2Pq/MFHlvUzYF4kiP9Pl1jYywcGWPL/zvAVW9YwTVvXTfjurq+whSq2Riapmma9syILkL5NHQAQtM0TdNeZJSvyE0W2Z12+ZcH+tg9VqZsGIR9n8UxIW+YnC4pUAqr7GF7Hr2tTfhnuemJOi7RsoMAk5Ewd69axsH25momwpRdXW0kDxXZvqAdBdQUinzu+z8mUSoT9jy8SlDjWFM9rjm3aOSbdz6F7fnVbAiAqOtx2bFT3HXBKmzXx1Bw0559XHvwGCHPq263/mQ/Bdtmf1tzsEAER4RHlvbgCNy3ZkV1ue26RB0XRKrnXBJhMhrhVfsO8+DyxWQjYXobamlLT3LT3oNM9PZx95cfIryhh9GrV3H4vv3ETo8yVpPAvmUDH7+ymfxonlRjnHhN+Nd85zRN0zRNOxcdgNA0TdO0F4jr+fz1j47zs948hhi8dlGUGx/bzWNPjfCTZYvZ39KI7StMIOz7iFIUT6U5XV+LZ5qsOj3IzTv30pTNcayxjk3LFrG3vYV9bc3VTAgFmL6qBgVMX5FOxHAMM8hcUJUcBBFQirFEHDOTBaV4846nqCmWsH0/eG1l2+UDw+zuaJsTwFg8NFrddjrPMOgam2Dh6Bjbezq4Yf9hwtOCDwC279M1lub+VcsoWSY1xRINuTwDqSSbli3kcEsT4iuasllW9A8xO9QiBIGWbCTMRSf7ADjaUM/qgSEmYtFge8cjt/kI5uPHWV45567xCfjb03zkZytZk81QdHyWpCw2UqQ5JETecjGhyxYDMHRinGN7BmjprmXBmtbg2pVciNg6i0LTNE0D9DScT0cHIDRN0zQNKDo+6bxLY8Lm9ESZp/pyNOYKrO2MEe14+iKIvushpoGI4Hg+Ww5NsP1EhsMjRcpicM2yGt5yQQN33HmQO3eNUnYVA8kE+ZBdHcrw7b0ZHnFr+UTvbpb2DdFbX8v/vXZjtaOvRILggwhXHzjKBx99AtvzMIDGbI4LTvXzhVdcScRx2NbTBUoRdj0ilRoQQlCrIVksYVVeN8UTAQV+5b7JADacODVvQOGGfYe588I1eHImyAFwrKGedacHqoGKKSHPpWt0nLJlcu2BI4Rcj9n2tjbzpesvp2yaUMlmGKhJsnJgkFShiGcYYAQzaywaGiXszWxXqlAM2ipSPf6SkVFcQ2YEK3yj8pdM+69S3LxzLzs7WimFwjyVdtmLhakUsb/fQjz0OONiUhATxzRQhkGyWMT0fMKehwk0is+SRbUs/c0rcRAiMZvGlsRZPi2apmma9vKkAxCapmkvM17RYfKJ46Cg5pIezIj9QjfpWaWUIlvyGM26qGwRuWsb4z8/jJkI03rLRZTTeYbv24szUWTgosV8t7Gd3oxHvFBkfe9p9nS0EnZd3v/oNpxCkW3AWCLGna++gvXNIa7edYAHQjX8rKGFnBgsFodXP7qTjpNDFC2TzQu7eWzFIlzDwPUVSgTL81j73Yf5TE2SfR0tKBFKlkk+HJrxpMSxLE7Vpdjf3sLavkF6Rse55uAxHly5BAgCCAqwPI/3bdk+I4vAUgpxXG7Yd4h0bB2xYhHHslg6OFLtkKvKPsqGESybdmxTKXygPpvH9H1Wnx4kH5r/s1G/U30LAAAgAElEQVRbKPHuLdu5b9Uyjlf2aXke+1sbecNuwZgqJgm4IvTXJPncq6/lYw88Sn0uT9G2iDludX8+8NUrN1C2ztyW+IaBAwwlEty6bTefvu/nRB2Hh5Yu4nBjHYVwqNp+w/cJed68WRGj8Thtk1nqs3lEKQZSCfLhWUMsKkNLfuPRbTy4bCGbly480w4R2tOTNGZz1FX+HkrEcQ0DQ0HRMIiXSowA+/vLyJ9vwhAwLZOm1gTvfvsqUhELY2EjaiSLs+UIUhPFvmIJjqfY/chx9j85QCQRZuMNi+lYWD/vNf91lcbzTB4aItKYILmocc767ESRwzv7MAxh6fp2ogk9/ETTNO2Z0NNwntt5FYAQkaxS6ll93CAibwRWKaX+WkRuBg4qpfb+ivvYBHxKKfXEs9k2TdO0X9X4Lw5x6A/uQCpPgZWvWPqZm6m7ZtkL3LJnx127x/jCpgEmix5hx+GPf/wA8XIZCG4IJvf0UTZNfrpyCdsvXEU2FIZM0ImfiEb42colRB2XP737p0GNgYrGTI533rWJP37DDdxV20PZsnCUAQr2YXPk4vVc0NTHwdYmXNOo1CUQqFxnQciHQxxsa6oGHIq2Pe9NSsm2OdDSyNq+QUKez+XHTlYDEACm51WDBLOZwOLhMQDaJrOEHJeo66JgWruCYEO07ASd+AqpLI+4LiE3uH5KnQlaTFFAIWRxqLGBW7bv4fh4GrPR5m2PP8mikTF+tnIJ63tP05TJ4ZoGRxob2NbdwdrTA9TnC4gIe9pbuKi3D6sSGBlKJijYc4MdyjAohmxeu+dgNVuja2wH47EIn7/hahwryJYwfH9OO6f4Aut7+6pDTbrGJzhRX8vxprkd/X2tTTy+aMGZQp4V/akawo7D4uFx4uUy3aPjnKyrJRcOsXJgGMvz6KtJMhaPQZBQget49Pem+dxnH2Vl/xCvPHQMW/lIxEaATCLGd9avZtJRQdMEtm0+yar1bbzrdzZiGM8shVcpxf5/epgT/7UTI2SiPJ9ETwOX/J+3EKqNArDtp4e5/5s7Kv8eCPd8bRtv+vBlrLy06xkdW9M0TdPO5rwKQDwXlFJ3AXdV/rwZuBv4lQIQmqZpLwbOWI5Dv/8D/KI7Y/mhP7iDC+/6HUINL+108QcPTvDZn/ZRcoOO5qXHTxLygnOtdvRFsHyfV+07TG99LdlopPp6zxAQ4aLe0xj+zNCAAdiez8qBEfa3Nc/p6JZNk51d7YR8H1E+zOrAOpbJ4z2dGNOGJpiVmg6zx4rarkuqUJy2ZGZbLKUQ5WP68z9jyYbDWJ5H62SWwWQCVXZwLDPYS+VYCmjNZOg4McHuzjYmYtHq60uGsL+jlWLI5qcrl+EaBkuHRvjQL7Zywal+SpbFqdparj5ygoJtISro+LdkcpyqTRHyfTYtXzKzUSIsGh6t/tlfm2KLabJ8YJhEuUwmEjozNGKWZLE0Y6iI7fvUFopcdvwUW3s6g/dNEVzbWddSfJ8lQ6MzrjtKsWAszUgyTjYSri6zPI+B2pp526EkGP6SKhYRwPZh0cgYrggh3+d0qoZjTfVUwk4zzhulONjcyEgizm1bd0K2hAI29SxgsqxmvC8A+3b2s+PRXi6+asG81+OX1Xf/fnp/+CS+4+E7QZBt8vAwO/7sx1z2d7cyNpDh/m/uxHVmBrLu/KctdK9oIl4TmW+3mqZp2jlMfV9oZ2c8/SYvPRL4rIjsEZHdIvL2yvLrRGSTiHxfRPaLyDelUjVKRF5bWfYLEfmCiNxdWf5+EfmiiFwBvBH4rIjsFJHFlX1tqGzXKCLHK79HReR2EdklIt8BotPadqOIbBaR7SLyPRF5ad/xa5r2kjH6032oefqsChi7f9/z3p5n2z//YrAafABYMTBMyPPPdPCm0vUJOrGv3XNg3v2kCsUZszNMsT2PkOvO84pg/65pYPj+zM7uNBPRCL6c+dqNl8ozi0BWGAouO3YSgLJp8NjC7uo6y/XoHEuzZGScAy1NOLM6y2XT5OdLFrBgNM0r9x6uzhIxu5MbDDkQ6vN53rV1J23pyeDYvs8jyxbT21DHUE2SiXiUbDTM1p5O/vu738L31q/lvlVLOdjSiOX7RKauk1IsGB2jczxNNhwiE7KZ6ta6IkxEwlheEHCZMpJM8MjShdy7ejmuYdAxPoExq65DyHF51d5Dc65lyPNZMjRCyPeJuh4R3ydaKmP4fvV6iu9jez4XnOqf83pDKZonM8G2SmEoRcj15p3ZY+p6uVNFOytMpQhVMi+ONDcEm83/ahAhHYvSnwy+8hVwor527vsSXEq2bjp6tj390o59dxverGCjcn3Gd5+mNJZjz+YT+PNk0YgBB7adfsbH1zRN07T5iDrLjdJL0dQQDBG5BfgwcBPQCDwOXAYsB+4EVgN9wCPAp4EngEPANUqpYyLybSCplHq9iLwf2KCU+oiIfB24Wyn1/crxNlEZWiEijcATSqkeEfkksEYp9Rsisg7YDmwEjgM/AF6jlMqJyO8BYaXU/551Hh8CPgTQ0tJy8e233/6cXK+Xkmw2SyKhYzXa+eGF+jw7oznKw5m5gxMFQo0J7MaX9v9jB4eK+NO+02pzBRLl8twxBNOcrk1Vf1eVbSKOS2M2h8zz9ThQk8AxzbPsTlUzJ+Z7+iEEnVzPMKpvgRIJihoSFEo0lE9jNkfE8VASBBRGEnF8EQRFolSmplDErxRaNHyFgUIh5EI2/akaHDOo71BTKOKYJkqkem6zhZ1gOkvXMBiPRTF9n7I1fyc8aAPTCkgqGrM5/vKv/gg/ZPK3H/59lAjDyTjFSi2HiOtiTys4mQuHyIVDKISI65DKFzF9n2SpHNRWSCaqGQgKSJTKNGTzyKwPrULIh2wmYpHqtlHHDdpfOWfL94k4DmF3bm0IBZQsMwg4TAUsKuc4EY3MCQqgFPFSeU5gSlVek582lGUORbX98ZJTHRI0XHlf5/sw2bZJc3vy7Pv8JWSOjqCcuYE0DCHR00AuWyabLs5ZLQI19TFiL+OpSPU9h3Y+ebF/nq+//vptSqkNL3Q7ni3LE53qy2s++rwe87otv/+Suobn6xCMq4BvK6U8YFBEHgIuASaBrUqpUwAishPoAbLAUaXUscrrv00lAPBrugb4AoBSapeI7Kos3wisAh6pJF6EgM2zX6yU+jLwZYANGzao66677hk05fywadMm9HXQzhcv1Oc5d2CApz7473OGYBgRm9VfuY34irbnvU3Ppm/852H29Beqf7dMZPif9z+MVZkZYbbJcIj/eO3y6jqfYBiGKPj4A7+gIz1JqPJEXhEEA77wttcTdxxsz5/5tFypoAOsFHXZHCM1c2/2Qo7LTXsOcqilgYFUslqPQSGkCgVe/dQhVvUPMh6P8a1LLmCoJsGn7nuY7llZAT5QMg2sSrvGolEGUkk+9dbXUXJsCCa8IOw5fPChxzF9jwdXLJmT8mh6HhecGqBrPIcvUJ8Z4QuvvIqB2po5bQ867FYwdGMygwBt6Ulu/8q3iJ/KkutKsO7zOwAoWiafvuV1FEI2hu9zxZETpIolbt+wjqONDbjF4LqJr4g6Dp/93o9Y09tXPU5fTZKibbF4eJSGbJ5sJEys7Mxov2MYfGPjek7VhxBf4RlCxg5z/aFj1BeK1aDL/qYG3r59T7XWxJSyafCDC1fTNT4xZ91waxN7OlqrQzrE96nLFbjuYO+ca6iAkmmya1E3fiXoAWdiCsEUqD6mApTihn2HWTk4AsB9K5fwVHvL3GEjAje9dRVXX/fM6rI89eQD9N65C+XOyiqpjXL9HbfSf3yc//jMgzjlmUEKyzb48P+5itqm+DM6/kuZvufQzif68/z8O38e7z83ztcAxLkG3pSm/e4RXINfd6COy5lhLLMHS8732RPgfqXUO3/N42mapv3a4stbaXzNWkbu3YNfCHqpRtSm4cZVL/ngA8BHrm3j498/Vh2GMZhK8s1LL+S2LTvm1AcoGwZbFnYRLTsUbRsEIq7HkqFhjjfW86VrL+eGfYe4+vAJYo5D2TD4/vrVtGayvGvLTnZ1trFtQSeuadCQzVGTLzCWSOBWZrawvLnp/J4hdI+nWdM3ACjKloUnQrJYpqFwJnDSmMuzo7udXZ1t2K7Hxx94tBqsMJTCF4VV+YYxfZ+FY+N8/sZrKFkzv9JLts1Xr7yEVX0DOKZZna4Tgi8oQynaK0MvLM/npr2HuP3S9fMGIKZeY/qKd23ZQToWpSM9MadWxpT1J/t4dPECfITjDXV0pCc52tQw45ooQyhbJg8uX8KGk/2YlZkzOiYziAqCCv921SUo4A2791OfK1SzQu5bvYxsJEzP8CjrT/XTMpnhMzddz4MrFrOqbxBRij2dbaRjUUzg1h17gloVSuEbwq6OVkqmEQwJmfbZKJkmvgg7utpYOjRK20SGRKlM60QmyGqZFqzwgWzIJuG4JIslJqORyswYwZCOqetlVIIPpu+zvBJ8wBSuOXmKgZ5WRpypqyuIQGtXio2vWDzvdf1VLLntMgY2HcLJFPHLHhiCYZus/d0bEdOgfXEDF1y7kCcfPoZTDrJETNvk6jetelkHHzRN07Tn1vkagHgY+O8i8u9APUFGwqeBFWfZfj+wSER6lFLHgbefZbsMMD0n8jhwMbAVuHXW8d8NPCgia4B1leWPAV8SkSVKqcMiEgM6lVIHf8Xz0zRN+7Us/MPXUH/9coZ/vBuUovF1a6m94pl3dl4MLuqK8w+39vCFTQMcGg5S+9ucEtiVbrenENPAdz2Odrawo7udZLHE5UeOc9mxk8TLDiYK0/NxRTAI0utLlsn+1Qu58d3r+chjeznhlmnbe4irDx/nqY4WWnI5VpXy/Ki9k13trcEQAIJ6ClOzKdiuy4Un++keS2P5fjAVpmnwiyU9XHdw7nj/z33/Hj76jjdyz9oVPLaomxv3HsJUimzI5oOPPIFVqUURLTsYSnGssX7eLA9BcbClCc80aMpkqSkGMfhsKESNryrDOHw6xycwlOI1ew6wp6NlxiwQCvBECLkev/XwZj7xs0dwTSOonTDreHnbYjQew3JdwuUyBpANh+hLJTF9hTtrdIdrmuzqascXqXbebd/HMQz6U0nuvGAlHelJcpEwyWIJy/cZj0URpWjI5rlta5B1UbJMuiYy9KWSKIFHlyzCM4PW/Xz5Yva1tfCK/YepzxfIRMLYvs/qoVGO1NeSKJVADHIhm0cXL2Dz4gXVa7pyYIiQ65OJhOmtS9E1PhEUmlSKZKHIcDJOX12KpskMniHkQiH8St0N2/WqGREh12Vt3wCHbriQ1baP2Zig9l2X84mV7eze0svOx06CCOuvXMCqi9oxzWdeoitcH+fqf38vJ374JKNP9BJrS9Hz1ouoWdJU3eam913M6ssXsG/rSUxTWH3FAloX1D3jY2uapr2c6SKU53a+BiDuAC4HniS4d/pdpdSAiMwbgFBKFUTkt4F7RWSEIKAwn9uBfxWRjxEEHD4HfFdEbgMemLbdPwFfqwy92Dm1P6XUcKWmxLdFZGpw5R8BOgChadrzQkSovWLxeRN0mO2irgRfv236DAzrgDcB4OZKlIcyhFtruDoa4jcBt+SQG8wSsgQzFsIvOJhRG7s2Rv7YCKXhDMk17VwXq/yTfXUnyz99I5Nlj83DLtdYwuVNNpYhXDHtqMePj/OVrz3JXs8mZsCbL2umezgY5VewLWzP58nONu5es4IFo2kWjYwGafoVqUKRb3ztuxxrqmckHkcJ/Odl61EiM4pcTgUzlgyNMFiTmBOE8AyDSNnBsS0GUzUMnil5gTGWxvR86nN5Lj3Wi2Oa9NUmWTg8yvGmBnzAN4xq4ch3bd3J79/7EKZShD0PX5iRdbGzo43TdTUoIFkqc9XRXnZ2tuGY5owhJzMoRed4mu9evBZfDARF60SGulye712yjpjjcrIuRU2xRFulU297HmHX5Y27zkxI5YsQLQdZPfvbWoKZMaYZqUlwx0VreefjOwlVggKuCMVwiINtLdWikCcaakmWyiwYT7NgcBTHMPFtA88wGEnEONZUT6u4XHb9YpZ85X7W73wKpcAxDU7Vptj+tmu54uZVTKRLOCWXZNymrj6CKUJNY5xkfWzOJVh3+QLWXf7MZrw4m1BNlKXv3cjS92486zZdyxrpWtb4nBxf0zRN02Y7rwIQSqlE5b+KIOPh07PWbwI2Tfv7I9NWP6iUWlGZFeNLBIUpUUp9Hfh65fdHCGo4TLdu2u9/VNmuALzjLG18gKAehaZpmvY8suJhrIUzC+tZYZtU97QnvrVnfo0tbCS2cP6OWU3I5NUdZ5kxAejpqeMv/uy6mQtfu5TCwARHHuulb98gR/uKlC2Tb25Yx0ce3kKiVKpMaanoa6wjkcmzcGScRSPjAORtmzvWr+aeNct53Z4D2J5XHRbwWw9vYduCToohu3o40/O4Zdsu7l43+2sLDM/H9H2i5TLdY+OkYzH6apMsHh4jVShieR5RxyVWKpOOx3j9k3tZNJaesQ9RZ4ow+iL01dVUMycspYiVyqzqH+LJrnaijkuyWGQiGq1mJkAwE8jq/iG8ytAMhXCqLsXh5gZyoRAGUFssseb0IE92tbLxSC8XnzxNz2h6RvaF4StONARvXiYSnjcbRAkUbDsoTEoQnDmVqkERDJNYnJ7gAxfX88a3rOTw/hF6j6cpOj5HT2UYGy+wdnEdN924mIb6YGIr9Y4LKWw5SmF/P6VUnCWvWMmFKT11paZp2svd2Qo/a4HzKgDxDP03EXkfQWHIHcC/vMDt0TRN084z0dYUa25ey5qb13Ij4HiKgwM5Hr5xCaH9fSwzHS68fjHrV7aR2dfP/vd/DbtQRolw2fGTXHrkBEO1NRyrr8VUip7RMerzRVb3D/LF23/I5151LYeaG4iVHXpGxvidTY/RmMvzjY0XV4MTtuuSKhR599adZKNhDAWTkTCOadI2maFtMgMENQ5M3yfquiRL5TnnIoCP0J9KkpCgQz+dAdQWCtV6GKv6BnliQSeeEbTDUIrLjxwPMiymBQwMIOx6JEplspEgYBRxXdrTGXZ0tfPG3fvxK5kgPsEwjjsuXI0nQsf4BKfqUpRsm9kUQsh18UQomSa5eIRWp0SstZ511y9i1doWGiu1D5aubGLpyqY5+5hx/iLENi4mtvH8zCbSNE3TtOeCDkBUKKX+Dvi7F7odmqZp2suHbQqrOxKs7kjAq7pmrEuubOOihz7N0P37yOzrJ9lRx8OJWrYMlvFMk2uW19JtFTn6pz+i8fQIF584zbe/8i1Q8NMVi/nalZcgwAc2b2fJ8BjfuuQC0rEoVx4+wdsf30ltqRzUcVCKRL7A5iU9wewRBMGBdDRKzrboGUvTW5eirlDAmlV00rVMBmuSxCU77/kpBNMPZgzxDIOw5xEueFCp9bBkeGzebAU4M91nxHEJOy5t6UkMX/Gd9Wu5dece8qbB8YY67l+5lKGaBJce7SXqusRLZR5fFJ0REDF8n/Z8jsyabhp66ll97WJ8JTR21tDYkZr3+JqmaZqmPft0AELTNE3TXqTMiE3bG9bR9oZgtN8S4DdmbbPgJx/jic0nOfqZu1l9sBfL97nhwBEOtjTx2MJuNh7r5erDx7n68HFKpkk2HCJRDIZ7lGwTy/UQEa44coJ9rU3sbWtmNBGnaNsYQF99LdFiic6JSepzBSzfp2QFs0X8z1tfi3/Hw0ERSZE5U1o6pkGpMtvHQE0CUNTliiwbHOZ9m7cxEY1wsLVpRtHLKQXLxPQ8Nh7tZSIWYWdXOyXLZDAZ52uxi1nVP0QnLr/zig4i797IPXcd4PEHj9E1MMKFJ07zVEcrJdtCRLhybSMffve1z0pxR03TNE07F/VrT7D48qADEJqmaZr2Erfh8i4u/tGHyT1+nMwX74cdJ3n/5m3832s2crKuhiuPnCDkeTy4fDF9167h1nrFyvXtrGyMsOsbWzn6rc00jUywYDzNssYIJ27ewD0HMhRGc+RNk3K2wNYFndQUSzRnsvSnkvzeW17DYE0S/4eCZxhYvh8MizAMfIIq4E+1teAbwlg8ymgixvLBEb747Tux/OD2zDEMehvqKNgWaioIoRRly6Q7FeLGdptVb76OhqYYRlsdEgtRnCgwfnyMWGOcVMeZoh03v2Mdb3zbWpyyx1ScoexBOGRimvpmUNM0TdNeDHQAQtM0TdPOAyJC4tKFJL7xIZRSdOVK3Drk8pdbx/le9mJSIYOPXZTiM6trMKYNe7joQ1fCh66csa9FwPWz9p8ey/PVP3+Q/YMTAHzp23chyud/DA5jNlpcc/AY/akkB1sa2bagg58v6WHB2AQT0TCeYfD6Xfu5+MQpdnW2sWxwhHipjOn7dI6lOdFQiyCYyicas9nwyWu48MLWec8zkorSdkHHvOsMQwhHztza6JscTdM07fmk0EUon47+btY0TdO084yIYCYi3JSAmxYlnpV91tbH+OTfvY7+gSyTmTJdnUmippC89AdkCll2dLdzsq6WYshibWaSz7xvIQP3PsWR/3iMMcPEcjx8EbLhENsXtDMai/LA6mUsX1jL/4rlCF+6EHNJy7PSVk3TNE3TXpx0AELTNE3TtF9aW2uCtmnJCeHaKAVVYukHr6ClP0P3JV30XN6DYRo0vnMDa965AQClFMpTKF/hux6ubfFhS2ZkY2iapmnaS5voGhBPQwcgNE3TNE17ZgQuesdF595EBLGCmzIzZDJ3okxN0zRN0853OgChaZqmaRoAR09M8NATA5w6OEydCRuv7mbD5d1AkMGwc6DIP9x/ivzBAdad6KMtn2fk0DBmg76d0DRN0zTQNSCejr5j0DRN07SXsYlsmb/+7kG29+bwRTCUQmGTKJU5+LUd/OKfH6U1lydT8rE8j2R3O5945AkSpTLi+/xzOksxHufe93ydG/71XVjR0At9SpqmaZqmvUjpAISmaZqmvUz9cNsw//rDw5RNA0RABF8E0/MwPJ/t3Z0cKpeozxexPI98KIQoxe0XrWHBWJpMNMLkzyKEAI6P8NO3f4Ub7/gwxtQ8mJqmaZqmadPoAISmaZqmvQy97/ZjHDw8SpPvYZgGvgj4Pjc9dZDLjp1ECEpp7W5vYdPSRcRKZRqyedKREJPxGD9vakCUIh2LUm96jMSi1I8X+MGrv8TGr9xGZ0/tC32KmqZpmvb8ElC6uPI56QCEpmmapr2M7BkscssPT+M6Pm5DHaVcgeZMDoDrDh5h47FebF9Vt186NMpYPIZrmphKUVcoooBsJEzZslASzHv+2OIFXHBqgPb0BFs/8O/4X72N7oX1L8xJapqmaZr2oqQDEJqmaZp2HsuVfb65dZDHHj7BWM5he1cn7ekMlu8zUJPEMQ3SkTCpYpHLjp+eEXwAONpUjxLBVMFyUykUsPZUP93jE2zPFZC4zVg8xrcvWcdQTZK2iUne8KkfcYGXJzSRx2yrpeGm1XS+fi3h+jgATl8af7JAaHEzYpvP92XRNE3TtOeEevpNXtZ0AELTNE3TzlP37RvnD+45xdpTAxhKcbKzjfc+tg3L91GAqeC+lUs42NJIolTiznUruP7AURpzeSKuB8BIIh7Uh5hGgLJlkQkHBScNX9GWnmDzom6y0QgTkTCvsg4zNOFiig0DOfq++hj7v7qZ7qsX424/TnlwkrDjYgLxtR3U33oxieUtGIkIRlfD83uhNE3TNE17XugAhKZpmqa9BBQcn619BQwRLu2IUvbh3gGHfMGhZ2SMY+Nlfjzgsr8AEdfFVD5pw2bZ+CSGUozHorx29wGirlvd54GWRnZ2t+OJwWQsyr9fsYG7LlzNn9z9U9rTGRryBUSd/VmOY5rVsa7Lhsd459ad9NfW0DaRYcHYOKaiGrxQIhiOS/8DByiL0Oz6hFwPUQr38WMMPX6U04aBY5nEyi6WKdjNSaJXLqPu0zdh1sZQrod/fARJxTCaks/p9dY0TdO0X5VC14B4OjoAoWmapmkvsLKnGC961EYMwqaB5ys2D5Y4kffZ2Bzip0ez/O3mUTylmBohsXRgmDX9Q5Rsi52OR18qSTESpjFsk4mEcUWIeQ79NQlG41Fq8wVM5VeP6Ytw5wWrcE2TsONilz1y4RBj8Sj3rVrKzU/uI1kq0zKZ5XRdihm3U0oR8jxk1k1WXaGIEiFRKleHcijA9DxqC0UMQJSiI5fHUKo684ZnGhi+Iup6xFwvOJYP7qlxst/ZQvFbj2KaBp4PrimEPI9QdwPht12GOzJJMe9Q+sUhjGyJWCqEnYhgdtbhjWVRqTjmjWuJXLUMs+RAvoQXC1P8ryfwjw1DroiZiGA214BSmKvasW5Yg/vYkWCIyGsvAMfF/5cHoD+N3HIpcvUyDOPMTB+q5IBpIJYeSqJpmqZp56IDEJqmaZr2NLaPufzToQL9BZ8bW20mXPjasRITjmJhwuCVTRaPDzscTpdJ4fP69jDtY2nuOZJlX10d+VgEM18imcmTKha5oq+P217Zzd/Hm/n5wUmyloVrWUQcF98QHDEohCw808T0MnRMZDCAkOvSkM3TNTLGeDLOQ8sWIgoQSBZLdI2OM5BqxZvqHIvgiuCaJnXZAg8tXUjEdVk+MIJvCKbv8cp9J2idyOCL4BkGmxd18URPF296ch+DyTh72poJ+T5RxwWlsHyFoRTxUnnmRRIhWhlSUbAtCpaJbxhkwyGUCAO1NXSMT9CengwCDNODFyL4BigfDDV9sUAlAyNUcgAoKJPTyQSh4TzJz99LNhxmyeg4onzGYjFOe4KMlVEnM8RLJeozObx7d5ExDLLRKL4RHNfwFaIUtYUCEdfDBVAKV4SsYVTb53z8P4g5LkLlydY3HyVjW8QFDMdFiZAN2ZRCNrVOGbPooEwDJxmDZa3YN18E247j7ziBsbgF85M3YVyyqHqOSim8O7fh/MuDkM5jvGoNVsRGfftRKLmoV6zC+vNbkdfx0qsAACAASURBVGwJ/vEnsLMX1nTCR2+Epa1zPqtqfx987h7YeQIWNaOuWILzwF78vX2ogoNRE8H+wDWYH70R7t0F398KIRPecxW8YtWc4Taapmnar0bXgDg3HYD4FYnIJuBTSqknXui2aJqmac+9bxwt8tFtWUoeeMB9gw7+tHyAHeMeO8aDegmWJwxh8vV9k1i+MNDWHkxviUA0ynA0SutEhvvCIbbsKTIRGyUERESwyw4GlU4uYPkhGvJ5SqaJADWFIj2jY4gC3zQYTiTwzDNP4SeiEeKJOIbv45sm1TWVDuWphlpy4RAKONpQx/UHjnL1oRM05PKYSmEqhe37XH34OE+1teCLcKC1iW9ediGJcpnlg6MkC0WWDwzROpkj5rrESg6W5wHBk3+v0rkXBaPxKJ5hYqkgYOGLcLoudSYAMYtrGrhi44uQC4cRoDGbw/Z9XNOkrBRHmxoYj0YwFCgU3WNpGnMF0tEwtuczkoyjDEFVjpALhSERBGcm49EZ18M3oKZQIjyVcVFZF1x7H880MXy/GnwgeBcBqHHODGMRpUgWy9QUy9VtlOtjjmcpPX4E74ljwSEV+MdH8B89iPWV38R81RoAnL+4E/drD0M+eL335QfxlCJSaZf63lbcu3ZgGSBlF1wfdp+EHzwBP/wEbFhYbYt6shde/zkoOuAr1LFh+NlTKMNAVT4r/nie0t/eS/hL92N6fvW43L8H3n8N/MVb53l3NE3TNO3ZYTz9JpqmaZr28lRwFf9je5aCB1ODF2ZNElHtlPqAqjw5T8eiDCfj+NOepCOCEmE0EcMzDCZiUQQohmxsz69+IQvBl3OiXMYXIVUsIZ7HgtGgpoIBHG+snxF8APANg77aGlL54lm/3E3fBxE6JzJ0pCerwYfpDF9xUe9pEDjRkGI0EadghxiqSXKkpYl7Vy+nOZOjZSJLqljC9n0MpYgWS2TCYWzHIVkqUbJtXNOgaBrU5gqs6Btk+cAwubA979MhhbB1YRd7Olp5qqOFvW3NPLxsIf3JOAIca6hnPBpBGQaeISwbGqG2UEQZggCjiXhw/afv0xBykTCT0XB1uMeZN06IVYI+s99PAVAKu1KI8+nMDlBM/TfkV8JJ00+44OD+/ndQSqGGM7hf2XQmCDCNOxXMAaxiGcmXg+ADgOdDvgSf/tbMF/3J94N9VT6kU+di+341k4TKuTkFZ+Zx82X46kNwdOiXOmdN0zRN+3XoAMQ5iEhcRH4sIk+KyB4Refus9e8Ukd2VdX8zbXlWRD4vIttF5Gci0lRZvlhE7hWRbSLycxFZ8Xyfk6ZpmvbL2zHuYsxOST9LiroA3rRgg2POXw+gbJpB+v+0ZWf7Mi5bViUY4czY3jPmf4USIeR7c6MkFSHXJeS4rOwfwjMMDN+fs40BxMoOe9qa+e6GCxAFiWK5em5r+4eIOu6cNjdn80TKDomyM6Ozv7p/iMXDo9SUyiRLZSKOV82UqJ6PQCYS5mhjAxOxaDAkwzTwDYO9Ha2UTIOxRKwaYKgpBpkLU21QCK55lquoFM5ZrtfTDTaQX2KbGYea57XzFvHsT0O2iL+rF0LzJKOKVDJnnsauXpj+Hu44Me9mc/Z0tv0LsGnf0x9X0zRNOytVeeDwfP281Ig6R3XrlzsRuQW4SSn13yp/p4A7gU8BfcBjwMXAOHAf8AWl1A9FRAHvUUp9U0T+BGhWSn1ERH4GfFgpdUhELgP+Sin1inmO+yHgQwAtLS0X33777c/9yb7IZbNZEonEC90MTXtW6M/zS0fRg/2TLtO76eppuqRTHU4VFDqYux5F2DnzZN2v5OfP3rJS2gGz8hQ9NG2ogGsY8wYhTN8n4rrkQvY8xz6zD0+EsmWRKJXmPQfPMPArndSyZVaPJUrRNjFZnaIT4A8//2co2+AvP/bHKKBo22fao3yis4InALmQTazsVotilk2zWivCdj2M6V15Fczq4YlRPSXb87C9mdkJPhJknMwRDAGZ732zKtkb85m6/mdb/8ua99WGIGu7oOjgHx6cGzBSambw42xNMAXWdp35e28fTBseMp0PM4JnolRQP2T2/joboC52lgO+POh/o7XzyYv983z99ddvU0pteKHb8WxZmuxSf3/RJ5/XY77+4U++pK6hrgFxbruBz1WyG+5WSv18WsXvS4BNSqlhABH5JnAN8EOC7/nvVLb7T+AHIpIArgC+N20f4fkOqpT6MvBlgA0bNqjrrrvuWT6tl55Nmzahr4N2vtCf55cOpRS/+//SHJz0giEWUz8i1c7hVB/Oh+pwBNNXhFyXTCQ8Y1iAKEUqX6Apk6vOAuEYQbbE9K6zIghM1OULQR0ApVgwnsb2guoTrmFwKlWDEqq1Cgyl2HDiNImS4mRthEMtjSgEy/fwDIPO8UkirkvettjT0YpvGCwZHGHB6DjWVCdbKRAoWBZGpR6CJ8Ke9hZONtQhvs/v3beJ9acGqm01Bkv4LWFC/3EKT+B0a3N1eEj3aJqmkbE52RJ72prZ0dqE6Qe1Iaa2F1/RM5qesb34iqVDI5Qsk1IluFGTy9M9lp4xfMRXMJ6IBQGdSvFKUdCQySAiZCLhmdkrSmF6Ps3ZHKJUtf4Gles7tY9o2cH2/WoRynOFn6avU5XPhFup4VEVsTHeexX2R69DKUXxc38TFI50p4W5lJqZ4aEUYpvItMAVERs+eC1M+7dEHX0I/uq/ZgytUIAr4FrTbvkq+589/IZEBPb+TfDflzH9b7R2PtGf5+ffSzEr4fmkh2Ccg1LqIEGGw27gryrZDFN+1axMA0grpS6c9rPyWWyupmma9iwTEe68poaehEHCgpQlRATq7GlPkgk6mlOFHIOZFYq0FQp0pScxfB/T8xGlqMkXacjm6R4bp8ZQKMD2FYavqh3WqUBHolQ+U1NAhP6aJF5lVguUomNislp7oXtknMuP9JKozEzRkZ5kZd8QPaPjXHakl8VDo0Tc4Mn4UDJRTb8/3NzA6bqa6jEByoZRHXYigKUUa/qHMHwfZRj8ZPVyHGPuV6AiKPY4nWMa86b6Lx0aIey4uEYl+FC5bg3Z3Dw1GRTNmSxdY+lgyIhSpGNRPJEZmSkGirpMjrpcnpDjEiuVaZuYIFkqU5srUJsvICq4zlPHUyIMJ+LkbRt3KuDCmUCTL0LBtigbggf4Eqyf79xnBKgqP8WwjVrYFAQLEhEIWxhvvhjrT99cfV8j3/5tjIsXQtiCeBhiIaypgIcE+/FuvRRuuSTYpiYa/Pc1F8Afv3lmQz5wDXz4lRANjqdMA2UIvmUGwaVKwMEWMN+wHmIhSEaCn9oYfPejL/vgg6Zpmvbc0hkQ5yAi7cCYUuo/RSQLvH/a6i3AP4hII8EQjHcC/1hZZwC3ArcD7wJ+oZSaFJFjIvJWpdT3JEiDWKeUevL5Oh9N0zTtV7cwYbLvdXU8PuYyUlJc2mDRGDY4OOmyadglbgldUeHJMZedQyUaDJ9XdzVyXVeMfMkj40Fv3ufUiTSnxjzWLWji+uVLyTuKO/amuftQhoKj6EyFQPnsGywwmXEwTKEYj5IpuqTKDiXL4mhDHVHHZTweZTiRIB+ysT2P5dt3Iyg8guETZcti86IFLBoZJe44TMu8o2yZ1UyA6w8cYePRXizfr2Z2HG6qZ6A2NedpfrJYYiIWZU97C/tamlk9MIRnnKklsLe1iY3HT7Kqf5Cn2lsAGI7HWMLonGtq+Yo379jD3rZmjjfW45oGqXxhxtAOCIY/dI+OY7sekXKZtSf7OdFYR8G2GUwmaJ+YPFNcUSlqHIeoB0ZlWtFyLIy5qAmZKBCri1Na1Ixf9kktbiJyYgTZtBe/7OFYJp5tBsMSEKyIScgUjFgYbr0UJxUn/70tWEeHMMrBkBzLEIjYqJ4m+OiNmG9cj7rnSfx7d8GSZuTV64g31SCNSVS2iDo5hrTVIrUzhzdIUw2ROz+BP5CGiQKypCWYfvO/tqIyRYy3bMBurQ02/tO3wJFBWNgMbbVzrquIwP96E+rjr4aTo8HxciVCvziIitiI7yO+Qq5aDi0pyJXg0UPBNJxXLAN7/rolmqZp2i9PFzg4Nx2AOLe1wGdFxAcc4LeAzwEopfpF5A+ABwkeEt2jlLqz8rocsFpEtgETwFTxyncD/yQifwTYBAEKHYDQNE17kRMRLm2wZyxbVmOxrObM1+g1zSFYMbNzmYxaJIH2BNDcPGNdPCS858J63nNh/TmP3Z/3+MauNNtPZomFTRY2RNg1XGb/aJF03iFvWXznorX0jE/QnM1Rn8lheS7LB4cZj0UIuS6W6+FaQeeyLl8gHYvSmM1x+dHeYIaEKUqxZHiMI00NxKYVmjSUolxJ4fdNgwNtTfQ2pABh7EiUWvFpzOU5XVtDZ3qSjcd6GY3Hg4wNQ7Bdv5pR4JgmpvKIui4Xn+xjw4nT+AL9qRqGk3FQYCkfTwwSxRJx1yXXXk+4JUF8aIIVgxN49XHMN62l5r1X4AxnsVtqCPc0zrl2oWm/R4CaWeuVUqjJIrGIjYTPfksUAvjtV57zfQKQ16/HeP36ucsTEWRl+zlfa7TWwlSgIRZCbrtq7kYtqeDn6dqRiMDKjuCP2jjy9o3zbxgPQ2U6UE3TNE17PugAxDkopX4C/GTW4uumrf8WMGsOrOq6Pwb+eNayY8BNz24rNU3TtPNZW8zk9zY2wMaGOes8X9Gb86gNGdSF2yh7ih/1Fnhoy2kO7RultljigeWL6RlLY3oenmnSkM0zUJNkZWVYxbzHnMzSV1tDslTGB9LRCIWQjel5rOobxPY8MpEIhlLYnl8d72q7Ljnboq5QpGN8grDnEXI9FFCyLB5Z3M2SoRF6xrN4BLUWwiqYgrRjIkPHRAZ7URPtX/sNzKiNJCPIWWawmBJe1HzO9eciIkgq+mu/XtM0TdOmU7w0Z6Z4PukAhKZpmqa9RJmGsDB55qs8ZAq3LIxxy8KlKLWEn+9P8287Rng8Gad+MkdDvoDt+ywaHiVaLlOtrDiLbwhF2yJeKlO0Lfa2NtOQzbGif4ju8QkE6ExPEva8yqwfwng8Rtxx8EsO/TUJmjM5EqUg+JC3LUYTUS49fpJiJMze1YtoTtr0rG+n9hUrKD55CjxF/LplhBbMzWTQNE3TNO38oAMQzwGl1It3rhtN0zTtZUFEuGZlHdesrAOC4QbbB0v88y8G2HdojHipFDylmWeayVO1KXwR0rEohlLcsP8wpu9je8GMGsliifCsaTCLtsXigWEGa5P4YpALh6n/yCvpfv1aQs3JYCYHkRn1KKZEp08lqWmapmnaeUsHIDRN0zTtZUBEuLg1wr/e2sOO08387398nN1tLaztG6xsAKLgiZ5OiraFqRS+YeADp+pSrOobZM3pAU7VpxCZOyzC9jxM4EhjA6tesZgrP3QFoYg94/iapmmadr7TRSjPTQcgNE3TNO1lZn1HjD/80IX82+cf4Wh9LdloBMcyOV1bQ9myEBUEI6pEcE2DtsksJopTdbX4ldoMU2GFdaf68Q2haX0n13/s2uf9nDRN0zRNe/E7d2UnTdM0TdPOS5csSvEPf/9qFr12FUsHRxiLRtnf0kTZMBGCwIIPiFLUT2apy+axfJ/OdIZlgyPU5AvESmVCrofp+zRncmTWdPPWP3nVC3xmmqZpmvYCkWBK6+fz56VGZ0BomqZp2stU2Db50NtW4bxpGQu/+Ajrtu9m84IOpClJu+nTWRvmrVe0Ujs8wcAD0K+KhE6MkCyWWF4sYSqfmOfiGhZd/3Ib9Vcs+f/s3XecFeW9+PHPMzOnbm8sLOwuu1QpCgoiCAgWNGos164xmuTGFJObmOTGXxJvirk3TVNMjDGaYmJssfcWFUUUlSK9t2WB7f3UKc/vj3NYdtkCGjrf9+t14jlzZp55zuwJZ+Y73+f7HOqPJIQQQojDmAQghBBCiGOcL2BxwTdP44K+VijLpuSkVKFIz/FoXVaNdj1yjh9C9tkv0NLSIsEHIYQQAtBHXlLCQSUBCCGEEEL0yU3YrJ+/hbVtLoPHDuSk4TnknVh2qLslhBBCiCOQBCCEEEII0asXXt7ITxa3Up2TzWULVzH79ud5JxZncFs7uWMG4j9rHF5VI4QVbiRBDMW2dQ20NcfIK8ygYGAm+UUZMgOGEEKIY4ZGfvP6IwEIIYQQQgAQs11+/tpOXt3UQTSpCcdi1GZm8qtHnyc7kUQBcb+PjYX5ZG9ppfmhJWzvcAj4Te656n5CtkNTRojseIL8SAzHNKgtzKNo1gg++akJZGQGDvVHFEIIIcQhJAEIIYQQ4liiNd6aneB6GGMHg1Jorbnr7Rr+8n4jtmGglcJVCjsU4rzlazqDDwCksxkaszL5/WlTaKl+kGJsAq5HU2aY1mCApGUR9fspa27luKqd1DzZxmc3RggPziPXrxi/eTsTTZvK608hZ/TAQ3YohBBCCHFwSQBCCCGEOEZsePB9Sr7xd/y2g2sYtISDvP75c1k0YABvN3vYPh8toRDNGSE8pTC0prKxuddkUp/rcuniFbzvaQzPo7g9QlVBLp4y6AhZdAQDNGRlMLymgabMMFcuWo5aCDVZmSwtLmKpUsy48VGGnlzKpJ9edNCPhRBCCLG/aaQI5d5IAEIIIYQ4yrVEbJ64Yx7NS7bTceYMTl+3iVM2biUvGuPc3z/DcUX5tMyayqtjRtCUEUYbqbMnTylaQ0E09BqEGFrfSGYigZNpsS0vm+Ord7ItL5cdudl4hsJnO2Qlkwza2YGR3iacbGJgewcbCvOoywjTtryeBd//F+feOI3K4vDBOiRCCCGEOAQkACGEEEIchbyETc39C3hgUQPv5uSztaAI55QBaNPkyYljGdrYzC3Pv0bUHyDus5i1diMfDB1CQ1ZmZxvhRJIB7R2M3VGD0tCUEaY2OxNPKSIBP7efdwZt9zxKiZPgk8vWYLkunrGNheWDeXziWAa1dRC27c7gA4CpIZS0QSkaM8MMausgtGgTf/1WEx0ZISxTMaYowISxRZRNHEL9xgaatzZTUFlA5YxKrICcugghhDh8SRHK/smvuBBCCHEUSDoeHhAwFa//bh6D7n4F1zCYGgzw0JUX4Fi7f/I90yQ3Gqc+Kwu/52ECA9sj/OSpl/nOxZ9g44AClKd5/O77GV1Tj6U1AAPaO8iOx3ls4jiWlA+mtKWV9Z5HwrLYnpXD8PpGcF0mbd3OsiGD8DsuhqdJWCYbC/NpCwUp7IhQ3thMbixOc2E+Eb+PzKRNRVMLkY4oQcfBrYJFi7ay+O8Ld/fZULz+h3dYWl6C8ltMGZ3PzNnlDC7Jxo07PP7UGlZsbCE7ZHH5RSPJiCYoGpLDzrjH+x/WkpEV4OSJxeTnBA/yX0YIIYQQu0gAQgghhDjMeFpT15ok7LpkZQfAMlhYG2fBvK1kLtnCnPoaCi44Af/0kTTc+gzzVjSwpqiQ1mCAUfWNnLZuE45hYHgea4oLcUyzW/tKay5augq/5+1eBvgdl+veXcT3L5zDaes3MbKuoTP4AGAANdlZLC8dBEphaY1WCtD8afokbn3mVfyuh891OWlrNQsqy2nKCPOvMcNxlcI1TTa5+XxYOoiRNQ0AtIaDZNoOGfEEUzdVMaC9g7ZQkOUlxdRnZkJ6OIjhaUg6jN28nYDjYq/cxOuPfUBRWzuvjh1FR9CPpxQ722z+949LOXvpaiJBP0vLBmObJnGfxcPPrufK84ZzzulDexxzrTWNSU3AUGT55O6VEEKIj0dqQPRPAhBCCCHEfuJ5HmuabZpjLtGoQ1PMoTI/wImDw5hG9zOSzU0JGqMOo4uCbGxM8OzqViIrd9BQ084Oy09BewRPKary8xhfU8s1CxYzO5Yg4bO4c+I4iv/yIfWPb+TNkaNInjmG9lCQuGXiGgYVJ0+gsCMCymBDcSFaqW4JoeGkTdB2evTfAIbXpQIDJ27djs/1eqyzsHwwrur97GptcRHjd9R2vq7Kz6U1FCRpmp2zZzimiasU64sLKG6LELIdsqMxLlq6CtPzMIC8aIzS5hZeHzWcbfm5ne1pIOi43WbkqM3JJuDYtBm7Mxu01swfWcnonXV0+P3UZWZQ0diEaxr885l1lC7bSNBURM86nuPyfDR+7wn8Ly/D8jzeGFnBw+fO4Mb2GvJa2qict5JgWxROGw3fvxgKstBLtxLNzWBVdi4Zy7cQXVxFfVOcpuGDOfGqCRyXH8DxNFaXv3lDwuP/VsfZHvM4d6CPa8t9mEbXwSlCCCHE0e+IC0AopXKBq7XWdymlSoDfaq0v3Q/t/hD4ATBCa70hvewm4FfAZK31wn4276vNi4B1WutV6ddzgW99nLaEEEIcvrbWx/jBc1uZG/fhd10CXS6SDQW5QYN7LilnZGGQxojDV57ZxsbGBKaCmK0pbWzhxtfe5s8zTmZTUQG2ZbEtPw/S2QdVubkkLQtLx7GSNlcsWsbjE8fz7ISxoDVJy6Q9EEjtUCk2FBdRm51Fhm33CD4AxC0rnbnQk6cUFXWNdARSGQVmlwwIgKRpofu4cHbM1HLbNFk0dAiuocjviDB9wxb8jsvOnEzWDSikPjuTuM9PSctOAE7duBXbMPjxeafz12mTcEyTyxYu479fnsu2vJxUvYhQgLxYosdnMYCyplbqs7N2L1SK9lCAzYV5rCgpZmlZCUOaW7nt0ecZv6OGP00/mbtOOwVvkculC5fw56fex5fOBvnk0tWcu2wNd512Ck9OHMuUiQG+8eo8ip5aRPTF5bw5cihl9S18MHQIVyxcRtBxUMAL40bxm5LhbHmqnqjPIhrwM8QPF5T6+We1TUNyd/cerbb5z4Xw9PQMzhvk7/VYCiGEEEejIzH0ngt8GUBrvWN/BB+6WA5c2eX1pcCqf6O9i4Ax/1aPhBBCHNaaOmxu/OtqXksGMLTuFnwA8DQ0xTy++OQ2XE/z9eeqWVMXJ+5oIrbGchx+88gzbCnMY/2AQuwutRpQCpSiKj+H718wBycdNAg6LhctXYlKD4GIWVbnurv4tCYzkeRzb7/Pbx96mluffpmJW6tRnodrKOYPKyNpdj8NSJgmbw8fyiWLl1Ha2IxWqayDXTQwfkcNluv2OA6uYVBR30TCNPlg6BDWDSjk5M3bmLx1O7mxOGHbprKhmXNWreeyhcsY0tyCAZieR34kyrn/9Rlum3Ma1fm51ORk8ceZUzjjmzdguh5xyyQSDPRZ1is3GudLc99lSFNLuqOavEgMrWD2uo185fV3+MJb79EeCpKRtPmfF17njV/dC1rzs6de7gw+AEQCfqZ850a+d/HZzBtRwe9nTeP4H9zEpsJ8wokk7ZafWy46m8sXLyfsOBjA/VMmcvkN17BwaCkNWRlE/X5Qimpbcdem7sGHzuMFXPR2hFVtPY+lEEKII5dW6qA+jjRHXAYE8DNgmFLqQ2A9cJzWepxS6npSF/wmMA74JeAHrgUSwLla6yal1DDg90AREAU+r7Vek277KeBC4H+VUpVAK2Dv2rFS6irgu6SGyj6vtb45vbwDuAM4H4il2xgGXACcppS6Bbgk3cxlSqm7SAVSPqe1nrefj48QQoiD6JmFdTSaPgCCttPnRXI06fLK+jbW1MVxu1zVT9u4FdN1eXtEBZ7Z+30BbRjELZMlZYOZvLUagIDtELAdXENh+n10HVChgNxojNsee4FwMknM7+ORycdTm5OF5XrYPovnjj8Ow9NM3VyFRuEpRdRn8dl3FhLz+1hWMpAVxUWMaGgmZKd+CmM+Hz7bYUBrOztzc7qNc82JRNmRk0VbKMDbw8rJjsUYWdvQeafDVYrmcBCtFHnRGNM3bKUmOxPbNHlrRAULy4cQ9/s620v6LHbmZPPusDIqG5pSNSTSdScAmsIhduZk4ZgGw2sbOKFqBxO37eDxieM4e+U6shIJNhQV8MikE3BNTXsoSHswwNaCPK5/dxFjd9Zy80tvMqC1vdux/tF5Z7CypJiEL9WXjpBJNODjus9cztu33c15K9eSH4uRkUwdE08pvnXpeUQDXTIZjH07IXSAX6+Lc++kjH1aXwghhDjSKb1HauXhTik1FHguHXTo+vx64BZgIhAENgA3a63vVkr9Gtiqtf6NUuo14Ita6/VKqSnAT7XWp6eHYHQA04DvkwoiVAOfAb4F7AAWACcBzcArpIZ/PKWU0sAFWutnlVK/ANq01v+rlLov3b/H0n2fCyzSWn9TKXUu8A2t9Zm9fMYbgBsAiouLT3r44Yf34xE8MnV0dJCZmbn3FYU4Asj3+eiyozlBa1JjmwaW17Nmwi6GggEZPuoiDl6X3968SIzCjghbCvKwLbPP7ZXWFESiZMcSALiGYmtBHkprXMPA2+MuSHFbasYKpaE2O5OkZaYCDYbqtq7SGtPTeIZicHMbvnR2g1YQ9aWGlBhaAwqlNTG/j/aAvzPb4mf/910sQ3Pbjd9FdTml8JTCTQ/VcAxFrEtwAVLBGkNrHMMg6vfTkBnu9U5OVjxBdiyOZygMrbFcj6RlkuySKaK0xue6DGpt79aH2uzMzj505XMditqjxPwWoWT3WhjLhgzENnv+HZTWnFC9E9PT3bZzTINlgwd+7LtQmZZiVNaRmJB69JJ/o8XR5HD/Ps+ePXuR1nrSoe7H/jIsu0z/5JSbD+o+r3z1K0fUMTwSMyD684bWuh1oV0q1As+mly8HjldKZZIKMDyqdp8oBPZo42FSwzDOBs4gFYAAmAzM1VrXAyilHgBmksqaSALPpddbBJzVTx+f6LLe0N5W0FrfA9wDMGnSJD1r1qx+mjs2zJ07FzkO4mgh3+ejy/1vbeeRBfVsyMklbCd7DMHYxW/Ay58bzvn3bSJi7w5UjNlRyy8fnc8jnzyL9ytKuw2j6La97XDrM68wtLGZuGXy52mTeHN0OcGkTUV9I+9XlJH07f5Zv/fvj1HR2MzO7CweOXtm5wW7oxRNGWFCts3n3v6AqZuqMD2P6rwcyppbqpOUiwAAIABJREFUu+1ze042V37+akzP48tz3+XUjVXEwiFWVpZRl526a9/SYZCX4VJ+56pu4zptw6AuKxPHMFg4vBzX6B6cMTwYX13Lztxs3hlWwJMTxnXr/67PfMniFZy6sZaanCy0UliOy5bCXPQeWQYB2+FTC9YwY8MWVPpz/vCTZ9ItIpFmuh4/em4+i0pLmLhtR7d+X/WL71GTk9VjG5/jUv+zZ/CU4t4Zk/na6wsIOC4Jy+TCX/2gewbEPjKA744I8oVxoY+8rThw5N9ocTSR77M43BxtIfdEl+del9ceqWCLAbRorSd0eRy3RxvPkhq2UaW1buuyvL9bG7benUri0n9gJ7GP6wkhhDgCnH/SAHKVR2YiQdy00HSvmwDgM+CmGcUUZPi4eVYxQWt3Ycg1gwawfPAgzl22GrOX2goAyvOoaGiipLWN6txsfj9rGm+OHo7puuRFo3znpTeYvmEzPschnEhiuS7tAT8aaA0FU1NYpllakxuNcsvzrzN1UxW+9MwTpXsEHwCK2zuIBvy0h4L85swZbBhQQG4szhmrN5ATjXWup5WiOaP7RbTP87Bcj4bMcM8DQipDYmdOFg2ZYSobmlPFHLtmkGiNqT1O2VyF0hBOJDFdj45AoJcjDAmfxZKyks7jaqbrcfQmM5Gkw+/jrlmnsCOr+53BKz/4kIBtd1umPI+TqqrxOy4/nzOT28+aSWM4TNw0CDgun5/3HuFEL4Ue9iLHgq8O3/M+iBBCiCPVwa7/cCTWgDgSAxDtQM9bE/sgHVDYrJS6DEClnLDHOjHgZuD/9tj8PVL1HAqVUiZwFfDmgeqrEEKII0Neho87PzuGC/JhUDRC0mdhBExyQibFmRazKjL562VDuWZiPgAXjc3lnv8o44zhWYwfGOSLU4so/fvncMsKOGflulQQQuvOGTA04BkG75cP4ZNfvo6vXnkhCyrLQGsmbNvJrc+8StD1+N5Lc3n4Tw/xsyde4KIlK9hQVIDSmiHNLZ2zU+wyvL6JsqaWbsUXezuFqcrL6XyeNA2emDiO10dW8qfpk9mek43yPFS6n+3BYI/t86MRYn5fn3OiR/0WmtTQiuveXURpcyuG52F4HsVt7dz80ptkJG2WlA7i7plTeHTiWEbX1GF5PQMQhuelhmp0+TxTN27F53QfYuFzHE5dv4X5w4by/PjR3DtzCg67Qxo/fPZfjKxtIDMeB63JiCcoiMT44/1P8LszpvHX06dy07/mc/GXPsXtc2ayuHQQ1y5cyuytVfgcF7/jdH6G4wIe3xjhpyycOv5m+hE24epSiw/PzmFA8Eg8FRNCCCE+niPuDrzWulEpNV8ptQJY/TGauAb4Q7owpI/UkIule+yjR9EFrfVOpdR3gDdInde8oLV+ei/7ehi4Vyn1X6Rm1BBCCHEUGlIQ5BefGrXP608oCTOhJNxt2di/X8tlwBeaEzy5ooX3t0XZ3pbEdjxc2yXc3k5bOEQ04MN0PYJJm8lbthHocoEdTiQpiMRYM3AAH5aWcN2CxSjgjNXreWPU8M4hDgNb2/oMCuwStyx+e/qpna+1YbCipBgANx3QiAZ8+B0XywNjj6wBV0F9Zga1WRm93qFRGkJJh0g6bpEdT3Dte0uIWyZaKXKicQanC0ROqN7Ji+NHs7G4iC9dczFXLlyWqkvRpV3L8yhtbCHq9xG0HSytOX3tRuI+i/crSlNZIApG1jYw9coJqM/NomZ9DcyexcqLRxK741VKt+xkU2E+U7ZuIyegWBoswrVMhsfa+Osfv86lo7L4VoGFce1VfAeIuydgKvAZiueAqKNpTGoGBhW+LkNEfjkBtNaoI/BOlRBCiI/myKqwePAdcQEIAK311b0suw+4r8vrob29p7XeDJzTy/Y/7GNfs7o8fxB4sJd1Mrs8fwx4LP18Pt2n4ezaVgN91IAQQghx7BqaF+CmGcU9licdj83NSXKCJgOzfNS2JEhcXU7GW6vY9Kf5JNoTLB1RxoMnHk+bMlCOx7riIo7fXsOnFyxhdG0Dz48bTXswgOmmhkfsySM1NGJzYT6/O/1U5g8f2vme5bpkx+KdwQcA27JoDwbI1nGSPh+2YWBojUJTn5nJpsICXBShRJJYekgISqE8Tci2ybAd2hyHxK5pRElNMWq5LrnRWCoLRCmCtsP3nn+N9yrKWFpaws7sTEqbU0EUlT7Vy+uI8vpxw3lrVCX/sWUzwzdUE7MscgIGZ/jiuKEgJ5eFybx1NgwtSn2AguEAjB02AP5jAgDFwNQeR6ao179V0OweUAhbirDVe5BBgg9CCCHEERqAEEIIIY41fstgVNHuYQ7FuenaAZdOouDSVPHr6cCXtWZjq8OHTy3nrtOm8LOnXiY3GmfaxiqmbazqHGrRHAqkZntIXxi7StER8PO5ay/B57pUFeR37styXXyuy4COSI9+KZ0a8zqssZmFQwaBaeIYBp5hpIpBmiZzRwxlxvrN+B0PpTSZCZtw0kYBA9oi1OSkpuMMOA6OYTB5SzUnNTWybEQ5jY4G18XwFDM2bOHUjVsJZQeY9sVpqKFFNDdFida1g6OpHDuAAYOzsdJBkkz6Ch0IIYQQ4lCQAIQQQghxFFFKMTzXx/DrT+TiqkaiBVHaXl6Os6WBzC5TTubGEnT4fcT9PjyleK+ilDtnTaM5MwOtNZcvXMqi8iG0hoKcvLmKgo4IqwYPxNtzWktFZ72K8qYW1g/anb3hAZGgn7WDilk7qJiC1jau+WApfsdBkwp6NGaEqMnKIGQ7BD2PC4f4OfEL58O0EQzcI2tAp4dRdM0mqCjNBgbu56MohBBCfDxHYmHIg0kCEEIIIcRRyiwrIOvb55L17XNpfWEZLV9/gMxYsnN8ash2SFgmmCZ/n3IidVmpqTWVUrw+ejhzVq2lsqGZuM/H6oFFPU6qjPRMF0YqLkBuPMGe3h5W0fm8NTOD7Xk5RKNxcjsidISCTNtSxdWrOnBuOofK66Zi9HPipgw5qRNCCCGOZBKAEEIIIY4BOeceT8aUSlrvfI3IwwuwXXAMRSQjxBPXzqGoxaYuniBppYZQdAT8vF9eimuYRAJ+FDCopZWGzAxQCk8pyppaaGhpxRmYmoLTNQw8QCvQKN4cUUF1QS4APseloqGJ09ZtxvGZJHIyueqmaQwcOAcG5oBlHrqDI4QQQuwnkgHRPwlACCGEEMcIqyCTgh9cSMEPLsRrjaH8Jirk5yQgant8+m8bWNNh4yqDPDtKwmextriIT6xYw/C6Brbk57G4fDDnL19DaVMLefEEn/Y8HCBhmtx3yomsKy7C8jwWVAwBZeDzPCzP48Rt27kiEGPYl2aSU5JD6UmlWEE5DRFCCCGOJfLLL4QQQhyDjJxQt9dhn8GjnxvBm8sbeOuplQRXVrOofAjriwt5ePIELM/j0oXLGF3TwGujh3Pp4uVkJG08pUDBmvGVvDNmOAMaWyjsiHDVomXMsCOcnKXIvHQSBV+YcYg+qRBCCHHwyDSc/ZMAhBBCCCGAVO2HWccXMev4WWjXo/Zfa1j28GIaGqPkdMRIlhUy+gtT2WYbvFicRbC2hcgzT+EPKq548DquAOp3tpOI2Qwsy8WyjL3uUwghhBDHDglACCGEEKIHZRoMPHsMA88e0+O944A5M8sAeGfF7bS0tHS+VzQo62B1UQghhDisaKQGxN5IAEIIIYQQB07Chi//Fd5aCwELrpoGX50D2aG9byuEEEKIo4rkRgohhBDiwHj8fRj0FXhyETR2wI4W+OULUPl1mLf2UPdOCCGEEAeZBCCEEEIIsf+9ux4+/+ceizXgeeBd+Cu4/LewdsfB75sQQghxgOiD/DjSSABCCCGEEPuX58Glv+n1xEiROvkwAP2vlTD1R1B5E7yx6uD2UQghhBAHndSAEEIIIcR+FZ+3juqMbDaV5VHZ2MzwhqZe1+ss09UShUvugLGD4cX/hkypDyGEEOLIJEUo+ycBCCGEEELss5jtYSrw9zHF5srqdr7zcj3bP381npE6CcuKJ7jzoac5fkdt/42v3A5lX4ffXgtXTAWfub+7L4QQQohDSAIQQgghxDEqnnS497VtvLWmlYiGQVk+ThgYZlxpmHcaXOo7bE4fns15Y3J5ZmkDv3xpG2VNLfgcj7hlEnQcmlbsgHyLrZ/4FcsnjODxqJ9tZYMpaWljcEsbm4ryqaxvIug4aLpkPfTnv+5PPYYWwYIfgl9OV4QQQhwBFGhJgOiX/KILIYQQRymtNa6n6ehIEgxYtKH4wtwm1m9tJa89Qqg1QkdGmIRl4hkGNa2aJa0dWKvbcQ2FpxRvbWznhy9VA4oBsQS1WZm0ZIRRnkYrRbPPT4F2KflgHTlLN/PTG6/nt488y+Qt27BNk4DtYGqNqT9Gqawt9TDwRvjrDXDBiSBprUIIIcQRTQIQQgghxGHE1ZqqiMeLNTZtjmZwyGB8jkldzOVfdS5jsw2uKAsQMGB1u0d11KW63WZzQ5INEY9tO9rxReI0Jz2KmtspbWlDpS/+GzNCbM7PpSCRpKg9QsC2iYRCeEZqOIU2FKCwle5+sZ9+XpeTBYCpNdnxOErDhlCQbCOGz9N4hsm3X53H5C3bCDouQcfdPwflM/dA2Aezx8DM0VA5AEwDTiiHvIz9sw8hhBDi36RR6H3L9TtmSQBCCCHEMa0l6fH4dpuWpOasYovjc/ftp9HTmldrHV6qscn3Kz5d7qc8w6Qp6fGXzQmWNLsUBxWLm13WtbvEPWh3wNmXRIDesgWU6lx+/QfRHm+bjkvYcegIZkMgC0NrKB7AkOZWzlizEQMojMQojMRSzZGavmtUXQObCvNpDQe776s3SpEbiVLR2IzSqTZWJW3cgIEG8qIxPrl8NcaBmBcsasPzS1OPrkwFkyphciVcfgq8vxEeegdqWmDEIPj+RTBh6AHokBBCCCE+KglACCGEOGbNrbM5/+0OAJIe/M9KuKbMzz0nhVH9pPs7nuaC+R3Ma3DocMBvwE/XxLl9fJD/WZUg5mhi3r/RsX4CAGjNsPomTqjeSShpU5OTxbxh5bimQXso2LmeqzWnbtjC0MYWkpZJ0HF73JNRpLIZypuaWRYauNchDpbrUtnY3GuA4YHJE/jUBx+iDvak5K6G9zamHne+2v297S0wdzXceBb8+NKD3DEhhBBC7Kn3EtYHiFLqh0qpb6Wf36qUOnM/tJmrlPpyl9clSqnH/t12P0Y/Dsl+hRBCfDxJT3PxOxEiLkRcsDXEXHioKslzO+1+t31kW5K36lPBh1RbqW3/68M4Lcl/M/iwFxO27WD6hi3kR2OEHIdBLa24polrdp8xwtCa5nCIkOPsdSiE5Xn43HSnu2Zf7JGJkReN95la+m5lGRG/jwP40T++u16F1TsOdS+EEEIcA7Q6uI8jzUENQHSltf6+1vpf+6GpXKAzAKG13qG1/rducyilPvK8X/tjv0IIIQ6etxscvF6GOkRc+MvmZL/b/qMqSaSXa3oXDugFuOW6TKiuweft3ktbOIShe+7VMwxqcrL3rWENriIVcNiVBdHLsVFad9aT2NOMDZtZMmQQfz51EnuucbCTInrQwD/mH+peCCGEEMe8AzoEQyn1aeBbpH76lwEbu7x3H/Cc1voxpdQW4EFgNuADbgB+CgwHbtNa362UygSeBvLS69yitX4a+BkwTCn1IfAq8Pt0u+PSgYSfA2en+3Cv1vp3ffR1C/AXYA5wp1Lqg3RbRUAU+LzWeo1SahjwAGACLwLf0FpnKqWGdtlvEPgDMAlw0uu8oZS6HrgACAPDgCe11t/upS83pI8BxcXFzJ07d5+O99Gso6NDjoM4asj3+fAQcTQ/Uh5uL7+EOc2KuXP7jtFfGvE40zr4l9WW4ZFzUrxbEMBTSWYGl/W6vj/TJXtSfK/tOobBJGvPDIGek2aqEk3I7p4dMu8VD9PQ5F2YR22gmMG2w5tnnLpPn+egKjRB/n8n9oH8Gy2OJvJ9PvikCGX/DlgAQik1FvgecKrWukEplQ/8Vz+bbNNaT1VK/Rq4DzgVCAIrgbuBOHCx1rpNKVUILFBKPQP8P2Cc1npCer9Du7R5A1ABTNRaO+k+9CeutZ6ebuc14Ita6/VKqSnAXcDpwB3AHVrrh5RSX+yjnRsBtNbjlVKjgVeUUiPT700AJgIJYK1S6nda621dN9Za3wPcAzBp0iQ9a9asvXT76Dd37lzkOIijhXyfDw9xV/OpZ1poc7ovzzDhvgkZzBri73Pbjh1JvrYg0iMLIpCOWSQOUBpEMGlz5cKlWHtkIbw4Zhg7c7M6Z7MAMF2Xc1espbi997Z0+tERDLChKL/btgBFbe00Zmb0WD64qYWy5jYcI1Xpu71NkZfpcfb332J+ZRkTt+0gbO9xUPfY70E/NTMNeOLrMGPUwd6zOALJv9HiaCLfZ3G4OZBDME4HHtNaNwBorZv2sv4z6f8uB97TWrdrreuBuFIql9T5yk+UUsuAfwGDgeK9tHkmcLfW2tnHPjwCkM62mAY8ms6s+CMwKL3OVODR9PMH+2hnOnB/ep9rgK3ArgDEa1rrVq11HFgFlO+lT0IIIQ6AoKl46JRMQiYEjdSPTIYJnxjo4z8G+/rd9rxBPj4z1N+5baYF2RY8Pz2Tk/JMMkwI7a9f2C7BhrjfR1V+Lo7R/RL+tHWb8NsOytOYrofPcZixfgvF7ZHdzezRbNI0WTmoiHXFhT2CDAA+1yM/EsXwvFQftEZ5Hob2+Mrr85m1bhOnrd/EkOZWLNfDUYqoZe2uJdGHAxZ8yPCnAg17MhRccCJMH9nzPSGEEGI/kxoQ/TuQQzB2zfC1rxLp/3pdnu96bQHXkBoOcZLW2k4PmQjSv4/ah11nagbQsiur4mPo76vQ9bO5yEwkQghxyJw7yMfGT+Tw8LYkzUmPOQP9nFpg9jsDBoBSit+dmMFXRgR5rdYmz29wQYmPDEtx+gCLhc0uq9tcSsMGCxptFjS6VEddtkY1aMj1wY44xHRqTOHkfINbRvm4cWmCzVF2Bx00oD3YVWBSa94cUcGM9ZupaGpBA0nL5J3KMuL+VNDEtG2Or64hIx4naRoYXjoZVGsMdv9AeQqSVh8/QVrTEgoyqq6BwkiM5lAQpTV5kRhtoQBBx+HyhcuwtOZPtk0CcEyT7fk5JE2zW42KA65yAHxtDhRlw+wxqdkwHnsfVlVDST589jQ4bfReZ/gQQgghxIF3IC9+XwOeVEr9WmvduA/DH/YmB6hLBx9msztzoB3I6mObV4AvKqXm7hqCsQ9ZEKSHeWxWSl2mtX5Upc5Ej9daLwUWAJeQypa4so8m3iIVMHk9PfSiDFgLnLiPn1UIIcRBMihkcNPIvcWzezcqy2RUVve6xUopJudbTM5P/cTOHtB/NkVXm4aE2djh8k6DQ5alOHuQj5CpaEl6rG5zKQ4aVGaaOF4+29pddMImnBnAbyny/QarWl1e2GlTPD2PCW6Mhx9ZQW1tFI/dKY+7ovIJ00T3clFueB6DWtrIi8VRGjISSULJJGjoCPixDYMvX30hv3j8RUbWNeAqhVYwv6KUUzduweijSOW/7YRSOGt8KpiQkwH5GZCbAeE9hsrMHJ16CCGEEIdAb7+th5JS6hxSZQRM4E9a65/1ss4s4Dek7os0aK1PO1D9OWABCK31SqXU/wFvKqVcYAmw5d9o8gHgWaXUQuBDYE16P41KqflKqRWkikL+vss2fyI19GGZUsoG7gXu3Mf9XQP8QSl1C6k/xMPAUuDrwD+UUt8Engdae9n2LuBupdRyUkUor9daJ/Z2R00IIYQYlmkyLLN7UCPXbzC1cPfwAsswqMgxSP087TYmx2RMzq5tA4z/7nQAHNejrS3B1m1tLFlex7INTazzZaGVSs9skdpCocmKJyhsj3SeILT7fbSFAtimRXM4iFYKrRTXffYKBjW3sP6v88m1PH43exrjdtby9dfmE3Sc/TfUIicEC34Ixbn7q0UhhBDimJCelOH3wFlANfCBUuoZrfWqLuvkkrp+PUdrXaWUGvAR2m+j56gDRSrOENBa9xgbeUDT/7XWfwP+1sd713d5PrTL8/tIFaHs8R6p+gu9tXX1HovGpZc7wDfSj731degerzcD5/Sy6nbgFK21VkpdCSxMr7+ly37jwPW97OM+un+28/fWLyGEEOLfZZkG+Xkh8vNCTDx+d/kkrTVLd0T40zObqGuMUeLTjDtpIG8257GqIUEHBobf4LhsH2eVhaj9sJql1RFqsrOIBPzszM0hEQ7g8yW48dxyMnZkwctv7p/gQ24IXroZRg7a+7pCCCGE6M3JwAat9SYApdTDwIWkahHucjXwhNa6CkBrXbevjWutu833na6leCOpySCe6G0bqT/w0Z1EappOBbQAnz3E/RFCCCE+FqUUEwZncueXju+2/D/72mD6QDxPs217Ow5QPCDM+c+GaWlJctbMcqAcpt+KPuE7nVkVH9mQPHj+v6G04GM2IIQQQhwau2aYOsgK06MEdrknPasipCZu6DrjYjUwZY/tRwI+pdRcUqUN7tBa//2jdEAplQd8DbiO1MiFyX2VPjjmAhBKqSdJTc3Z1c1a65f3ZXut9TzghP3eMSGEEOIIYBiK8tLsvlcYko+67Wr4Vl8TRfVj8lB4+Tsfu29CCCHEMahBaz2pj/d6S0rcM0ZikbrJfgYQAt5VSi3QWq/b247TwzW+CVwO/JlU3cQ+JgDfvbNjitb64kPdByGEEOKo9pmZ8PNnob7fc5DdTAN+fCl84fQD2y8hhBDiADvMilBWA6VdXg8BdvSyToPWOgJElFJvkbrhvtcABLAJaCQVfIgBN3Ste6i1/uWeGxxzAQghhBBCHGBKwYqfQ/GX+1+vrADuvA6mjzo4/RJCCCGOLR8AI5RSFaRqGV5JquZDV0+TKjFgAX5SQzR+vY/t/5zdWRYZ+7KBBCCEEEIIsf/5TFjzC5jwXYg73d/zW/DsN2Fy5aHpmxBCCHGAHIIaEH3SWjtKqa8AL5OahvMv6dkqv5h+/26t9Wql1EvAMsAjNVXnin1s/8cftU8SgBBCCCHEgTEgB7bfCS8vg8c+AL8J15wKp4481D0TQgghjgla6xeAF/ZYdvcer28DbvuobSulyoE7gGmkMiHeBb6ya0aN3kgAQgghhBAHjlJwzgmphxBCCCGOJn8B/gpckn59VXrZmX1tIAEIIYQQQnxsWmu0p6mramFVQ4KWuWvI3tlESUAx+MxRZM4chTKMQ91NIYQQ4sBTh10RygOtQGv9jy6v/6GU+lZ/G0gAQgghhBAfy7o3NrBxQxMZ2XDLbQtoD/gZUVPPza++hUJh/fEVYoaB/d0LyPnanEPdXSGEEELsX/VKqeuBXUGIa4H6/jaQAIQQQgghutFa07i2jsYFm4itq8OL2+QcP5iGvCwStsfYU8rYtq6B+x9cjt92MbVBZUMTSdMEBV+9/AImb9vO4JY2ZqzbjP8nz7Ay4jD2u+ce6o8mhBBCHEDqWMuA+AypGhC7ZsOYn17WJwlACCGEEMcw7XrE31hNdH0d3shBJJojPPDEWp4dN5olZZUMLinkM29/wEnvzSc3EiUZCvB0QR6eUhwHPOu5gEFzONTZZlE0yhMTx2Jqzb0zTuaX/3yO4H1v8acP6ykalMWShEnS04SyAsy54DhOnlmOOrZO2IQQQogjnta6mt31H/aJBCCEEEKIY5AXTVL/ixdw/jYfjSbq8+GZBrZpcqZlcs7ytdRlZfDrM2Zw+5yZ3PLiGwxuaqY5MwNT755kzFNGasqxrgEErRlW38TaQQOwDZcfn386tz/6PO2eIrmlGTcvB0MpEk1Rnv7bIp56dAXXXHEc7722mRZPMWl6GTPOHIYhtSOEEEIcQTSH1zScB5pS6i+kMh+60Vr3mQUhAQghhBDiGBB3NQ8vauDd1zZSuqaKsVuqKWmPEi0uBCA3EiXoOPg8D1/SA2BwSxs/fO5V1hcX8cfpJzNjw2bKm1qA1AnWvGFDiSz2kYvXfWdKkRWLM3lzFSPrGkDDi+NHc/LmKl4ZNwqU6jxbMTW40QS/emwDcb8fDSx6tZq/vVbNr743jdzswME5QEIIIYT4qJ7r8jwDuAxY398GEoAQQgghjiKOp3nwpc203v8OU9ZuJmg7aMvg9eEV5EainJmwiflMMhyXSMBPOJlkSHMrkYC/x7hVA8hKJClsa2fm+k1opdiVk/DoieN5d1g5Wf9MvfYUdAQCuEoRtm2GNLWQG49jeel7QUqxbtAA/EmbWDDQ7XaJqSE/GqMqEMD0PFCKOn+AS+5YhmUq8i2o8GlOGV/I6dOGkBn2HejDKIQQQnwsx1INCK31E3ssul8p9Vp/20gAQgghhDhCaa3B8VA+k0RdGzv+8R7PvF1NbXYWhY6HbRhoy8LQmukbtqK0RgE1WRk4hkk4GWdYfROm1nQE/L3uY3lJMa+OHYmnFI5hEA34GdzcyvzhQ3FMMxVIULCpMD+VeprObnCVomDbjm5tKSDTtvmgsgw0DGjvoLKukfUDi2gNpYISScNk6satDGqPoLSHY5hU52XzQXkpq/5VxfNPrSGAJiNoUlyRz6yZ5ZwwrkhqSAghhBCHh8VKKVNr7fb2pgQghBBCiH5orTsvbrs+31ObrVnf7mAA43NMLLP/+gVtHTZVrQlKi8Lk+A2aEx5BU9GR9Hi9OoapNSUrNhNfuIWcsI9RU0oxS3KJLNtOdNk21BurCda24AJ1+Tm0KpNvXXE+qy8ah2sofK5HOJnktw89w8D2DvyOi1IKTSqrIWFZFHZEUOl6Dn7XTc9isfvzbcnP5eWxo3Ass3NZczhER8CPz/VwTBPTddEYeF3qNWhgZ042O9o6GNza1u1zB20ndXdIQW12JrXZmZiuizJStSSU1tTmZDGpajsj6xrTQQ249r0lPHX8GFYOHoitoWzDdk555R2cewzuHVHOuv+YSm1tBN/2ZmwNx+0ItYTlAAAgAElEQVSs46KlqyiIx6mdUEHFLy4ja1hRZz/spggb2h1CWUGG5sswDyGEEOKjUkr9oJfFHX0FH0ACEAeMUqpDa525l3Xe0VpPO1h9EkIIsW+01vxhQ4Ifr45RF9fk+sD2IOrCCbkmd0wMM73IR8LV/G59jJ+ujtNipzMSAL/rccPwANeU+Xnt3vc449n5DIxEME8dSe2nZzL/d/M5ef1mAFYBVQV5vDW8gvnDyiltbgFP8+NnX6UgGgOgKRxi3ssrGVFTj8/zUFpjmxZJn4Xf9RjQ1MoDZ5zKqkEDSPhSwxNsC+KWxU/Onc1vH3kWxzSI+Xw8fcIYFpYPISsR57p3FnHm2o0YniYznqQ5I5T6DEqB1rxbWdYt+ACgDQMbMF0H8OGmAwd7ck2DrQW53QIQGmgJB3evlN6PZ5qdhS21UmwpzGdgW8fuYpc69T8XLVtNTU4WFy5dzbgdNQSd1PnNcTX1vNDcxu9OP5VEUQEDW9qYvXYjI2sbAMh5awWxmWt58P9dQWG2n5E/fYJBjS1UAvNGDOW6885AWQaXrd/A9W9/QKi5A4YPRP34EtTpYz/mt0gIIcSx6FgqQgm0d3keAD4BbOpvAwlAHEISfBBCiMPTHevi3LIiRjQdv2+2d5d4/rDF5RNvtTPv9Cy+viTGO40O7q6zjXT2QNI0+PO6GDl/eIWvvvYOYdsGwHluEeEXFkN+HrZlEnRcbNNgTE09FY3NXP3Bh9x41UVc+cGHhG0H2zS55aKzeW78cfjc1OtrFizhM/M/IDeRICueQJHq2yOTTugMPuzimQZrBw7oPBm66fLzaQ8EOoMK3770PKI+i8lbt3Pb4y9Q0tpGzOfDNgxMzyMS6D0zwPI0Y3fWs7ishEjATybJXtdzu2RT6PTrVYOKu6+kVGfgprN912NHThZ5sXjnstZggCWlJRREogxtbOoMPgCEHIfzl6/lzZGVbM/LwbYsvnHZ+Vy+aBlffeNdLK0J2TY5/3yXaes3E7adzm2nr9/CnQ8+zbWfvZznSobw6da3wPFgzQ70tXfDQzeiZo7u9fMJIYQQxzKt9a+6vlZK/Rx4sb9tZH6rA0wplamUek0ptVgptVwpdWGX9zoOZd+EEEL05GnNravincEH6Dm/VNyFry2Jsri5S/Ch63pKYbput+ADgKU1PtejMBLF73qgdeeFdMh2yEwkufnlufz0E6fjGga3zZnJ8+NGk/BZdASDJHw+HpwykacmjiPgOJ3BBwC3zykrUxkNWfEErlLdMhoUELYd3h5WxvlfuZ6EaRFO2mTHEwRch8HNLaB73svxDMXXX32LKZu30d5HkMJRiurcHDwgaRipLI7hQ2kJh/bsXQ+2afLWiAreG1qKbRjMHVHBTZd/kn9Mmcjro4fz2esv483hQ7tto7Rm4radGKSGk2TH4zw8+QS25Oemjr2nGbejFuV1n7HD73lUNDZxXE097cEAL44dufvNuI3+v6f7OK5CCCFET1qpg/o4XKjUGNVxwIj+1pMAxIEXBy7WWp8IzAZ+qaRSlhBCHLbabU3E6T+B0gNWt7lE+hzhCBUNzbhGz3/uFZCZSGJ5HuYe7xnA6Np6suJxFpeV8NDJE4j7u2c1xP0+/j71JAxPdwuMXLBsFf4ud/YB0JqhjS3kR2O4hmLapqrubwMJ0wRl0BIM8Mik8bgKWoN+XhgzkuF1jfjSgZLOPnoeQ+sbsf0W33vpDcbW1OEZClcpvHSbjqFoyggzb0QFjmnyzrBylpaW0BEM9BrQaA8EsNMBFMN1yYrFSVoWC8sH848pE/n71BOxLZOE30fSZ5G0LH45ZybNXYZzuIZBLH2sFJCRtNHA2+lAhQc0h8PE/D2LbXpKUdLSRsJn9czQWFfTY30hhBBCgFKqTSnVrpRqA6LAu8A3+91mz7RHsX/sqgGhlPIBvwZmkjr/GQVUaK1r+qoToZS6AbgBoLi4+KSHH374YHb9sNTR0UFmZr8lNYQ4Ysj3+fC3tMWlvxiEAkJWKhPC62M9v+MypqYW1cv7rlI4fRSp1Cg2DCigtKmFzYX5ve9fw9idtRhdfsNdQ7GhqADbNPEMhUoHKIY2NhN0UoGJxnCYpsxwej89syaU1gxtbCYjkaQ1FCTgOCQsi4TPwjEMDK3xOy5WOovA77h891c/wvOb/Oetv8bvOCgNjmngGAYKKGtqIeazcEwTTSp7omvoxEsXpESnClT63d1BFI0iaZk9imPu6mtRR4Sc9DAND8XWgtxUe2m2aVLc3kFeNIaHoiErTEFHdHdtiV19ADYVFeAaisL2SGftDQBCfhg5sNe/gzg6yb/R4mhyuH+fZ8+evUhrPelQ92N/Kcuv0N8840cHdZ9ff+y6w+YYKqXmAGdorW/uax2pAXHgXQMUASdprW2l1BYg2N8GWut7gHsAJk2apGfNmnWg+3jYmzt3LnIcxNFCvs+Hv+XrYvxgeazPYRhhE146JYvz5rXT3iXpIFUrMXVxmxVLcP+Tq5m2fnO3egW2YbAtLwfbNDA93S0LwlGK9ypK+fXZJzPvtrv4zk03sLmooEf/Jm3Zxnl/e71bDQiAUabBPTOnUJWfR0VDC+euXEt2PAGkClLed9YM5o+oACDq8xH3WT0u7IO+JD957iXG7qjCtkya83M6Z7hwgc5Lc60Z3NKGUZvAGRSi+I/ruGTxCizPY0VJMd+7cA6guf7dnWCZzBs9HFcpduRlY5vpT91l38Wt7UzctqPbcfaA9oCfDypKe/TT57hcs2Arpy9fDcDtc2ayYnBu5/tJ06AuK5PH//APsuMJnpgwhrmjB3L7Y2+THYtjpf9OMcti/rBy/nDxRPKiMf557yvk7qo9EfKh/v5F1CwpRHkskX+jxdFEvs/iYNJav6KUuh2QAMQhlAPUpYMPs4HyQ90hIYQQ/fvKiCBBU/HjVTF2xDT5fkimZ8GYkJ4FY2qhj1dnZXPFOx3Uxj0SHqA1ytMUmZo7Tstjw7ArcW/9JzPXbMQ1DAy/xZuf+wQvV8e56v0PyY0nsJXCNRSuMmgOh/jDzFN44M8P87NzZlPS0srOnGwSlok2DEzXxe+6fPmNd9BK0R4IELJtfJ6HBuI+P3NHVHLjmwsYXVvfGfhImCZVeTm8Xz4ErTVapTIL9ryoB0hYFg9MmUjUlxrucMHSVVQ2NPUYs2mlZ+OI+SyCrssli5cTcFOZEeO31/D4Hx/g6eOPw/Q8MpMex+2sY3teNvXZmdhWz9OPioamHrU2DCA7kcRyXZw9tkmaJsuGFLOypIi1A4twDRODVBBIA/UZGYzZXsN9U0+iMTNMU0aIzYOK+PaXruDKF9/m5E3biPl8PHbiOB6cfDwhx2HO2g34zdRUpWpoIdwqs2AIIYTYd6nfoGNntP0e03AawHigur9tJABx4D0APKuUWgh8CKw5xP0RQgixF0opPj/s/7N352FyVOXix79vVfU2ezJb9n0nAULCHiDsIIuKIqhXBb2ggst116teve7b9br9FBVF9IIggsge1kCAsEsSspCQfZ/MTGbvrare3x/dM5lMOpMJ2Ybk/TxPP9N9qs6p05V+0tVvnfOeONeM7XXAGscP9Fh5UTnLW0NEYHyJw05pfkYnSD34CRq2tFKZShEbVcm7PJd3hCEvN5zNwKgyYPF6GpfXsWR9G21rGvjWM89wwwcvYupxQ/junKd4+cGFfOWEk9hcXMwx6zZx/dxnGb69hbZohGgQ4oYhXhAQOkJjSRHfvO8xfnz+6UzeXMfFi5bhhsrDk8dx54xpZPOrZPgiO01V6PHuyboOGc+jqq2dBcOHMLS5hUgQ4IVKCLiqrB1QwerKgQRvODhKV/ABclcgbhgyblsDywbVsKW8hM0VpSBCZVs7yYiHdp/+oUq8Z/6Kzk1AIA7kAyedZW3xGHOmTGRwczMTIiEdOGQdh2w8QlhaxMXVMY49vZqKuEuH6+J7HjNGFFNbGqXxUzNIB8qgsggfV7g2CGlLBiRiR1MUex8ahshuk3oaY4wxJq/7Mpw+8Cfg/t4qWADiAOnM7aCq9cDJve1jjDHmrUtEmFjWM53kDnFPGDqsDCjrKnMdhxOq88kQTxlH2SnjGNWtTtdySae9m7OA57u2jEbDk0m/tpHwlTV45Qmc40ay7qFl/KsuyabQpeaFFXzpoafYWFHK/549i2ueep6iTIa05+VGaAARVUY0bGfDwIqu6RUA5JerjAQhxZnc9I5kNMI9R09mXF0DNa3ttMaiTNqyjdBxCEXyeSh2DWZ4qgxIJsm4DhsH7JjGMbAjSWs8RnMi3nkCQaEj6hHPr+zRXegIwxu2EwlDlg2uIe15ZD2XjOcxpb2F71w7jbHDy9gbA0t2JPb0BDzHJRbptjqIBR+MMcaYPVLVn4pIOZBS1XRf6lgAwhhjjHkLEcchfvRwOHp4V9mYj1YzpuvV2fxzXYrfP7qRlaHHxz5wGV9+6En+dNPf+OOpM1ldNYCyZJr3vLSQn553OmsrB9AZQnBDZey2eiA3yqEzGJD1PJYOqWUpEM36DGluJeoHbC0r2e1QU98R6ouL8d2dgzMCjMonpmyPRglFqCspYktZKRXJNE634wYilKQzjMBn5Myh/OSKqWxqzrBiTTNHDS1m5Mgp++WcGmOMMfuLHjkzMBCRbwP/nnsq1wOPAZ9U1W/vro4FIIwxxpjDzNtHxHn7h8cC0OEr+sH3EwLO/PUklm4k+ehi2tva+ea9j/DrM05ia1kpXhhS3pFERGiOx4mEAVE/2CX3Q+AI5ckkoQiby0vIug4qIb5IV2LHEPAdl5U1lYhqwZVAElmfRNZHgXg2w/oBFbTHIoxqaKIslSYe97js2hOYePzwneqNL44yfogNIDTGGGP6gSuBUUAlcJeq3ikiFwMWgDDGGGOOREXejnUyzjx9JJw+Ej56Cnc9tZ6WHz3I9XOf47UhtSyvrSKR9RnY1s5DUyfRFotRks6g3UYkeH7AuG31FOXzNVS3tAG55S5fGDWMGes24YYhmyrKeH7UMFIRj63lpYxo3M7aygE7T/cgl8shFMHxQ07ZsJF0LEptdRGXfegURkysOUhnyBhjjNlf5IhKQgmsBiKquklEivJlid4qWADCGGOMOQJddvpwWk/6d55Y3Mhxyzfz7mLhDSL8c2vImBXb2DygnG0lxVS1tRP3fRKZLEdt3MLUzXUoUF+UoLa1resy68Fpk5gzdSJlyRSJjE/Gc2kuihM4DhmB1mgED4j6QT6xpNAai+J7Lp983xROOm7woTsZxhhjjHkz1gPzReTvwAAR+TPwbG8VLABhjDHGHKFKow6XTq+C6VUAHEUuAWZ221Dq719EUVuS+MUT2NqcZsNzawjKK2g/YQixp5dy/EvLmTt+1E5JKEMRmoqLaCrOH0AVFN4YVMMpF4zn2rOH4wq8Vpfi9W1phpVHOGFYEc5uV+Qwxhhj3lqOpBwQwNr8A+CXwGJVtVUwjDHGGNN3keoyBl91atfrEcCIM8bv2OH6U2nd0ETVr+bRvDhGnCxOGOamWKjmV7ZQHFUGtnXwjmtmMmPWiK7q02oTTKvtdYSmMcYYY/o5Vf3W3taxAIQxxhhj9lrpsAre/oNLmPjMT2ho2E5dSTFV7R34joMfi1A+rprxU2u45MxRFMV2v0ypMcYYczjRI2hUn4j8kUJrceep6tU9yywAYYwxxpg3LeoKiajDN354Hisb0wwvjzKiInqou2WMMcaYA+++va1gAQhjjDHG9EmoyvZMyOKWkCFxYVzpjsuIQaURBpVGDmHvjDHGGHMwqepde1vHAhDGGGOM6ZUfKmfPbeapBt1lW9l2n9FHzmhTY4wxZrc0/zhSiMjjFJiCoapnisjvVfWantssAGGMMcaY3bprXZJ3PZ/a7fYWH1pFCYIA17VcD8YYY8wR5PO9bPufQoUWgDDGGGPMLh7bnOKceR07CvaQVKviru20vLsSOYKSbxljjDE9HUlJKIGLgZtVtXMpTkTkEuAVVV1WqIJzsHpmjDHGmLeGjR3+juCDyB6DDwBt6nD1C60HuGfGGGOM6Uc+AcwRkbO7lfW6NKcFIIwxxhjTRVUZdn9L7sXe3MUR4eZ1AdvTwYHpmDHGGPMWoAf5cYhtAM4HviciX8yX9dotC0AYY4wxBoAgDEn8fTsShHsXfOhm4D0t1CUtCGGMMcYcASQ//eI0YLKI3A4U9VbBAhDGGGOMAWD2481kgxB19u3yYOR9LfupR8YYY8xbiORyQBzMxyG2EUBVM6p6NfAE0Oua3JaE0hhjjHmLC0PFcd7cRci2ljRffLGFOxuFVnXAcd706IdOKVUm/n4VTxwXYciM4X2q43dkyLamSNe14pXGEMchUpbAK4rgRFxI+xDzuvoW+gEouW3GGGOMOehU9WIRiQATyU29uFFVb+itTp8CECIyAfgNUKuqU0XkaOBSVf3OvnbaGGOMOZSCUHl9fSvpbMjkEaXEo3v/g7a5PcvSda2UJDxG1SRYU5ekuSPDnJe2EfOEj100ipdWNHHHUxtIZkKGViY4bWolA0sj3PH0ZjZsS+I4MHhAlIqSKO2pgCBQOtIB21oyBKEysCRCTXmEdfUpWpMhaLcplt0CBhFPKI65KEoi6lIUdykaOoD26nLK4i5ZhPmrWtmwLUl9UQLfdUi7bm7Uwz4EHlw/YMrmOpYOqcF3HNz2NDf8/GXG1j/AyNHlVCZcGl9YS4fC708/kZTnMbaugQn1DUzaWIeju58y6gS5KR3qOKCKhLkpIpp/744qooovggc4MQ8tTeDEI3ilcVLrGyhv7aC6NELplSdAPALPrgDPITh6JM1rGnE2N+GsrSO2YTtOUYSyfzuJ6MbtsGwTYX076ge4Z02G950MP38EGlvhzCmQ8tFnl5NGSA2qIFJbRtHyTciSTeA6MHwgfOBUGF0L21og4sL6xtxfERg6AGZPBq+Xz932dnhqGSSicMYkiHW7ubShEV5cBbVlcNK4XADJGGOMOQhE5BjgDmAbMBV4TUQ+paov765OX0dA/B74AvBbAFVdKCK3AodVAEJERgH3qerUHuU3Aj9V1SWHol/GGGMOjFWb2/nGX5aSygSICEGoXH/JGM46trrPbdzx1EZunbueiOuQyQb44a77zF/auOOFCM3trSxZ19r1utPKLSkgVfA421qybGvJ5l6o7jZYkPWVJt8HoKk9oCMS4emKIvxUCIRM2biFLRVlNFWUE7rOjvb2kQD/fe8jFGcy/NuHr+CrDz5BbWs7AgQvN5FJphgQhpQLfOOeR2mNRUlFo90aKPB+VClLpmiPxQic/GocqrtMEQny5QC+CPgKTUkgSWZTM14YEOlI09qaZPsvnthpyGrF/a8xoqUVUBzdkdRLvncvAdASjVKeyeAAetM8uGkeXbWffSO3LxDLP7q6ni9n43Z4buXuT1zEhYHFcPdnYeLgXbf/4Un42t8g4uUaFIHbPgEnjoUv3QZ/eTq3DYXKUvjnZ2BE1e6PZ4wx5oDqB9MiDqZfAB9U1edE5BXgUuBOYPbuKvQ1TF6kqi/0KPPfVBffglT13y34YIwxh5esH/K1m5ewvS1LMhPSkQ5IZ0N+dc8q1tV19KmNhaubue3JDWT93GiFQsGHLt2Xs+x8/mYvUvpYT4CY7zO0qQVEGNzUTFHWpzkR3xF86Nm3N2l8XT3j6hupbm3n6/c/TlV7R9cP9YpkikgYIoCruYuP0nSGqB/kflPvps2SdAbfcXYEH7r3tec57Pk8Tx0h67qkIhF8LzfqoPOYokos8HFVcTVX5gBu/q9AV/BBuj26h2uk29+ejz7JBrC1Bd77q10DQYs3wH/dkZt+0paC1hS0JOHKX8Ff58Otz+7Y1paG9Q3wgd/09cjGGGPMvipX1efyz0VVG4Di3ir0NQBRLyJjoXO0o7wb2Pymu9m/eSJys4gsFJG/i0iRiMwVkZkAIvJeEVkkIq+JyA87K4lIm4j8UEReFpFHReSEfL1VInJpfh9XRH4sIi/m2//ooXqTxhhzpHt1ZTPZYNc7/0EYMufluj61cf8LW0hne4s6HHqeai4AAUzeso2GkiICd//nTShJpdH88U57Yw1ekDsvbhh2BR+6EyCRyfTaZiybJeN5+xwcQQQ3LLCyhwj1pSW7XS+sM/CwS3P71pvC6lpyAYfubnkWMgXu94QK//sgdGR2LV+xFdbWH4geGmOM2YODvQRnP1iG0xWRzlkVjoi8B+j1S6ivUzCuB34HTBKRjcBq4P1vupv920TgI6r6jIj8Ebiuc4OIDAF+CMwAtgMPi8g7VPVucpGeuar6JRH5B7npKecCU4CbgXuAjwDNqnq8iMSAZ0TkYVVd3b0DInItcC1AbW0tc+fOPbDv+C2gra3NzoM5bNjnuX9oTfpcOCZNWODbuzTVwty5a/bYxkgvRfWk/r/kpO84XOY1Uj4uRdrbTspbu9/a/rW0EiPkyvHbWPqZYyhLpfLHzAU5BCUZFg7SKELQS86CTBgQiLNfhrNmwsL/TgJsy44/9FdxrsC6JVDfbbrGZBe+ekrhfR0HsuMLb1v6L1jdaxJy0wv7P9ocTuzzbA6wnwETgCXAJuB84KreKuwxACEiDjBTVc8RkWLAUdXWfe9rv7VeVZ/JP/8/4FPdth1PLsiwDUBEbgFOB+4GMsBD+f0WAWlVzYrIImBUvvw84Oj8CBKAcmA8uYBOF1X9HbmADzNnztTZs2fvtzf3VjV37lzsPJjDhX2e+4f65jTX/Oxfu4yCiEcc/uOd45g1tXKPbTzwwhbunLN2z6MgOofWH4J5ob4Ii4YNZpNbxlkrViACcyeO7fWH/17RUsZIK58LZjC9cQN/+POdPDt2BCMaWyjKZhFVqtradxk1oEB7NEJHLFaoVQDK2ztyOTMS8Z3PXS85MAr3MdeHQu/YDUImb6krOKqh8+7SQUnrWBqHFf8D0W6XZnMWwn/eCO3pnfeNefCR2fCHubkpGN0NLIHXf5xLgGneFPs/2hxO7PN8sPWLpTEPGlX9A4CIlANXqOoe1+He47eTqobAJ/LP2w/z4APseg+k0FTPQrKqXZM3QyANXeev82pCgE+q6rH5x2hVfXh/dNoYY8zeqSqPcdmsIcQiO74KYxGHMYOLOXnywD61cc70GoZVJXZqo1eqO8/z39fkj4XqdytToDUeY0tpMRKGrKipwvMDZq7ZQNT3cYMAwnDf+5H3Rk0ldaXFfPfCs3hudG75TRWhLRqle4hGgVCEZPcklAW0xWNEgoDidCa3+kXP89ebbvvHs9nCX+CqVLfufFnT/Ys8EKFQaEkLPN+nMxiPwK8+tHPwAeDcqTBrAhTngzSO5FbC+PIl8MWLYXglFOXPoefktv36Kgs+GGOMOShE5DgReRV4FVgoIgtEZEZvdfo6BeMREfk8cDvQ3lmoqo27r/KWNUJETlbV+cB7gaeBS/Lbngd+LiJV5KZgvBf45V60PQf4uIg8nh8dMQHYqKrte6pojDFm//vA2SOYOrKMh17aSkc64PRpVcw+ugrX7dvdi2jE4cf/PpUnF9Uzf2kjiZhDPOKyYkMLW5oydKRzP19FBO32w7lzMYNdMyNAJH/sQvkpCur5g7zbnRcHGJBMcdrKtTRWlBANQ4KIS2V7B2cvfYOmRJzNpcWsqana+1EFBbTF4lz0yasJHIcnJo3hlFVrifoBHbEoWdehOJPF0ZC069ERjaIiuSDBbgSOQ2NRgkQ2S1lHkkzEIyMOscAnla9f6Hx0tumGITVt7QSuiwKRICDrul31QhG2lhTjBSGl+YSXqYiHo0oIFKczbC8uoiiTIZH1EXKBia6Lp6qSXFlDO6q6012drp4lInDaxNzIhHUNuSU1t7Xk8jXUlsGsiXDNWTCudtf34jhwy3Xw4EK4+yUoicH7Z8HM0bntc78GdzwHjy+BoQPhw2cUbscYY4w5MP4IXKeqzwKIyCzgD8Cxu6vQ1wDEh/N/r+9WpsCYN9HJ/m4p8CER+S2wAvgN+QCEqm4Wka8AT5C7tnhAVf+5F23fSG46xisiIuTWS33Hfuy7McaYvTR9XAXTx1W86frRiMO5x9Vw7nE1+7FXO2T9kIaWNFVlMUSEx1+tY21dB+OHFCOOsHxDGxk/5Mxjqpk0vBQ/UByRXoMoqko6G7KuMcUdq5L8dlPA+tDd5yCEOkJArp35Y0Zyw7c+wh3TI8RKE4gjZNrSJNc14pVGaXujnm3z3qBl8WacRITS8dW0r2skuakZvy2FiINXEqfqlDGMuHImzQs2gAjFY6uI15ahKM0vryfIBkQqEsQHFtO8ZBOhHzLonMmI5+BEPJyoQ9ieRiIubnF8t+dDswHxVJZ4PLLTSISe/6qFxhYc0PEGjgMXHZt79FQUhQ+dnnsYY4zpFw51SqGDrL0z+ACgqk+LSK831/sUgFDV0fvas7cCVV1DLmlkT7O77XMrcGuBuiXdnn+z0Lb8dIz/zD+MMcaYPYp4DoMGJrpenztj5zvcp0+r7rH/ngMIIkI86jJhUDFfHVTMV4FMqNTe3UTTfsqpeUwi5N7ZO09liZbEiE4ZDEDx8Epqz5zY5/ZKRu2akyNx/s5f2WX5tntyKnq/3BERJOrtOgXCGGOMMb2ZIyI/AG7Jv/4AuYUWRgKo6i5Zr/v0TSsiHyxUrqp/fpMdNcYYY0w/EnWExReWM/S+5jffSH7qQ4kor15StZ96Zowxxrx1HElJKIHOxRXe1qP8AnIzBqb1rNDXUP/x3Z7HgbOBVwALQBhjjDGHiSEJh453llP9z2bae2RfjGZ9MpHeLxuKkylmNjbwxH9MPYC9NMYYY0x/oKpH722dvk7B+GT31/llNv6ytwczxhhjTP+W8By2XFpO1d3NdF/8ccqmrSwbVE0qGimcJ0KVk9qbufMTU5Ej6+6PMcYY00XtK7BXbzZvUgcwfn92xBhjjDH9Q0nEYd0l5RR1XkSpsnRILZ999GmifoAOTNoAACAASURBVOEkEcWu8Oh1kymP2JWXMcYYYwrraw6Ie9mR0NMhl6jxjgPVKWOMMcYcWjVxh4Z3lpO4K5cTIh3x+P7bzqQklcZ3HEJ353sYL59Teii6aYwxxvQbCmiBJbbNDn3NAfGTbs99YK2qbjgA/THGGGNMPxF3HTouK2fqA82sSioKtMZjuY3dluxMuMLEcltBwhhjjDnSicg/VfXtu9ve1ykYb1PVJ/OPZ1R1g4j8cD/10RhjjDH9VMJ1WHnJAPx3V/CTaTFGJgRXhIQr/Nswl9OrPPqw8qcxxhhjDjMi0iIird3/AheJSLOI/LhQnb7erjgX+FKPsgsLlBljjDHmMOQ6Dp+bXMznJhfvVD7bgg/GGGNMjhxZSShVtaxnmYi8ApxIbtXML/Tc3msAQkQ+DlwHjBGRhd02lQLP7FNvjTHGGNPvqSqtr22iecEGopXFVM2egJuIEvgB65bU0d6SRkOlbU0DicHluDGbimGMMcYcwb6vqlkReaDQxj1dJdwKPAh8H/hyt/JWVW3cTx00xhhjTD+kfshrX/g7ry/expKaKpYOrmH1gixTN2/lhFUb2FRRytbNLZSUC3M+fAuJrM/qmRO47GtnM7gycai7b4wxxhx0R1ISShGpBH4OnEcuB+ejwKcBVLXgbIleAxCq2gw0A+/NH6AGiAMlIlKiquv2W++NMcYY06+su+V5tj23hgHArNZ2Tl61jsBx2FReyubyUlZWV9ERjZIQn1tPnM5JK9cy5aXlfPerSvz0iXzl7WOoLLYREcYYY8xh6v8BLwEfBp7Lv74BePfuKvR1Gc5LgJ8CQ4A6YCSwFDhq3/prjDHGmP5o89NvsOGXjyOeh+RXu/BU8XyfmtY2Yr7PqIbtzM1mQYTAdXhm/CieGzOCU1au4Y15y/nq/JVMH1fBrNmjmXJ0bVc7xhhjzOHqSMoBAUxW1SsBRERU9VkR+d/eKvT1tsR3gJOAR1V1uoicSX5UhDHGGGMOH41PLOOlr91LbXMr2ZLirqU2u4iwvbiIxUNqGNCRpDSZRkqjRPyAjOeS9VyeGT+asVvrKWrrYOESn/mr2xgcX8RXvnIaZeXxQ/PGjDHGGLO/ud1fiMjwPVXoawAiq6oNIuKIiKOqT9gynMYYY8zhYenCLWz/3ZOUPfc6dW6U2o4k0SBAe+zni3DDGSeyaOggREFQNr5QwQg6OHrDZl4aNQyAQISVNZUUZ7I4qiQjHktdjy/8aD7vOmkwT89bS4cKQ6bUcuXF4xlSXXTw37QxxhhzAOiRNdrvKRE5RlUXAJXAHOAjvVXoawCiSURKgHnALSJSB/j71FVjjDHGHFThxu1oRxoZWUXQlqLpudV84dGtPDhlIuFxp3JWoob3vLiA7114JievXsclC5fSHot1jYJ4ZPJ4Xhs6iKy34/LBdx1812VUQ2NXAKI4laamraNrnwFAcyJGQzzOXx9dh6uKEwbULdrGK4vqKauI8/3PHU95cfSgng9jjDHGvHmqel23l5NVtX1PdfoagHg7kAT+A3g/UA58a697aIwxxpiDruO+f5H81C2kQqUjGiUTcWn3Ilx99XtYf8xRpCMeiHD/0ZN5cNokMq7DhsoKrn72ZdKRCIEI6jjMnTiGjLfzpYMihAJpz2XI9mZOXrWWhcOGEDrOTvuVJ9OoCNmIR1YVFSHpefgRj7ZUyDXfns9PP3Esw4aV09qcYsumVtpVqK0pYnCVjZAwxhhj+hsROQn4AtACfF1yyZ4mq+qLu6vTpwCEqraLyEhgvKreLCJF9JjvYYwxxpgDS9NZXt/cztI3tuMuWsfo1jYmTh+KN2scHSVF/M+c9dy/tAXX97n8lUVctGY1zw8dQvW2JqYiRFBKMxnCDKwbXkFDSREJP0vCz9IWi5HxPHxHQITltdU8eNQELl60lJZEnIzrETi7H1ba5nmctHodTYlEwSXIHFUq2zpoi0Vpj0URIOH7RJMpBnYkybgOP/72U5Sm0wB0RCI0JeJkPRdRUEeYfnQNn3zfFCIRuwQxxhjT/2j+cQS5GfgyMBT4BbnVL34GnLq7Cn1dBeMa4FpgIDA2f4AbgLP3rb/GGGPM4aUxHfKLFSke2pJlSNzhMxPjnFYd2WU/9QP8O1+k8c6XuXHMeB6YMI54eZyLxhSzLqU8uSVDS0ZpT2aZsXo9H3z2ZX5+1qlsL4pz1fxXeOeri6lqayflB9xz7BQ+/Z5LyHpRwtoqcByWDKnlq67LpC113Pv/bsbTHWEBF5i+fjMXvPY6c6ZNAqA0nWZ7IgHdggf/d9Jx3HrCscxYv4ms66CqOEFI6O48ukEUqjuSPHjUJOpLiplQV4+nu16CuWFIdVs7cd+noaQYAbKey9bSEmpb2yhPpXAUWmJRNg4oJ3AdVAQJFRV4aWEdVy/YSuDkyosdYcaUgdS3ZEg2J6kuj3H6qcM57thBOL0ES4wxxhizX9Sp6j8AROSjqhqKSK/Zpvs6BeN64ATgeQBVXSEiNfvU1X5IRCqA96nqr/dTe1cBD6vqpv3RnjHGmP6tIR0y/eFm6tNKOgQIeGRrlp8dW8RHxu74PlZVUh++keRzK7n8Q1eyfmAF6dAj3O7zysJ2EOm6i+IiXPbSQn5wwWy2FRfxx7/cyYy1G0n4uVRMIfCOV5ewvKaKn553Rq596JoqcdGiZTsFH7p73wsLugIQCkR9n6y7Iw/D1rISPFUeLx7LpQuWcNVzr/DHU4+nIxoh63l4QYCjSiQMeG3IIJYOyV0aTKyrL3h+ImGIA5Sm0jQn4viuCyJEAp+KZAoHaIrH2FJWgu86Xbkn1BFQxfdcKpJplIC069LquTy9qJ6SdAYBtm9tZ+WqJuY/t5HrPzbDghDGGGMOMjnSklA+LiLfBG4CVETOJpe6Ybec3jZ2k1bVTOcLEfE4PEeXVADX7XGvbkSkt3GgVwFD9qVDxhhj3jp++nqqW/AhpyOAzy7oIBXs+NoM579B8MxyHhwzmk0VZbkcDEDWdXcavilA6Dh8++JzaI9GOXrTVo5bt6kr+AC5L3IBPv7k811lXUcSoTSdQQqMRhCguq2dH/39AW7/7S3c8H//4LwlKyhJpUlkcl/5Yf4H/KWvLmHMtkbK0hmue3I+5y9ZzrQNm5i9bCUjGrcjCs+NGYHvuviuy9JB1QQiBJ19Ue0KVnSK+j5hfltxOkPGdfFF6IhGSEUjBZf/DBwHzb/nWBDgkCvrPjUk8ENWrNzOa0u29fZPZYwxxph99wHgg8AT5AY3fBy4urcKfR0B8aSI/CeQEJFzyf1Iv3cfOtpf/QAYKyKvAlly0ZsGYCLwFHBdflhJG/BT4HzgcyJyFnAJkACeBT4KvAuYSW7VkCRwMjAlX68EqAeuUtXNB/H9GWOMOYAe2JzdKfjQyQFeaw6YOTD3tes/sxySGZ4fPZyO2I4RB0E+/0JPac/DC0Kmbtqy04/4TgIUZ7ruE+TuvuTbmbClrmBfFYhnfSZuzY1WGNrcwhcefoovzZlLUyLOj887g1XVAylJphjT0Ng1pSIahMxYt4kZ6zbhBgHzw1x5MrJjmsnW8lKaiuLUtrThBSHjt9UTyy/rGYigkh9xkc1Skc6gQFs8dx4Kvb9CHCAa+KQ9j8Bx8MKga1smE7BgYR1HTz3sBmsaY4zp5w7Hu/S7o6pjepaJyK7zTrtv1z580YuIQ249z/PIXefMAW7UvlR+CxGRUcB9qjpVRGYDD5ELGqzNP/+tqv5dRBS4QlX/lq83UFUb88//AvxNVe8VkbnA51X1pfw/xJPA21V1m4hcAZyvqh8u0I9ryeXcoLa2dsZtt912QN/3W0FbWxslJSWHuhvG7Bf2eT58rWgLacnu+tXoCBxV5hLNjzvUhjZ0UxN1xUVsKy1B8zGHcDfDNkUVR5WSdIbh25sL/kjP5EcedE7fgNyP+Wkbt+Tb37ltJTfiouDcDHJ5HWK+z6byMuJ+Fin4ja9848ffBE/43Fe+nwtC5NtzQsULc9GY3IgK2eVYocguh1fIjWoocC4EutrUfH0VwQ3DXdopK41SUdHrNFRjCrL/o83hpL9/ns8888yXVXXmoe7H/jK4apxefemPDuoxv3/Tuw7ZORSRAcCZQGm34m8B/wW8qqoLetbpdQSEiIxQ1XWqGgK/zz+OJC+o6ioAEfkrMAv4OxAAd3bb70wR+SJQRC5R52J2HSEyEZgKPJJbnQQXKDj6QVV/B/wOYObMmTp79uz99HbeuubOnYudB3O4sM/z4Su1OcPlz7bRseNmPJ7AzIEunzmrvKtMG9poP+EbbHGjnP/pj5DMj4LwHSGTz4vQyQ0CLli8nGHbm7n72Ck88MubqG5t7xqR0BkXeGDKeH592fG0xmO0R6P4rkNZKs3SH91HJAjJuk4u4EAuOLCxooxMJNLVQs8f8CGQcRzGhMrywdW7jsxQJer7aF0GqYmSuqOOm0+dScZxmLi1npq2dkARBUddIr6P2+0o2c6pEwXazThCfWlJLgkl5NsIKUtlcPPvOwSaEjHcUClLpZFu7yEScfjPL57C4EH996Lb9F/2f7Q5nNjn+eA7wnJAzAGWkFuGs1Oc3EyAOmCXAMSeckDc3flERO7sbcfDVM/7PZ2vU6oaAOSzfP4aeLeqTiMXpCl0y0WAxap6bP4xTVXPO1AdN8YYc/BdMDjKfx+VIOFCWQSKXJhe4XLXqaU77SeVJcT//FEGecqNf7+HQS2tJLJZijVkWEyIuxB1wAlDFOGUN9bw+Yef5L/ue4zvXXAmywZV4ztCCLTGonzuXW/jhdEjWPLNn3LnDX/hp3fcS2kqTTLisaZyAEJu6kRxJktxJkvc93czomEHB9hSUcaHr7qcF0YMpfvMkgBIRTzmjRtNazxG1nFYO7CCa556viv44Kriav5CQ4Ss5/VpWGooghcqlW3tVLR3UJZMUdPSyoD2JKJKSO7LuCMawQuVomx2RwxDwPMc3vueKRZ8MMYYYw48T1WvUtVPdT6Ajar6SVV9sGCFPTTYPXyzy/yOw1ArOw8fOUFERpObgnEF+VEJPXQGG+pFpITc2qd/L9De60C1iJysqvPzUzImqOri/f0mjDHGHDqfnZTgmrFxXm3yqY07TCgtnKvYO3UCxQu/y+kL1vECwroxQ4hHHYYUe7RnQ1a0BJR7SseLa6k/bRT/PWU0a9wYrbEoP7v8fBpLiglCZXKY5sNPvcDTxRVcet0H+NY9j/KOV5dQmkzzjUvP4Qvvehu3/uE2In5ANNwRRqhIJqmLeF3TPwr2MQj43t1ziPm5XAvJiEfWc1lbOZAnJ46hLR5je1GCuKSZN340R22p6wo+FKLsuLBwVAkKzP8QYFtxgpjvoyq0JOLUlZUiYUhR1sfRkMryKF+5fDJjh5eSCZQlK5toauhgcFWCSRMqicf7muLKGGOMMfvg+30s67Knb2jdzfPDkqo2iMgzIvIauQSU88klppxGLgnlPwrUaRKR3wOLgDXAi902/wm4oVsSyncDvxCRcnLn/mfkpmsYY4w5jJRGhNOqe83BBIB4Lu6M0cDOUf7iiMOxlflBiueMh3PGc0ZvDX12JicAnwyVuz9yHH+t95lW4fJYjUfLva/y5LhRbKooZ/KWOsZua6QimSSRyVLT2kp9cQmBk0sM2T0ckHEcIkGIOrmVOCJhiJfO4CRDJm+uY8HwwbTFYwC4YchnH3uGdH7KRCG5xJh0XU04qogqgQhOvliBtOuS0BBiHmnHocKD4oERBg4o4vyZtZx8VOVO7SaAk4+xZJPGGGP6ATnipmDcKyLvB0bRxwUu9rTTMSLSQu6SIZF/Tv61qmrZm+1pf6Wq7wPIJ6H8vKpeUWCfkh6vvwZ8rcB+d7JzrohXgdP3Z3+NMcaYThFHuHxknMtHdit83/FMPHEkn/7L63zz7ecSijC4qYXyZIoLFi0jGY3QFo1y4ZLlDOxIETiCo8rW0hJiwc5LenQuC7q1tIR3v/IaPztnFjWtbbgVQlkqzYaKMnxHcAMtmFxSla7kkqLK9nicwHOJZ7MIMGJkOddedSzVVUUH8CwZY4wxZj/5J7lVI18hdwN/j3oNQKhq4XGjxhhjjHnLcMfW8Ktv1vDdTMDd69IUeRVcODRGwp/Mpn8uYOvc5fz4xOM4b/Eynpg4jgXDhvCFR54ilkwVbK+hpIgJW+sZUb+dbDqLkkuiWZpK4zsunipuqN0HPLA9Hqd5QIyR25sJRXDCkKp8+8dfMJ73vGvKQTgTxhhjzIHTOZrvCFKtqufvTQWbJLkbqjoXmHuIu2GMMcbsN+VRlw+N6za6IBJl+JXHM/zK47nVD/jroyPxHllF2hX8/HKeu4xkEEh5HmnX5dqnX+CL3XYoT6Wpau9gW3ERjgdeEBIKpD2P9niUia0tfO+Xb8NXePbVrQTZgFkzh5CI2f0OY4wx5i3oRRE5TlVf6WsFC0AYY4wxBtdz+bcLRvP+c0fS+sAibpo8jIp/rcQLw51GMrTGoriqbKooZWBHCie/MkWn01es4eURg1lVXUnWdUl6HkPxufyUWi68+HTEETzgrBOGHPw3aYwxxhxgR1gOiFnAR0RkNZAin286vzpkQRaAMMYYY0wXcR3KLjmGT19yDF//9StMvns+cT8gcIRkNEIyEmF5TRWnrFoL+VES3XlhyHHrNjNv7EhqB5Vw40eOosRGOBhjjDGHowv3toIFIIwxxhhT0AevOIrPNAac/tpyBrZ34LsOrw4bzBtVAzljxaqCS2W1RSM8PWYEn7h4NJecMPhQdNsYY4w5ZI6wHBB7PdzDAhDGGGOMKWh8ZYzvXTON784bxLLNHRQnPK6aPoCfD/doObuSF747h8AREOG5UcOIZ7PUTK7lu189m0TURj0YY4wxh7l72bHIdjEwElgO7DaztAUgjDHGGLNbR9fGuf3dw3cpr64p46KHxvP9E/9KS1sLl84ayphLplE2rOIQ9NIYY4wxB5uqHt39tYgcD1zVWx0LQBhjjDGmT9pSPk88tQ5/eztnnTeW8gFFeIkITtrl2I+fdqi7Z4wxxhxyR1gSyp2o6osickNv+1gAwhhjjDG9CtI+t/5lAWsfX0FJOk3Ki7Dg/mXUZlL4af9Qd88YY4wxh4iIVAEnkZuG8RzwDhERVS2YDsMCEMYYY4wpKJsNmPunF1l532KGNDVzYXMrvggNxcW8NGoYr1ZVsXpeM6Vl8B/X38/l75zIqeeMO9TdNsYYYw4ZPYIGQIjIbOBPwDPAecAS4Duqun53dSwAYYwxxphdPHrXYp64ZymjGpuobOtgaFMrgeOwuaKMe46ZjCpEwhAURBU343PX3xbzyD3L+NIPzidRFDnUb8EYY4wxB9aPgLNVdaWIvAJcADwGPLK7Cs7B6pkxxhhj3hpWLdjE4/cuY8LWbQSqjKlvZHBzC4l0hvuPGk9LLEptSyuTttRRlM0igKuKo9CaDPj+Zx5gNyMvjTHGmMOWIgf9cYjFVHVl/rmoahKI9lbBAhDGGGOM2cntP3uGolSarOtR7Ae8PriWxYNrWTq4hilb6znr9VWMr2+kIpXGDRVRZVRDI6KKA6QC5c/vuJHUuoZD/VaMMcYYc+CoiCTyzyMi8kVgZW8VLABhjDHGGADWz3uDWy/5LdvFZXhzK7EgABEC12FV1QCiYcDgphZiQbDLPZeoH1CWTOVeqLI1UcS3/+sJFn3xThsNYYwxxhyevgYMyz+fD8SAq3urYDkgjDHGmCNYur6N5l8/xqJHV/BqbS111dVUtbUTCjgIqDJxSx1Dm1pQEbaWlvDa0FoC192pHQeobG+nuSgBIsR9nzAt/G+6ired80vGff5cJp83iZh7yIeLGmOMMQfMkZSEUlXv6/b8mr7UsQCEMcYYc4Rpbsuw4Vv3UXvP8wTtaX52zixapk5GFBwNqW1tZ9KWOraWlxH3fYY2t+CpgiqJbLZwo6qUpjLE0hnaYlE2l5ZS1d5O3Pd5dehg7npsE49tLEZFOHXNOo6tjLC+opyzx5VwxSmDcRwblGmMMcYc7iwAYYwxxvRzyU1NpNc3UTGxGi0vwl9TD47g1JZBJsApjbOpOUPzs29wT53yZFU1w19fz2nLVnFC2EFroOhrG4lkfFZVVjBpyzbGb2skGobcdcwUWhK5UQsqEODyrxFDKE+lmLF2IynPxQt3TKEY2JEkEoQEjgOy822e9RVlrK0awIraKrwgZNq6jXz8yef40NXvYcngWjKR3GXHPUdNZG4qTcwPuH9ZwKeXbeDkFas5e/kqmsuKeXn6RNrHDOKUoXFOrY1S7AiiIVs6QmbUxhhZtvMKG+3ZkFChNHroghhbUyEdgTKqyEHkCLr9ZYwxZif9IDFkv9avAxAi8k2gTVV/sh/augr4MbCxW/H7gA7gPlWduq/HeBN9alPVkoN9XGOMMW8NTa0ZrrlpGfdUD0YpYdwLG/jF3Q8xfmsdfqCogroO24oS1DS38sCxR/HNd5zP9IUb+dpdc6hq78B3HKpSaUpSaSLA6PpGSlPpXLJIz+WpCaN3CSRkPY/5Y0Zy4poNFGV9FLoupwQ4afU6Xhg1nGR0RyBAVHl08nieHTeSUAQV4ZWRQ1k0YgivDR2E3zllQ5XK9iSu7rhE81R5cdwoXhg3iiufe4WXE2U0NSvzW1L8z9IUEoZEfR8nf/xpAyP84201dPjKp+Y1Mm9LGhSmDIzwy1kDmTLw4C0BuqEj5Irn2nh5e4ArUBkV/nxCMbNrbBlSY4wxRx4RmaSqy3a3/Ugb73i7qh7b7bHkUHfIGGOM2Z0L79jAPVWDyXgeWc9l6aAa3nH1FaxLFKP5UQkShIxoaGJzeRlff/v5jN3WyG1/+CtlqTTpSITAdWkpSrC1ooxAhKjvk/I85kwez99mHE3WdSE/vaL7oyMfXBCgZwrJ4kyWU99YQ1E6g6MhArw8YhjPjhtF4LpofnSE77o8P3oEoso373mYus9+i//7w20UZzI73x/KByyS0Qh/mH0yTfEYiCCdx3ccMp7Xtd/CxiwfenQblzxQx7zNafwQfIWFDVkueaCOxlRwwP9tAEJVznqylecbA9IhdASwPqlc/HQba9oPTh+MMcb0I5LLAXEwH/2BiIwRkS+LyCvAzb3t2+8CECLyVRF5XUQeBSbmy64RkRdFZIGI3CkiRSJSKiKrRSSS36dMRNaISEREPiUiS0RkoYjcthfHHiUi80TklfzjlHz5bBF5SkT+kW/3BhFxRMQVkT+JyGsiskhEPpPff6yIPCQiL+fbm5QvHy0i8/Pv5dv7/eQZY4w5bCxoyLAwWtw1baFTxnG5+ZQZXaMWnDDEUeUf06fiOw7fuPcRWooSuSBAJxFCEdpiUUIRHp0ynq2lxYypb6SiI9n1Q7/7o7q1DQDfcci4DmG+qawjZB2HpYOrybouihCIsH5AOYOamylNpihOpXOBDEBFuOlPd/D5h+dR3d7Ba0MHkY4UHh3gaG5/euSD6AxCdH8/z27Nsi0Z4veIjmRDuP2Njj6f533xdL3P5lRIUKAPv12VPih9MMYYYw4VEfmciLwA3AGEwGWqemJvdfrVFAwRmQFcCUwn17dXgJeBu1T19/l9vgN8RFV/KSJzgYuAu/P17lTVrIh8GRitqmkRqeh2iCtEZFa31yf36EIdcK6qpkRkPPBXYGZ+2wnAFGAt8BBwGbAaGNo5faPbsX4HfExVV4jIicCvgbOAnwO/UdU/i8j1vZyHa4FrAWpra5k7d+6eTt1hr62tzc6DOWzY59n0RVM65LuJIJdroTsPSk8KWDnhKABEc9Mfjq2AH8QXUPbOSjZKZcE5qJtUEVX8WJRK3yedLeGoMpfA8XfZN5HxeO2kY2mLRokEIV4YIqq0xaM0JRIEjoMbhujaGJ6jvP2oJi70WvOjJQQFMp6LG4YMeVsJL154AgAzSkKGli8lLJAnoXPqxu44PZbzLDQ6A6B0rcPcerfAlv2rMaN8S0LCAldTA9YJcxv63X0e0wf2f7Q5nNjn+eDr7XvsMPQj4Bbg26q6oi8V+lUAAjgN+IeqdgCIyD358qn5wEMFUALMyZffCHyRXADiaqBz6Y+FwC0icnd+W6fbVfUT3Q/YI1FUBPiViBwLBMCEbtteUNVV+Tp/BWYBjwFjROSXwP3AwyJSApwC3NGt7Vj+76nAu/LP/wL8sNBJUNXfkQtiMHPmTJ09e3ah3Y4oc+fOxc6DOVzY59n0xapWn/fe20iqx2iBRCbDx558jrOeWgzkRkDEsz6tY0bw8auv4K5b/8WQ5padRwwAqFKczpBxHf41fCinL11BMhrhvnNm7cjP0M2A9gxnLdvADRfO5pOPz6esvQNPlabKAdxyxon4jsPI+u20NUNJuXDDxhGEPY7pizC4qZkP3Xg/ZenciICmRJyTv3QdLfFYVx+V3DDS9mg0N7JDdZe8FKgS93cESmIOuI7Q0WMIRLEnfO/oCmaPL+7zuX6z3mgLeP+cFlLhzuXFLvxkUoLZY+MHvA9m/7P/o83hxD7P5gAbDbwHuFVEHOB2cr+51+6uQn8MzRe6mfEn4BOqOg34byAOoKrPAKNE5AzAVdXX8vtfBPw/YAbwsoj0NdDyGWArcAy5kQ/RXvqlqro9v+9c4HpyAREHaOqRa2LyHt6fMcYYs5MxpR7vKPYpSme6ytwgoDid4f3P/6trikMoQihwwqp1XLD4db5/4WwiQdi1vZMoFKUzlKXSuPlpG719IXVEI9xwxkkErsvvTz+eFbVVBCKMbNjOh+e9yODtzQzsSAK54EGhEQ2CkvZcosGOwEFFMsU/f/1njtmwGScMUSAQoaMz+JCn3f4q4AX5nAqqOCg/Pqmc6VVR4t1iJxEHBsQc3jm6aE+nd78YV+Jy+bAoRd36EBWoiTt8YGRs9xWNMcaYw4CqrlPVn6jq8eQCER5wT291+lsA4ingnSKSEJFS4JJ8eSmwOZ/v4f096vyZ3FSJmwDykZfhlEgTQAAAIABJREFUqvoEudERnaMm+qIc2KyqIfABoPstoRPyORwc4ArgaRGpAhxVvRP4OnCcqrYAq0Xk8nx/RESOybfxDLmpIhR4H8YYY8xO/nLJYL4+NGR4soMBqRRX1G/mycZlDBpahldVglMWh7IEr8yYxPLaKn52+71cM+8F7ph+FE5+yoSEIYHA0ppKHpg2ke9fMJtFQ2oJRShPpRnQkSwQrFDcIKSpKHcHvz0W4y8nTec7F87m5pOm89LIIUzeUsfELXUUZbK5CEGBAERRJsu5y1Yyb9woUt6OewET6ur5+29vYdbrKwmAVDSSCzio4oQhxckkbhB0vS5JpynTgDjKxFKX28+t4r0TS7nt3Co+flQptQmHATGHK8cV88ilNSS8gzf89aYTivifYxJMLXMYVeTwqfExXjqnlOKD2AdjjDH9gx6Cx6EmIuUiElPVlar6PVU9prf9+9UUDFV9RURuB14ll2thXn7T14Hn82WLyAUkOt0CfIdcEAJyQYP/E5FyctND/1dVm/LTIXrmgLgO2NTt9a+BO/PBgyeA9m7b5gM/AKaRC5T8I//8pnxQAuAr+b/vB34jIl8jN63jNmAB8Glyw1M+Ddy5F6fGGGPMEchzhC+fOZgvd5UMBqbB58/dab9x+b+rGlKMaMky2nOIJ97J8JYWtm9tIzWwhOLNSbbe8TJHbdjKstpq5o8azimr1/Gelxbyh1nHE4iQ9TwkzK1qMbC1narWdhpKivAdh/JkGleV1niMiWvrqWlrx1XNr4KhuEFA0GMqRygOZy99g5ZEjDlTxnHe0jeI+T5LBtXytUvPZXR9I3/60x0sHlrLY8dOJjl0IB8cW8T5E2uJJqLEXSELDIw5PadMAhD3hP+cUc5/zijfvyd+L7gifGxsnI/ZdAtjjDFHGBH5Frk0CJLPcfgY8ElV3e2CC/0qAAGgqt8Fvltg0292U2UW8HdVbcrXz+bLerb7J3JTOQqZmt9nBXB0t/KvdHveoapX9Ki3ADiuwLFWAxfsprx74ssf7KY/xhhjzF4bUxlnTGW3H8JVcQaNqQFg1ERg9kgAwroWlt5WyssPRJi2bA2fe3gez40ezqKhg2iPx/DCkP/P3n3HyVXX+x9/fc4507bXbHoPCQmBAAkdCahIU7FXBBtyLXi9+ruo99ovNmxXL4p4Va4VREXBBiKEoqFESAgBUkivm832MuWc8/39MZNlk2wSomQ35f18POYxM6d+z8lk58znfL6fb3d5hpPWbeLx8aOpyuZoLS/DeR5VuQKNPcXgQ1smTS4IyLhi14r2TLoYhHCOVBhx8RNPU5PNUVuad97V76C5upK3HlfF905rpLU3YkSZz0Vpn/83DOdLRETkhXaUFaF8EzARqKc4cMSvzOwS4PAJQByIUvHHC4GLhrstIiIihwtvRBWzrj6XWVefC0AcO7JfWUDm0Q2EgY9XGi2jpreP4zduYcm4Mf0FI0d0deHHjsiM7VUV/V0vTl+9jk011WyurmREZzfJMGRFYy03nDmX2pdM5xNvmsnC3drRmD74I1WIiIjIQbMGSDjnNpvZzgJMmX2tcFgHIJxzHxii/SygWGhSRETkiON5xhv//Vyam3v4zVW38KJlqwicw3eOlSPqeXzC2P5lC75PbEZfMoENqB3hAePaOxjX3kEyX+CWecczY2sLL3vv6bxsxvB1kRARERlKh0JdhiG0AVhoZr8Eas3sR8Df9rXCoVaEUkRERIbJiBHlXPnrd7B94gg21FazvaKcps5uxrZ1QFwca3JjbTWO4vCfg3KOzkya/zgmyc+vO1fBBxERkSPXOuBWinGXb1EcgvOqfa1wWGdAiIiIyAvvzD9ezXVv/jnTt7WQDCPOXrmGX548m6znkUskeGTSeOau3VDMgHCOYs3n59RPquO1L58+PI0XEREZRkdTDQjn3GcPdB0FIERERGQXnufxzq9dwh/edTOV2RypfIE3P7KYv00ez9IxI1lTX8PKpnrGtLb3X2j5UUzsGdOObeSNHz93mI9AREREDjYz+wG734UYwDn39t2nKQAhIiIie2gYXc1lv7+SJbcu5qGfPUY6X2BMWyeRGUvHjiL0PNbX15JLBJR5MfPfeDwnzp9CWWVquJsuIiIiQ+N3B7qCAhAiIiIyKDNjzutPZM7rT2TFiha+8b3H2ZJIE3kedb19vOZFY7h+QS3t7e2c+fKZw91cERGRYWZHWxeMXx/oOgpAiIiIyH4dc0wD377upRQKEX19IRUVSTzPuP664W6ZiIiIDAczOwv4JDCJYmzBAeacm7S3dTQKhoiIiOxVGMX8/slWfrZoO209BRIJn6qqFJ539NzhEREReT7cMDz2x8wuMLPlZrbKzD66j+XmmVlkZq89gEP+PvBV4HTgZGBu6XmvlAEhIiIig7p7WSvvfKCdTL7AzK3N3JXNEnoeDcc28eUrZpH0FYQQERE5VJmZD1wPvBTYCDxqZrc7554aZLkvAXce4C62OucOaB0FIERERGQPuULEFQ92kimEnLNiNVXZHLFndKVTdDy5hdd/JcuNF48myoXD3VQREZFDgx1yw3CeAqxyzq0GMLObgVcCT+223AeAXwHzDnD7D5vZ10rrZndOdM79fW8rKAAhIiIie/jXHz9FfYfjlU8+QyKK6UklMWeMauskmwg4af0m/nD/YzSv3I7fkKD5mW2MmNE03M0WERE52jSY2aIB7290zt1Yej0G2DBg3kbg1IErm9kY4FXAeRx4AGJu6XnOwE0Cex2PWwEIERER2cX1v3wGHlnHG9s76M6kCYMADzDnyCcCDKjM5jHAXHH6TZ+6m/d/42LKRtUMc+tFRESGz/Opy/ACa3HOzd3LvMHSMXZv4jeAa5xzkR1g9oZz7rwDWgEFIERERKRky7MtXP/5+2hNpanvy5L3fWKz/orVOy9LYqCtLE1db3+2JU1d3Sx6xbdJ+TDqmosY/6o5u29eREREhtZGYNyA92OBzbstMxe4uRR8aAAuMrPQOfeb/W3czNLAJ4CXUQxs3AVc65zr3ds6GgVDREREaNnezXc/cTd9ns/Khnp6kwHZVHKXC4XYoDuZJDSjpaJ8j20UfB9XiNn8X7/jrtd8l47NbWQ3tlHY0T10ByIiIiI7PQpMM7NJZpYE3gjcPnAB59wk59xE59xE4JfAe59P8KHkG0AV8CYgBSwDvrWvFZQBISIiIlz6/ZWUT5vAyI5uqnI5gijeJUdz8diR3D9tEpFXDElM3badD/7lbySiCEeAM2NlUwMnrtvE1JZWCjva2HH258n7CZorMqTKklS8aBo1VWkys0ZTfc50/KrM8BysiIjIQXIoFaF0zoVm9n6Ko1v4wA+cc8vM7KrS/Bv+yV2c4Zw7HsDMIufcz8zsg/taQQEIERGRo9iX71jDbcs6CKKYUR1dxOZRlc3Sk0lhcUxlrsDKpgbunT6F0Pf711sxcgTXXnwe6YXXEThHQ1c3zZUVbKyrIfYMD8MBfhhSXQixjpDwjiVs8D0yYcwGHBXHjGDsG+cRBx69P38Yt3wLfk0Z6U+9isyLZw7fSRERETlCOOf+APxht2mDBh6cc1f8M/sys2r2E2NQAEJEROQI1NmV5+9PNJMvRBw/s4EHlrXy3WVdbLMAc44UjvrmVjwzqoDG7l5qe7P4zlHwPVozGcLAJ3Dd/HXy+F2CDwCx57G5poqyqkrGkmXSjjaSYUR1Noc5wCBVKJAJQ8wVcykcUJ2Nn9vI0o10PLySumyOmtL8eNMO7A3fojMR0NlUSzC+jsoXTSOorSC892nIhySa24mXbcZzDgzisbVw3HiCqU0wZzzxpjZo7sTr7sOyIZYKsM4+aKrGzZtMvLkNtnTgnTkNe8lxmO8RP7OF8M4n4NlmrCyJ353Dq0jBxXPgrGPgELqjJSIihy53dH1drDWzOc65xUAN8AjwkX2toADEP8HMPg10A03Ay4E88Czwdudc+zA2TUREjmJ/f6KZ7/7kSQyIY8cNd23gb1PGE5dV4jwPnCOIY6b2baEylyedz5OK4v4ik8kopiKfp8NPk/d9zl65hp5UikUTx9JWXta/H4cRm/V31ajK5orbMCNZKFBeKOxSftsBO8oyJKOIylwezzmqCiEAkVfcFkDoebSVZyj0FbBnttG9fBtVPb1U5gsEcXFvgXPFoEDs8Na3wvpWsolg10CBcySimCAudicxIPruvcVlnCP60YMwYxRu9ljCmx+GfFRsr3OEgO8ciZ88iF14Atz4TgUhREREBnDOvWLA2wuA9c65vn2towDEC+PPwMdKfWy+BHwMuGaY2yQiIkehvmzIjT95kkLhuUyDJeNGEQ3MYDAjNOPp0U2cvWI16TDa48e1F8fM2ryNVBgyscUoz+W5+MlnuPWk2VRlc4xrLcbZb8vlyWd83n3Zq/nqrX8A58A5ynYLPkAxAFBWKNBWliEXBEzZvoNEFBF6XvGOUakNvnM0dvWwrbqyv+ZEV1mGmtLQnzuPof/Zuf7gxa47NAq+h19qU/8ypYwMenKwdAPx0g0Quj22HQFeX4HgT0/APU/Bi2c9n38CERE5SjmKwfmjkXNu+fNZTgGIA2Rm/wG8DdgAbAf+7py7a8AiDwGvLS17BXApxYIfxwFfBZLAZUAOuMg51zpkjRcRkSPe0qd34HnPXfyEZnSlU3su6Hlsq6qgrrePvkRij9lV2RyLx42mJ5XCcJhzzF23kTc/ugQvikhHxQDHX7I5vCiBH8d0p5LFLhgMPvA4gB/HxcBA8FxAZGDwgQHrlmdzdJaVClWW1kmF0Z4bNSPy9n7BF5kVgxCDyUd4FLuUDL5dj6AnB7ctUgBCRETkn6QAxAEws5MpDl1yIsVz9xjw990Wewdwy4D3x5WWTwOrgGuccyea2dcpBjK+Mch+rgSuBGhqamLBggUv7IEchrq7u3Ue5Iihz7McTD29IafP7iMe8Ht7bubpQZc152icHxAN8ts7F6SYYt1Ad6k/q2HHllOZ9QkGdNfw1yQgMP51xBq2XHUMud4+POdojeM9N0rxztDOrIZF4QQS8a6jbQwUmxH63s4VWRfHxboPg25375XHzRXvR+1tPzvbNfjapXtZ9RWg/7dHBf2NliOJPs9D7yirAXHAFIA4MGcDtznnegHMbJcxVEvZESHw0wGT73XOdQFdZtYB3FGavhQ4frCdOOduBG4EmDt3rps/f/4LeQyHpQULFqDzIEcKfZ7lYOrpLfChTz+wSxeMx8aPZnN1qf5DiR/FzNiyjRc/00YuCMgHfvGOvxlr62sIfX+XH+35IMABU7bv4LTV64s1GIB4ewGvMUH7b9r4yWkncsaz67ho6XIqs9liAcoBbXNARzpNPlEshDm2tZ1RHV3FIMNuwQMHdKWS/RkQFseMa+1gkFhJf/eKncew+7x0GIFzzwUoBi6TDIhwxOEgSbPOkYgignQCbv83OHnSXs+7HDn0N1qOJPo8y6Fm0O9x2adBb6CY2eXAJcBbnNvl9kxuwOt4wPsYBYBEROQFVl6W4IrXH0si4RH4xbv6szdupba3Dy+O+2s0NHV2MW1bC7FnpMOQVGm0ipaKMiLP6/8xvvM5iIp1InqTib1nIZjxzfPO4CfzTigWeYTiD3+K3SA6UynyiQBcsUtH7Byx5xVHyRiwTVd6dKeSWFycV9GX7Z9OabsMWG/QNpWKUO7MgPB3Fq70PUgFkEli583ELj4R0sGu2wY8z/ATPvzbhQo+iIiIvAD0A/jA3A/cZGZfpHjuXg5818wuoFh08pyd2REiIiLD5Yy5o5g+pZZHHt9KNhcxY2otz67t4HeLt7C+4NGeSBDEMSkXs6OsjIaeXhJhRCqMWNVYv0cWgVH8ge+HIaPaOgftquC7mKVjmvCd46oHHmFqSxvZREAiiuhLBKyvrekPPiTDkJqePgIHzeUZygrFAMjOuyIRkEskSKQCvNoyquZOIDG+nvzCVfjNnQQVKWxTG25bB+YZ8ZhamD6a9Kyx2PRRROtaIIrxMkm8th7o7MW2d8GkRvwXz4JtncV1T52CN2cCvnPEi9YQ3vE4rGuBUTUE1Rm8UTXYS46DsXUH+V9MRESOFEdrEcrnSwGIA+Cce8zMbgEWA+uAB0qz/gdIAX+24kXbQ865q4anlSIiIlBfm+bC8yb2vz92Wh2XvHTXu/hxPIfVy7bx7e8/Tl8+JpdI7LOYY7oQMqG1jdCsvwvGzqyEn54yBxx87ZbfcUxzC7nApzuZIBl5lOcLTNu+g9iMnkRAc3kZXVXl+G+cR0VHD3T0EgM2YxTJl84iPaWJCt+jfvf9f+j5Hbu/j3mDHZ2Z4c+bjD9v8vPbgYiIiPxDFIA4QM65a4Frd5v8lb0sexNw04D3E/c2T0REZKh5njF19ki+9o0LeduH72bx6JFMaOsodmcYkAXhgNayDEvHjqIzk+Z1i54g9L3iUJvO4QzOWbGG99z3MBctW8GqEfVsqq5kQ20Nn3nFS5ixZTsf++M9nFBpjPjPV9A4axyJmgxesK9QgYiIyOFHRSj3TQEIERER4UufehGX3Lgc4phUFPUXnQw9j9D3eWp0E6Hv8+ikcWyrquCtDz1GV1mGbCJBGiMZhvhRzC0nH8fk7a3U5vNMnlrB02ckyUw6geBTpwz3IYqIiMgwUwBCREREGFWVZMH7juXiG55m2lPPsr2igrUNtWyuqWZbdWX/CBKh77OuvpbHx45m3oZNGMWCkmPaOlkxop5zj6lk9pWvJTOhYZiPSEREZIiZ7XVIaClSAEJEREQAqMwE3P+h2fxtyQiuv2kpaxrqaKsoH3TZFSMbuOTJZ0gXQiDJw7On8p+fms+IquTQNlpEREQOGxqGU0RERHZxxglNjJrRwMSW1uLQnbuJzcgmElx/7hmsr6vG0gm++dXzFXwQERGRfVIAQkRERPZw3ZUnMLmtjSCKoTTiBYDFMQ1d3bx+RiX/+bZjOXFsBYGyTUVERPpHhhrKx+FGAQgRERHZg5lx05fP41292xi/ow0/ikkWQs4Ju1j6jol8+oKxXDw6xT5G7RQRERHZhWpAiIiIyKA8z+O6957IdcPdEBERkcOEilDumzIgREREREREROSgUwaEiIiIHDDnHMs397Bmaw9lFvGxj99Nt5/A5SNmTK7hda+aTtOIwUfQEBEROVIdjnUZhpICECIiIrJf+TDmgXtW0/XEJtqXb6WtPUe6EJJq6cQaErR2hUAIZjyxbDtLl23nwx88hWOm1A5300VEROQQoQCEiIiI7NOK5l7+9IFfMWnbDgDy1ZVkzAjCkEwhpEACBvR53fnqum88zLi5Y/n4ZbMIVK1SRESOAqoBsW+qASEiIiJ7tbYtx3f/4y7OfXIFo9s6WN1Yx7N1NWysqmRKSxuec3u92PKAtvtXcu33lwxto0VEROSQpAwIERER2cOjLXm+vridZxZvwz9mMhtrq1k2ZiTmHJHngYPysABPwd56vDoz4iBgx6INdL7xWKoqU0N6DCIiInJoUQaEiIiI9HPO8Y4fr+CqHzzDvWv66E4lOWPVOk5cv5kTNmwm7/uEvk8Y+Pzk1JMIPQ8vdgRhRLIQYlGExTF+FJEsFABHMgr5f5+6D+dUmktERI5szmxIH4cbBSBEREQEABdG3PyNB+lcupkttVUcv2kLv7/+/zh75RpWNjXi8Ji7bhNjWtvBOcDRlUphwAkbNnP8xs00dnXjRxGNXd2Mb+tgdEcXI7p7adzRwYe/tHC4D1FERESGkbpgiIiIHMWibJ7fPrCR2x5uxlo6qe3pZax5+FHMF35zJ2vra/nNibMoBM9dMjR19RCbsb2yAj+OAY8R3T04oK63j1WN9RR8n9UNdbSVZUiFIWPbOghWbOE1H1vAe18/g3PnNOEdhnduRERE9sahYTj3RwEIERGRI4yLYggjLJUodnto74XyFHgGZrgoJrprKdkfP8gv230+8NZXMSVdziefeJjKbI57ZkxlQms7VX1Zfjpvzi7BByimlzZ297K9spx0GAJJjOLoFxYXa0T8fcJYQs9wnkePS9JelmFCSyt13Vlu+cFifmJGXVnA3ONH8IpXTCcsrV9VkRz6EyYiIiJD4qgJQJjZ1cC/AIuBRqAB+IJz7paDvN+JwO+cc8cdzP2IiIi43jzhf9xK/MtHoBDB6Bp6u3IUciG5wOczL38pv5kzi9iMi5a28oVH1/PGnl5G9vQyc+t2gigicI5p21s5a9UazEFredmg+zLnKMvlye5W18GZsba+htD3nuubakZsxvr6Who6u8kHPmbG9rzjroc3c/fCTRQCn9j3GTmijA+//XhGNQ6+XxERkUPZ4ViXYSgdTTUg3gtcBPw3kHDOzTnYwQcREZGhVHjH94rBh1wIsaOnuZveQkwmX+AV77+CW0+eTW8qSTaZ4PYTZvKSD72LvO8xa2sz6TAkKAUTygoFjt+4lZ5UgtHtHYPuKxVGVPZlYbcLLXOOtrKyQS/AnBmpKKK+L1vMzDAj8n0i38ecwwFbm3v55DcXkS9EL/j5ERERkeF1VAQgzOwGYDLwB+CvwBwzW2xmU8xsrZl93swWmtkiMzvJzO40s2fN7KoB2/h3M1tqZkvM7IulaXPM7CEze8LMbjOz2tL0k0vLLQTeN2AbvpldZ2aPltZ5z5CeCBEROWK51c24v60sBh+AyIy+REAyjrl3+hQ21VTv0pUiDHxay8v43exjKXh7Xg6k4piyXJ5zl6/Gj3YNBvhRxOxNWzht7aY9+roaUJHLD95GM3wc5hyjurpJhFExO8Iz0mFU7LIB5HIRjz7Z8s+cDhERkWHhhvhxuDkqAhDOuauAzcDZwIuBB0oZEM+WFtngnDsdeAC4CXgtcBrwWQAzuxC4FDjVOXcC8OXSej8CrnHOHQ8sBT5Vmv5D4OrSNgd6J9DhnJsHzAPebWaTXujjFRGRo49b2wLJ5wIMed8HwI9ilo9sJBvs2euyJ51iQ231oNvzooi6nj6O3bKN85Y/S2NnN0EUUdWX5bQ1G5jevINZW7axvbJ8l/ViYPamLVi822WRc6TzBYK4mPngMBq7u0ujaQAGkXkYEMeOHW3Zf/hciIiIyKHpqKkBsR+3l56XAhXOuS6gy8yyZlYDvAT4oXOuF8A512pm1UCNc+6+0rr/B9w6yPQfAxeWXp8PHG9mry29rwamAWsGNsbMrgSuBGhqamLBggUv7NEehrq7u3Ue5Iihz7McFFGE++AJUPrhH5fqLhgwLZXkc+VPEu/WLcJzjsYLynj2rNl4u9RycISeT1tZhoLvk3ExL873Yq6nOPu4DJAh7XlUf90BRvzm0Tig4HvUJxJc6rXu0g3Dc45EFLFzijkw53Gs34szw5wj8row5zCDZGEVCxbs8vUoMiT0N1qOJPo8y6FGAYiiXOk5HvB65/uAYkbp881w2deyBnzAOXfnvjbgnLsRuBFg7ty5bv78+c9z10euBQsWoPMgRwp9nuVgKfz6h8R/WAJ9BWKgtTwDQEUuxxnXvI8NtdWEwc7MiIjG7h6+9ovf8dtjp/KJP9yLOQfOsXjcaD726osICx6h75MshFTmcrxvwUIyhWIXj5zv89i4USQ298KIJF2/aiGIY/42dRKtFcUCko7iF2lZLk9NLgd44BwGlOXDYs2HqgyxGb2JBEFp3tiRFVz+5nmYCnnJMNDfaDmS6PM8xMxUhHI/joouGC+Au4B3mFkZgJnVOec6gDYzO7u0zGXAfc65dqDDzM4qTX/LgO3cCfyLmSVK2znGzHbNXRUREfkHBd96G/7V50NjJV4mSdXEuuIwmMkkv7n+Ji5ctpwgivDimGO3NPPzG3/OiM4e7jh+Ji3lZXhxsT7D5y55CdlkgrDUjSOfCOjIpLl/ykQKnkfe91gxop65azfSk0pS8H1+eNY8vnf2qSTCEC+OgWLU3QfiUm0HnMOPi0UxjVKWhoOs7+M5h+8ZZ548ks9+8GQFH0RERI5AyoB4HpxzfzKzOcAiM8tTLGb5ceBy4IZSYGI18PbSKm8HfmBmvRSDDjv9LzAReMyKV1bbKdaWEBER+adZ4BN8+CKCD18EQAqoyBVoWbCCXHfI/8yfRn1dhigf8tObt/LJ117I9lQKnOMDb3olN/zkNlrKM/QmE3tsO/R9nhk9grc8+jgfu/QCZmzdDkDnmjQpCv3BisXjRzOpeQfZVLI4QoZzVPdlqcjmcIBnRkwxM4KR1Vx2wTTOOXMMDiPwdV9EREQOb07x8306agIQzrmJpZcLSo/dp+Ocu4liEcrB5n0R+OJu21xMsVjl7vv6O3DCgEmfLk2PKQYuPv4PHIKIiMgBs1SCxpfNonHANC+V4IrL53BF6f0fV3XxnZu28Pr3vIXJ23cQev6g28rkC1T15fiPP9xDbzLBD846hXjhrldaoe+ztrGOlzy9iqVjR+HMqMrmMIrdNqLAY9SEWi5/54mMaKo8GIcsIiIih6ijJgAhIiIig7twaiUX/tdZuK4+vn59C+3dPTRXVRAPGJ4zVShw4ZPLAUiHEdlEgu5UctDthb5PY1cPQRSxvaKMvkRAuhAyfmQ57/nEeSTTuvwQEZEjT3FoTKVA7ItyHUVERAQAq8zwoWvOZl5rM/XdPaTzBdL5PIkw5KyVazlnxWoAulJJHpw6geq+3KDbKcvlMecoz+cBY2tVJYWKNB+49nwFH0RERI5iugoQERGRfmbGl752Iff/ZhnrbriPvlSSKdt30NDdS+wZf5k+hT/OnkFrRTlBGBVHzhjAjyJOW70egL5EongfyOCzX7lg6A9GRERkiKkGxL4pACEiIiK7MDPOedVxRBdO5wf/9ltWmNGV7uI780+npbKif7nQM8w5POdI5wtUZbOcvG4To9s76Usm2FpVQTKM+PiHTiWtzAcREZGjnq4GREREZFB+OsG7v/1alm7q4f0/WUGqN0s6X6DgexjQ2NlNrqMLL5ng7X9bROh5RJ5He1lSso1WAAAgAElEQVSa+6dNoqa3j9ddPJlZYyr2uy8RERE58qkGhIiIiOzT7DHl/Op9x/Hy+RNoShpTtu3gksef5Op7/kq6EAIwbVsL9d09xM6Bgxc/vYpLJ5fx2nMmDHPrRUREho7DhvRxuFEGhIiIiOxXQ0WCD5w7mg+cO5r27T3cef1f2Zz2yW+owCXgupefS7I7S0NPHz3pFK9+6/FceMqo4W62iIiIHEIUgBAREZEDUtNYzhs+fT4A/zf/O7S3t/OLz51NS09INowZU5XA7PC7KyMiIvLPUhHKfVMAQkRERJ63lq48tz+yjVwh5vwTG3eZ11CuywoRERHZO10piIiIyPPyqwc38q37tuFc8Q7PzYtaeGpdJ2Oqh7tlIiIiw88BThmA+6QilCIiIrJfrV15vnnfNpxz+C7Gcw7nGQWMbC7iFz9bMtxNFBERkUOcAhAiIiKyX5/9vycpy+WpzOXJ5AvU9GZp7OrGjx2xGd9YE3HdO34x3M0UEREZVm6IH4cbBSBERERkr/KFiE98agEtq1vxXXHAr7J8gapcjpreLLW9fSSjiA/d+1e2eEn+fNlNw91kEREROUQpACEiIiKDuu33y7n8mgV0bWyjO50iVQjxw4hMGOLHMS9f+jTluTzmHCO6e7nw6ZVs39bNQ9fdRaE3P9zNFxERkUOMilCKiIjIHm7437+z8b5VTAoCQjPOXrUOzxWTPZsry0kXQiqyeWxAAmgyimns7uPr25O0Xvc4r1u+klf8+7mMnDNmuA5DRERk6JiKUO6PMiBERERkFzd++xHa7l5OEiMGRnb1YDh6kgk60ynKcnmmbN9BEMf968Q81xe1treP5U2N/NeLzuCdt67h0RsfHI7DEBERkUOMMiBERESEuKWT7b96nKVrO9i0KQeJgGwioDwf4szoyKSKC5oReYa5mMh77i6Ps2IAIjJjbX0t2WQSgEWTxvOqMGLeNQt41/FVvPSEEfi15XijqjFP90FEROTIcjgWhhxKCkCIiIgcwfo6suxY30amJkPrqu30rN7B+FPGUzd7NCs2dLJkwWpm/+I+Kp7cwDfPPZPmqgrGWJ4EjsfHj+H8p1fSnUrCbimldb1ZDJ6bbgbO4QwWjxvdv5zzPMIAEs7x48UdrLjtSV6x5ClC3+NPJ81iQkcHpzy1mvZ0mmdHNTC5LsmUURWkRtdgcybAi2dBUpcrIiIiRwJ9o/+DzKwGeLNz7ttmNgf4DlAFRMC1zrlbhrWBIiJyVHPO8debHuXJPz0DvtETWjFLwQx392o2NNTwx+lTecOjq3jZo6t459tejfM8lowdjR9HzH/mWSbuaKU7mSDerTtrKox26X7Rz4y+ZIJ4t8yG2PO4Z8Y0cskE98yYynfPOY3bvvMjXvXwEhJRxLq6GvqSCSp6+qhbvYFEVw/OOQg8qCnHbv83mDF6z/2JiIgcUkw1IPZDuY//uBrgvaXXvcDbnHOzgAuAb5QCFCIiIsPi6b+sZNldywkLMX0FyAc+hSAg9H0iz6OxvZuJO9r56F33ccu8E9haU8XvZx9L6HtcsfAxJu9oZ+bWFsrzBaqyeXDPJZUWu2AMnmTak0ruMc2cIywFJfpSSbZVVvDf551JEMc8Nm402WQC53mM6O6lsasH3zk8wMIYWrrgLd/eZf8iIiJyeFIA4h/3RWCKmS0G3u2cWwngnNsMNAONAGa21sw+b2YLzWyRmZ1kZnea2bNmdtXwNV9ERI5ki+9YRpiLiM0IfW+PLhSJOOaVS57Cix1Lxo7k0YnjyQc+lz30OOkwIlnKcEjEDs850vlC/7qh77OjvIxwt21mA58/zTxmj2CBAyL/uUuOMPD588xj8J3Dd46c7wMwpr2TYLd1DWBbByzf8k+eERERERlu6oLxj/socJxzbs7AiWZ2CpAEnh0weYNz7nQz+zpwE3AmkAaWATfsvmEzuxK4EqCpqYkFCxYcjPYfVrq7u3Ue5Iihz7MMhdRJMOL4ShylbheDpIQmooCF80/l5DrHlPQSPOcYeY6HUb7Hsg52KTqZ98bRWSgQfSmFS3h0Xz6BrnSKc5JZTks8vUsRrniQ/SeTIUs+ciJt5eWU5fPkHTyWH4UXD5Lp4BuseRK2rvgHz4bI86e/0XIk0ed5aO38zpW9UwDiBWRmo4AfA5c75wZ2jr299LwUqHDOdQFdZpY1sxrnXPvA7TjnbgRuBJg7d66bP3/+wW/8IW7BggXoPMiRQp9nGQp3f/MBVty/mjh2ZBMBhWDXr/yCZzzT1Mh1v/wDP37VBdw6dzaZQshH71xAYpD6DnnPo7mynMC5YnDBHE+MHsPquIIxLst7vFOxnOO4NdvIFEJ6kwl6EwnWNtTRnU7tUhcinS/wgXse5LzHnuaDV76V62/+LXgeY3e0M6WlFX/37hZ1FbD8OvCVuCkHn/5Gy5FEn2c51Oib/AViZlXA74H/dM49tNvsXOk5HvB653sFgURE5AV36ptPIlWexA88anr6CKIIrxRYMOfoyGR4dMJYvnf2KZRns6QKIR3pFM2V5XsMIRYD3akkke8TmYEZrWUZ7p0xld5Uksgzmqur2F5VyePjx9CVSRP6Pubg/GUrmLCjjXS+QDqfJ1UocPrqdVT39nHpVW8jE4bU9/TixTGbayrpSSb7u3Y4wJUl4cZ3KvggIiKHBTfEj8ONfvz+47qASgAzSwK3AT9yzt06rK0SEREBKhvKedN/X8qS3z3F5mVbmeBBuKWdbFcvE0eW0fy2eSz7ewcLp07gmM3buOiJp7ln5jR+cfJsPnDvQrwBWQjZREB3OoUD2soyVObyPDJxbH9hyZ1iz6O9LENfEFDX08t7FzzEvHUbicz437PmcduJs1jdUMd90ybxwNSJpMKQH/3wFgoYXYkEk1rbaK7I0NQdkxpdQ/C6U/HeeiaMrRvisyciIiIHgwIQ/yDn3A4z+6uZPQmUA2OBejO7orTIFc65xcPWQBEROeqV1WQ4/a0n73X+y+aNAopDdv7ktuW4hc/SFQRsqK2iIh/ixzG50ugZAGW5PPPWbWRsWwfnLn+Wm+edwM+dK1WKLNo54sXH/3gv05t3EJnx7Ih6Hpo0nkxgXNK5nXx3nslhlve/bjpj3/VJCrFjfDaiPu3je+o7KyIihy/VgNg3BSD+Cc65Nz+PZSYOeH0TxSKUe8wTEREZLmbGZa+ewWWvnoFzjo+973f0JYJdRs4oy+V42VMr8eMYDxjR3cO7H3iEB9s6oN7fZXtfuO1PTGveQTYIcM5hccxvP3s6wV6CCwnPGFGmSxIREZEjnTpUioiISD8z4/P/czFNNQn8KALnSIQhJ63b1B982CkThtT19GKl3hpeHDO1uYUbz57H+Ve/g5WNdXRVlDHv9vfuNfggIiJyJFENiH1TAEJERER24Xke13z5QtIVCYIwJJPPU9uX3etFg+ccfhTxhkeWcPby1ezIpHntsmc47muvYebSz5AcoxoOIiIioi4YIiIishef/fpFfPOjd7J+Rx/ZREAqDPcIQuwsVjl/+WquWLiIVBxz1kMfxdQHVkRERHajAISIiIgMysz44JcuoHV7F7++4maq+7K7zI+BvO/jzHjP/Q9Tni9wzA2XKfggIiJHLRWh3Dd1wRAREZF9qmusZMR5U1lTX0ve93AUgw87ysvYUl1FIorYMrGJOfd+mPp5E4a7uSIiInKIUgaEiIiI7NclHzqHbz66kZWN9dT2ZckFPs2V5aRXFrBqn/f/4A3D3UQREZFh5az4kL1TBoSIiIjsl+d5fPBnb+X8l06CZEAhGTD2mAamTqsjoREuRERE5HlQBoSIiIg8L+YZZ1x+Cmdcfkr/tN/8QcEHERGRnRz6XtwXBSBERETkeWvpzPOZm5ezbn0nsXms2dJDbWa4WyUiIiKHAwUgRERE5Hn51t0byN5wDw3pNAtPmElXOkVvX4GMF9HZ0kVVQ+VwN1FERGRYqQbEvqkGhIiIiOzXJ+7chP3P3dRl84zq7Oaq+x/mZctWkE0kiM148Q/X8P3frhzuZoqIiMghTAEIERER2af7v/8IPb98lMp8nsA5UlFEIo45ftNWqvuyAES+z3dX9PG+LyykMxsOc4tFRETkUKQAhIiIiAzKOcfnv/AAn9pkjG3vojeZYG1dDcubGlhXW03kGRW5HMko4iVPrcDimJ5t3Vzy5cX879Pdw918ERGRIWa4IX4cblQDQkRERAb1f7et4A4qKKQ8mrq6aE+neXTiWNbV1dLQ3c2szduIrXgvY/7y1VzyxDNEnpEMI1YtXMSfrz6Pl154zDAfhYiIiBwqFIAQERGRQf3uoS1MiiLOXL2OtkyGz7zipeR9n9jz2FRbzdOjmkj8JiDpHFXZHAb4kQMzprS0svmrd/K+Ze38z4fnYXb43aURERE5UCpCuW8KQIiIiEi/vp4c//rpB9iUSlOBI5tIcNrqDVz6vsvJJhL9yxUCn9ggn0pSQ3aP7RgwqqOLV996D9eu28pHZpaTfN0peBopQ0RE5KilAISIiIjQ3NLDp7/yEOsSaXKVVWBGNpnEc46b5x5PLvD3WCfyfbLJJLHlaC9Lk8mHpMKwv0eqH8eM6+hi3F0P8cSDaRq+eicNPX0E9RXYy+fgv/50EnPGKTtCRESOCA5w+k7bJwUgREREjjBx7Hjs8a38deFG8s7ROX0MD3YbDUvXcupTq2kty5BNBDwzqgkvCol8nw3VVTSWV+G7YhcKAMyIzfj7xLGE3uB1q/04Bh+yiQQF3ydd8KnK5oDiRVgqioiArlQSi8vpTSbZVllJ/v71TPnl41RncwRxTCKOCMww37AxdQSvO5Vwcxvxmu34p08l+fYXYcqeEBEROawpADEIM7sa+BfgMefcWwZMXwvMdc61PM/tXAHc5ZzbfDDaKSIiMpibfvwEi59opjeMueP4Y+nYnuCk9RuZvmYLKxsbCEvZDCM7uuhOJbh76iRmbN1eDD4MUlHbj2NqerPsqCgjHhCISBZCUn1ZqChNMCObCCjLF0hEEZV9WXzneOCYyRQ8jzNWrcUzY8KOdrKJAMyKFyJmFPyAIF/AhcDqZrJf+UP/fuLH1lK46UHK/vzveKNrD9p5ExER+We54W7AIU7DcA7uvcBFA4MPB8rMfOAKYPQL1SgREZH9Wb+hg8VLtpHPRzzT1Eh7Jk0Y+Fz+0GO0VJT1Bx+gGGooy4dkcjky+QKDBR92LnfmqjXUd/cSRBFluRyJMOTlS5ZR39MLgOeeu+SKDOp7eqkpZUJEnsdvTjyOO06Yie8cHpAphDjPIzTrz7jY2c0j2j3bIhdCRy/5L//+BTlHIiIiMjyUAbEbM7sBmAzcbmY3AS8DGoFHKF2ZmVk58AtgLOADn3PO3VLKkPgBcD5wAzAX+KmZ9QGnAzOBr1G8V9QCXOGc2zJkByciIke85StaieJiMGB1Yz2R74Nz9CRTFII9v/Zjg4aevv1ud2RXD69/bCnt6RT1Pb2cvno9NX1ZlsQxA0MXnnPU9/ZRni/0r/vnY6eSTwTcP30ylzy5nGQUFUfMiGN6Ukmqs7lidw/PA6LBGxDFRPc8dWAnQ0RERA4pCkDsxjl3lZldAJwLfBJ40Dn3WTO7GLiytNgFwGbn3MUAZlY9YBNZ59xZpenvAj7inFtkZgngW8ArnXPbzewNwLXAO3Zvg5lduXNfTU1NLFiw4GAc6mGlu7tb50GOGPo8y8GUzxY4bW4e5xyz0svJl7IKxl5QRn2yj92zHJzBKcmNJOIIzz2XOmoDkkhThQh/4s73OVKhg1NH0QaEX0tDYNgbRvYvvy3fSHPpdXcqyTkVWSCL52D1mFkEUVzcd6k1/s7sCeewgTUodpcK8PR/Rw4y/Y2WI4k+z0NPRSj3TQGIfXsR8GoA59zvzaytNH0p8BUz+xLwO+fcAwPWuWUv25oOHAf8uVTt2wcGzX5wzt0I3Agwd+5cN3/+/H/yMA5/CxYsQOdBjhT6PMvB1NcX8tFP3EsuF7G2rooF0ycT+j7v+ftDhL5P6D/XBcMBkRm3n3AsqTBi9qatAFRkc6TCkOq+LNXZ3C79Nf0oYtbmZhZOGMPDk8azPixjZJBn8YNw/Kat1PT0MbKzi1wQ8PN5J7B03HM9EVOFkC/96m8k4mIAIgbK8gVSUQTO4cUxqTAi9p4rgtkvkyT5qUtJzj/7IJ05kSL9jZYjiT7PcqhRDYj926OOiHNuBXAyxUDEF8zskwNm9+xlOwYsc87NKT1mO+fOf+GbKyIiR7NMJuDq986loiLJ9J4ujtvegh/H/PCMk6nq7SMRhv0PL45py6QZ3d5JXyJgyeiR5HwPzzmCOKasUNhl21YKECyaMIaHJ42jEPg4K+ZK/HnmNJaMbmJrdSUrRzTwl+lTdgk+JAshL3lqRX/wYWf2Q1AKPgAkw2L3i0QhLAYfkgFUpiEVELz+FBKXnTkUp1BEROQf5ob4cbhRBsS+3Q+8BfgvM7sQqAUws9FAq3PuJ2bWTbHY5GC6gJ1jhi0HGs3sdOfcwlKXjGOcc8sO6hGIiMhRZ8rkWr587bmsXdfOB2IIRlTyQHOB7DFn0f3QarpWt+DXlTN2RiNLVnVQu3Ub41ta6UklOW5LM9XZHMubGthRXkZlLk9ZvgA4AmDOuo186aJzd8mkAAh9n0cnjWdMRxdTtu9gRGc3z4wawbbqSqr6slz6+DJOWbOhvwhmVzJBEEUkMynKJtRTdt50vPU7wCB4yXEkL56DW7eDeGMr3qwxeE3Vex6oiIiIHFYUgNi3zwA/N7PHgPuA9aXps4HrzCwGChSH7BzMTcANA4pQvhb4ZqlmRAB8A1AAQkREXnCeZ0ye9NyQlRMrA5iSgVMa97rOstXtfPr7fdRu6mPKthaWjB+N6+ymLxGQCiP8OOL/veZCanP5QdfvSSWJzVjdUMeU5hbe+vDj+FGEOUdDTy89qYBx//lyys49Fn90zX6PwY4ZiXfMyP0uJyIickgw1YDYHwUgBuGcmzjg7cBuEh8qPd9ZeuxrPZxzvwJ+NWDSYop1JURERA45sybXcMt/nc1PH93O8u8v5PgNm/n7hLGMa+ugLI5prqigtaKcykL4XOHInZyjobsHzOjMpOlJp7DY0dTVw9g//itlk0cMz0GJiIjIIUMBCBEREennmXHZKSPglFdy8af+xry1m1g0aSyR5+FHEZjRWpahvqd3l0JSQRxz0vpNxW3EjoLvU9fXw4hvvVnBBxEREQFUhFJERET24itXn8zKpgYufuJpqvuyWCnpoSuTprmyglShgFcaOvOipc9Q39MHzlGey2HOMe6rr6fm/OOG9yBERESGiKPYBWMoH4cbBSBERERkUMfWp/jw22Zy39RJfO43d3LMthbMOXCO3lSSFSMaqcjmCOKY+u5ecI5kGFJXmeC0m99J00tmDvchiIiIyCFEXTBERERkr846tp4zrj2Tnzz1DJcufpLb58yk4Hs4B1V9WTo9D4gpyxdIhiGnffGVTDx53HA3W0REZFgcjkNjDiVlQIiIiMg+eZ7H2377bpYcO4nTVq+jKpvDd47OTJpsIiD2DFeR4jW/fbeCDyIiIrJXCkCIiIjI8/LhG1/DtM5OZm3exrTmFqY2t+A5h+d5XH7r20mUpYa7iSIiIsNoaOs/HI41INQFQ0RERJ4X3/f44rdfzqont/HXu1dRU1/GV8ZV0tXVMdxNExERkcOAAhAiIiJyQKYe18SUWSPY9vhG4t7ccDdHRETkkKEaEPumAISIiIgckCdvW8Ltv3iKfOCxaWMXZbXGxh88yNh3nDXcTRMREZFDmGpAiIiIyPP2698u56Y7VtOVSZFLJIoFKIEPLQ/5yKfvp72lZ7ibKCIiIocoBSBERERkv/q2tvPjz/2ZHz68nZSL8SheROwsfzWxtZ31vRGXfPdp/nj/+mFsqYiIyPBREcp9UwBCRERE9uln1y9kzB+7ee/4Wcxbt4mxrR00dPVgrtjT1YAgjskUQl61+Cm+98e1dPfkh7fRIiIicshRDQgRERHZq0VLt3JF3VQSYcTXbv09E3e0Yc7hPCP0fH4aO8BwGAZsrqnmmjvv55Mjyvjah+YOd/NFRESGjAPc4ZeUMKSUASEiIiKD6s5HfPRXa7n08WWcvH4TPz11DvdOn0zkewSxIxmGlOWLmQ7mHAXfoyyXB+c49i+Ps2WThucUERGR5ygDQkRERHbhnKNn+Vb++/MPUD9yBA9NHk8hKF4yrKuv5YFpk/nk7/9CEMcEcUy+uBIztrbgO8d90yfT2NnNTf92B9HMMXz8P8/B83XPQ0REjnwOpUDsiwIQIiIi0q9vww6efuX15DCqJo5j4ZQJhL7fP78QBGyqqeLhSeM489l1/dPTYYRHsfhWIQjYVFfD2roaervhrR+9j5NOauKDr5tBHDtSSX+QPYuIiMiRTgEIERGRI8j2bAxAY7qYcdAbOtb2RIzOeNQkPVwupLOjjy2rWmj8yxP463fwl8paah54hobeXtJhiCWTRKkU6+pq8eN4lwAEQD7weXpkI/Vd3XStSpIGglJByp0MaOzpZV06BcCix5s5d02WUe1dJOKIPEadCzmrIuaMk0fBCRMYO6qCdNKnEMZs2ZGlqjygpiJ50M+ZiIjIC8JUA2J/FIA4yMxsAfAR59wiM7sWeBtQ65yrGN6WiYjIkWRFZ8TbFnbxZEcIwLFVPmc0JPjR6iy+QVVHNz+4449MXboac44qoBA7QuAsoCcRkE0m6Esmqc7miD2jLF/Yc0fOccaz6xjd3snahjoKvk8KyPkeqagY/OhJJthaVUlfIqDgeQRxjAFl+QKLJo1l7pr1VBSKQYh7On3+cm8zds82nBmNk2rZ1FHAOUcUOWZPrubDb5hOeVqXLCIiIgfKzC4A/hvwgf91zn1xt/lvAa4pve0G/sU5t+RgtUcdMofWHcApw90IERE5svSFjvl/aefxtpB8DPkYlrRHfGdVlp4IevIxP77hp8XgA4AZDoi84m0aA3KJBPkgIHCOII5p7O5lWnMLiSiCAdkNozq6GNvWUbyAGDD+eF8iQQx0pFMsH9FAeyZNLpEgNiPv+zigpi9LTU8fZYUIK+135wMzIoNV2/roy0Vk8zGFyPHE6g6+cvPyoTiNIiIiRxQz84HrgQuBmcCbzGzmboutAc5xzh0PfA648WC2SQGIQZhZuZn93syWmNmTZnaNmf26NO+VZv+/vTuPs6K88j/+OVV37YXupoFmlUUBFXcRNUbFmMUliTExLjGa3SVxso/JJJPETFYTJ8skToyT5GecGKMxJmM0xiUGxQ0VRVlUQGRHoIGm6fXeW3V+f9wLNE2DgNAb3/frVa97b9VTVaeKorv63PM8Za1mljKzjJktMrNDzOypDuuPMbMXOm/X3Z9091XdeSwiItL//Xl5O22R450XlGacvOBVhmxq2nZYrFLyIDaIgfZkAsxIxDGxGQEweelyrpz2JDUtraTyBdL5POPWrCMZx9vux4xlA6tZVj2AJQOr8SDYmpwovRaCgMis+BjPTmFu/tyeSGyT1AAoRM6cxRtZ19i+2+dFRESku3np0dTdNb2OKcBCd1/k7jngD8A528Tr/ri7byh9fBIYuddPSgeqZ+zaGcBKdz8bwMyqgCtKy04G5gDHUTx/M9z9xVJCYpy7LwIuAG7f052b2WXAZQB1dXVMmzZtjw+kv2hqatJ5kH5D17PsbUFbzL+HcbG4sqNSAqL2wBZe/ZfDsO1TFFvabB7nwdwJfOstzWHAdcGztIUJDIgmBLQmE2xOG9z1WEAQOKdMbsPcSBWadhinmxGUtt+V2Ay37W+mAoNnZjxGOqnvTWTf089o6U90Pe8XBpnZMx0+3+jum6sYRgDLOixbDhy/k219DLh3L8e3DSUgujYbuM7MrgXudvfpZrbQzA6hmEX6EXAKxVu96aV1bgfOB75PMQFxwZ7uvHTB3AgwefJknzp16p5uqt+YNm0aOg/SX+h6lr3twddyfPLRRpoKnRaU/s6fsnwZN910O9l8pwbuhO6Yw+rKCuIwgDimtqUVc99ajVBKGISxs6Kqkj9MOQoDXhk0kOW5DMPTbVz/2ljMnYNW13dZXulAPgyI3RnS3LrddzYOtCRDcsnkdlUQ6WTAzedNIZ3U0zNk39PPaOlPdD13vx4YhLLe3SfvYFlX0XT5LYCZnUYxAfHmvRVYV/RVQhfcfT5wLMVExPfM7OsUEw1nAnngQYr/MG8GHimtdhtwvplNKG7CF3R74CIisl96S12SQ6sSZDr8Vk8FxcqBwODp0SN5qW4wUcfbkFJSweLia3VrK7hvrUAwK7YpJSjCKMZi58FDxjNneB2FUreLjrc2bkZjNk2nDhrF8SYMgrg4vsTmedssB7KlsSGCDttMJwMufusBSj6IiIjsvuXAqA6fRwIrOzcysyOAXwHnuPu6fRmQKiC6YGbDgfXu/jszawI+DPwEuBm42d3XmlktMBSYC+Dur5hZBHyNYjJCRESkWwRm3H9aFT94sYX/fbUdBy4eneY9I1P8+KVWZq4v8JuvXMJ3/jmdyr88heUjzItjRmzIZqnbtInWwBi0qZn15VkKQVAc56GUhAg85ltnn849RxxMWyoJQCKOuoxlzYBKwjhmQFuOwJ1CEOBAOl8gXShAEJAPrNjVg2LSogCkoxjLJPnImWNYub6d5xc2UFOZ4r2njGDyxIHddCZFRET2nEOXXQl70NPAeDMbC6wALgQ+0LGBmR0A3AlcUvoifp9SAqJrhwM/NLOYYsXDlRQTDXVsrXh4AVjjvk1H1tuAHwJju9qomf2A4j94mZktp/gYlGv2yRGIiMh+pSxhXHN4OdccXr7N/N+dlNz64Yz3wrXvBSBuydH+2AJqmlqJasqp/ec84lsex5uaWVE9gGFNLcUkgRn5MOQd8+bzp2MPI4gi4jDkyGWrWF7TyoudCjndjMZMhpMXLCYXhqysqiSg2P2iNRX4aY0AACAASURBVAwJgoB0OiA7IENZMuS8Nw/l+KOHEYYqyhQREdmb3L1gZlcB91EcPuA37j7XzK4oLb8B+DpQC/y3FZMnhZ106XjDlIDogrvfR/EfqbN0hzaXdbHedcB1neZN7fD+auDqvRaoiIjIHgrKUmTfNmnrjKmHwDffxwB3Csf9B6sryki4U5bL05jNcOvkIzB3qlrbmbCmnvFr1zN2XQN/iWOslIQIo4jQnWMXLyN0p6I9R8JjWsrS/Phfj2fwoPKugxEREeknuh5muee4+9+Av3Wad0OH9x8HPt5d8SgBISIiIluYGWOf+QYjn1nEr7/7MJm2dqpb2xlfv55HfBwby7MMamomGUUk45hhGzdhqSRHLltJTUsrhy9/jaXVA2hKJiikjcs/cTTHHjG0pw9LREREegHVO4qIiMh2kpPHccWdHyEXBAzZ1MTBq9aQLhTHfbj38INZMKQWp/jYztCds+e8zJsWLSUZR7w4bDDJ2Pn6T89W8kFERES2UAJCREREdujc753FrBFDqWluZdjGTYRR8SkWfzl6Eu2JrU+miIHIjNnD6xjU1EL5aROprMz0UNQiIiI9wXDr3qmvUQJCREREdmjw4SN5/7fOoKGijPc8O5uDVtcTxDFrK8r5nzcfRy4R4sD6sixhPs/419ZSGRf4wocO7+nQRUREpJfRGBAiIiKyU4OPGMEH/n4l7WsaSdz0PAP+cj+zRw3FgD8lEqTMWV2eZcHggdR6xA9/dhZh0Pe+lREREXmjetsglL2NEhAiIiKyS9JDBvDxTx3PZ9a0c/4Ts2hKJbmrUABCBuTynHXeYZz0zkMwJR9ERESkC0pAiIiIyC4bUJ7ih187mf+8o47wiQXYPCMIjM/ddD7pTLKnwxMREelRfXFchu6kMSBERERktwyqSvO9jx3Ot3/1XkYdMoRkKlTyQURERF6XKiBERERkt61c2sC9f3iBJa9uoKzSaWjKU12hJISIiOy/3FQB8XqUgBAREZFd1ra2iZu+dDfL4gRry8ugNQeZgM9+5R+844IjuOik4T0dooiIiPRSSkCIiIjILpl+70u88MvHqczlGW8wadVaHi1EmAd8YOZsVi54lWsOGslnrjqOmolDezpcERER6WU0BoSIiIjslLvzp6fXMP3mZ6nI5wndScaOB1Z83JhBPpGgui3HrPIqrrxxHrd99W89HbaIiEi3826e+holIERERGSHmtoKfOgns7j5zpcoyxdIxMXbnYIZjZk0lLq6RmaEccwJS5bz1LhR/NuICXzjO9N7MHIRERHpbdQFQ0RERLrk7nz4u09SKMSEQEsqSa41YPr4MTx20BhiM1bMqeGAoIUYSAJDNjVRmcuxvryc2wYMIXnHfP79vAk9fCQiIiLdQ4NQ7pwqIERERKRLP7vuUVoIGNCWY0BbO68MqeWWKUcxffxYcokEhTAkNiMKjCcPPAAH1pVnSUYxAPkg5PkZK5i/uqVnD0RERER6BSUgREREZBtLFm/gkm8/wV9bUgxqbiF0J6D4rc6SQTUUwrDTGsa9kyaCO+PWbiAqzXWDA9Y38G//M7ubj0BERKRnaAyInVMCQkRERIBil4tZP/0Hr17wSz70t+lk8wWC2DcP84ADhaDrW4emTJr2ZIKK9hxVbe1YHDOgtZ3Fg2tZFaa4+PP/4Imr/0R+Y2u3HY+IiIj0LhoDQkREpJeLV28k/8cZ2JwVhKmQ4NixcO5kZkVJ7l6Zoyw0Lmpay5BfPYi/sIwoCHgtm6V9TSNBFFOdSVCTcDyb4iUSPDVkKINCp27tBhIbW8gHAcM3bKS8qZXBySTDo4jHDxxN3KkbqwGZfIG2VHK7GAdvaqYpkyabyxPGMQNa25iyaCnVra0cu2Q5o9dvZEVUYN27fgHuUJZm5fjhTJq3mExbO2E2RdVxo5l3xnHcVTGIukzAR8amGFveudpCRERE+qr9MgFhZp8GrgSeBZ5z9+v2wjavAFrc/eY3ui0REZHNCg+/RNuHbyTd3EZYGlvBb32C9q/ewRc//REeGXMAV983jdq7HiQC4tLgV3Wl9QN3knGMAa2JkKqKco6pb2H0ug2UFaJt9hUD5fkCGExdsIhnRg9n+cCabdqMX1PP3OF1xNtUQjhvnze/9A4GNzZy7nNzCdypbm0jVYi2lFzmkkksjmmPoerlVTS1RyTaI/LtrbTf/yKD7nuRsRPG8Y3zzuS6+W3cfkI57xye2punVEREZJ/RIJQ7t792wfgkcBawYG9t0N1vUPJBRET2Js9HtF3x/0g0txNGxSSCARY7mdZ2fveL3zF2dT1fuecfBHFcTD50mmKzLX1Es4WI4Rs3MXF1PWWFaOv2SlPQ4X2mEHH1A49S0dZGzNZ+prVNzRz/6lJGrG+grD1HJp8nGcWMW7cB3LllylHMH1qHuZOMYtIdkg9bjsuMMHY8MBrKy4jMsNJ8zDj95Vd4y5z5tEZwyVMt5OO+2MtVREREOtvvEhBmdgMwDrgL+BxwpJk9ZGYLzOwTpTZTzezuDuv83Mw+XHq/2MyuNbOnStNBpfnXmNkXS++ndWgz38xOLs3/vJn9pvT+cDObY2Zl3Xj4IiLSh8QvLIVCTKJUwdBZeXuOyx+ZQTKKd/qNS9xhWViqiNgVqSjiU9NmEAORQaJQYFz9ek6Zv4hLZjzHpx96jLpNTZg7FjtLBlazsG4widi5Y/IRuO1ggCyzLTcg5k5bsliQWUxCFF/f/8wLxdjdeWZD1NVWREREehWn+HusO6e+Zr/rguHuV5jZGcBpwFXAucAJQDnwnJndswubaXT3KWZ2KfAT4J1dtEmU2pwFfAN4a6ntNDM7F/gqcLm7b/dsMjO7DLgMoK6ujmnTpu3uYfY7TU1NOg/Sb+h6ll3WmiP+zJEEUdcJg8iMkRXlPPbmEzvM7Xw34tvN3dV6gigIqC8v4+RsHtypam0jIAls7ZaReCmBJYzqc6qxbJaPplds2Ulm9BASrW1dbtuBdCkx0hxFtPrWqMyhKpngusSzBAYNs0KmaSgI6Sb6GS39ia5n6W32uwREF/7P3VuBVjP7JzAFaHiddW7t8PrjHbS5s/Q6ExgD4O5xqZLiBeCX7v5YVyu6+43AjQCTJ0/2qVOn7tKB9GfTpk1D50H6C13Psqs8jmk55muEKxtIRdF2qYU1FeUc/+VPMud7PyaTL5APw2LXi2024qQ7rJsPAtoDI+k7SlUABm2JBJd98L3UV5QRhSEDm5oZvyZH4MVHa4alhEF+XUSyNiT4/QpWDB3Cges2UAgDFtUO5IkDR3PxjFnb7H9zTLlEMdYwihm2oaFY/UAx+RBGMd87ayp3Vh/OAWXG4rdUYepTK91EP6OlP9H13N0M77JmUTZTAmL7L4IcKLBt95TMTtbZ0RdJ7aXXiG3P83igCRi+e2GKiMj+xoKAzE2X03r+zwgbWwjzpa4IYUAumeDSKz7A6sE1fPbic/j5zX8mjGOiTo/JDEvdLWKgLZngqdEjWZ/NcPr8V8gUuqisKN03PXjIQTSUZYjCkKZ0iudHDGXaxHGlbTqXPvEsE9bU05ZMEATGn449gkIQ0JzNcOTyVRyyei0T1q6jJRHiFpLNF4Bit5GN2TSBOxbHDGtoxErJDDMjjCPmjhzKQ8ceSm3S+OtJFUo+iIiI9BNKQMA5ZvY9il0wpgJfBkLgUDNLU0w+nA482mGdC4Dvl16f2NUdmVkV8FPgFODnZnaeu9+xNw5CRET6p/CoAyif9W0K975ANPNVgkJEMHEY6XMn89NElr+typE96mQ2feY4Bt7+OMHcZcTlGeIopu3xhYTNbXgmSViRJjdxOM/WjuSx6lpmTz6YUxrXk12yhrqlaxi0fiMph5ZEgkQc8/i40bQnk0RmvFw3qNNTL+A3b57MZQ/PoD2RoIyIXKJ4S7GktoZkHHPYytWE7gxsbeP4RcsY2NJKZMbigVU0lJfTnk0x64xjGbRyDUPrN2AGmfF1NJ96GIUDR3NTJuDMYUlSgZIPIiLSd/TFcRm6kxIQ8BRwD3AA8C13XwlgZrdT7CqxAHiu0zppM5tBsUriot3Y14+B/3b3+Wb2MeCfZvaIu695owchIiL9l5WlSb7vOHjfcdvMPxg4eEC29CkDXzxrm+Wdy/dqgC+Upq5EG5t56cYnmPbsGtaVZ7E4ZsOAii7bxsCygdXb9eOIwpBXBtcyaeVqDCgEIYkoYm1tFTXfPpeD33/8lran7iCOCTuYLyIiIn3bfpmAcPcxpbfX7KTN1cDVO1h8vbt/s1P7azq8n9rhfT1bx4D4aIf5y4CDdiduERGRfSmsKudN//pWji9EXPul+1kKFIKgy/6sha7Gm9i8LAiIzQjdcYPFg2o49vlr9m3wIiIi0uvtd4/hFBERkZ0LEyFf+c8zGZtvY2BTC9bFcEepKCJVKHS5fkV7rjhIpTvl7TlG/cd79nXIIiIivYKXBqLsrqmvUQJiN7n7mFJVg4iISL/2q2+8iXOen8vhy1dtk2xIFQqMXbueg1eu7jQssxNGMUctXYHFMclCxNj3Hc2Qc47q/uBFRESk19kvu2CIiIjI6wuCgC/fejHjPvBb7ls5lKfHjsTNmLxkBUcvXUkyiqhr3EShPEtVSyvgbEylee6A4bw6sJoffOwwJo7qegwJERGRfsc0COXrUQJCREREdur833+Ix7/8AOc+N5eallYSsROZUd7ejpsRuDNyw0bakgnunTKRKBHy5cnVHKPkg4iIiHSgLhgiIiLyun7y/bcRDa/h1doaFg+sZkN5lsWDa2nKpInNKIQBDdkMV61bxswPjuRTx1T3dMgiIiLdygE369apr1ECQkRERHbJt7//Nt530WE0phLkgqB4o1Va1h6GvPOQAXzxa1MZUqYCSxEREdme7hBERERkl50ydRynTB3Ha2ubeezOuZRNC0iE8J1fvQcLw54OT0REpEdt/9wo6UgVECIiIrLbhg4u532XT6F2zEAsERKbbilERERk53S3ICIiIrvt9nsW8C+X3cWS+fXk2wv8/L3/j+t/9Bge67sfERER6ZoSECIiIrJbrrr2Ce7851IGt7SSjGPMncpCRPahefzg4ltpWLupp0MUERHpERqEcueUgBAREZFd9tmfzaRlxUbSsfPi0CHkwpA4MP45YSzry8sYtKmZG//lLtryUU+HKiIiIr2MEhAiIiKyS77/92XEs1cQBwE1za2M2NhIGDth7Lzv2Tk8PXo49x86ng3ZLN/8zqM9Ha6IiEi3826e+ho9BUNEREReV0tbnkenLSIaOphNmQzpQoFRGzYShQGROTefcDTrK8poTadZXlNFKop4aXEDB4+p7unQRUREpJdQBYSIiIjs1Nx753Dbu29kU0U5I9c3cOTylQxoaydZyFPd0krozjvnvMwHZ8zirfPmU9vcQgx89RfPE0dxT4cvIiLSbTQGxM6pAkJERES6tPLF1fz2mvupbm1nxdDB/M/v7iSby2PAawMqeeaA4UwPA0KgPZHg+ZHDyCdCapuaqW5ppTWZ5PuX/oGv3PKBnj4UERER6QWUgBAREZEtmlvzLHtqKXc8sIj7sgPZdPwxDG/YyA23/IVkvLWaYejGRt70aoFrEwnKgJeHDqYtmYDStzEBkM3nWThoEJd+7gGufM+BnHjquJ45KBERkW7g9M2qhO6kBISIiEg/542tkE5g6WTxcxxjQUBhfTNNdzxF8+OvsKAhxy0jxzC2fgNve3Ehg0ePIH/SYNpSSc6a/TJBvG1XihAY0NpOIQiIAmNjNrMl+bBZAOTDgBljDuDV6eu59MEFXDCpmuypE0nUVmAp3YaIiIjsT/br3/xmdg3Q5O7XdZr/HmC+u8/bC/u4Cbjb3e94o9sSEZH9S9zYSv7y3xBNfxkcwinjSN74MYJBFXDLY/Bf90P9JqJDhpPb2Eb86hrCfEQidggD4sljucMquf2ISawvL+PAtev42GNPM2F1PU2pFC3pJIkoprq1jaPyeY5+6iVig9BhzPoGzpg7n0s/cj4jGhoJN8dkRmMmTSafxzEMcIPVlRWU5fKU53J0TEPEQUDoMa9VV/GzfBk/X+kcft1MPvrY04za0EimUGBgEFP2ianw+TOxRHFPvr6J6D/vxe9+DrIpgg+fTPDxqVuWi4iISN+zXycgumJmCeA9wN3AG05AiIiI7AmPY9onfw1vbNsyL3piIdFxXyfz0VMIbnwIWnJEZrQ/sxgH0lGEOcUEQCEieuoVDh1ax8pTTgQz5o4YyjXvfBvX3vk3AncwIx86bakkA5uaqW5rJyw90ysdRaRaI37369uYM6KOfBDwct0g7j90AlEQEJtR1p6j8eEHyJCnOZOmJZViY5Rh2MZGAiAGGrIZEnFMIQyJgwBz5+IZsxi1odgml0iw2p3B1/+DihUb4KeX4M3tFN52LbzWALkIgPi7f8WfXkTi15/o3n8IERGR3dAXH43Znfa7p2CY2VfN7GUzexCYWJo3zcy+a2YPA18C3g380MxmmdmBZnaQmT1oZs+b2bOleWZmPzSzOWY228wuKG3LzOznZjbPzO4BhnTY97Fm9rCZzTSz+8xsWA+cAhER6QOim6Zvk3zYoi1P9N8PQksOgFwYgBmh+9bkQ0kydg5au47JS5ZvmXfCoiXEZlu7S5RG0V5fUU7n51UYUNXeznGLl7O8egB/O+xg2lJJ8omQfBjwxEGjt+l24YGRT4RsyqSJzMiHIauqKjHAvHhLZu7MHjF0mxsQN2NdMo3/cQZev4n4jqegftOW5AMArTn8/jn4/FW7fS5FRESkd9ivKiDM7FjgQuBoisf+LDCztLja3U8ttRtPh24TZjYD+L67/9nMMhQTN+8FjgKOBAYBT5vZI8CJFBMbhwN1FKsofmNmSeBnwDnuvraUsPgO8NF9f+QiItLXxA/Ng1KVwnbLOqQZNg92ZTv4yiWdz3PYytU8M2YUAEeuWEXCu2jsTnsyQTZf2H4bccxTY0dR6ND9oTWV7HJ/bkZDNktDNsuGsgweBOCQKI0hkYhiMoXt9xEFRpxOEi5agz+xYEuCZRthgM9aik1Q/l5ERHohQ4NQvo79KgEBnAz82d1bAMzsrg7LbutqBTOrBEa4+58B3L2tNP/NwK3uHgGrS9UTxwGndJi/0sweKm1qInAY8IAVL8oQ6PJrHDO7DLgMoK6ujmnTpu3xAfcXTU1NOg/Sb+h6ll3hZw7Fp1R0ucxK1Q4AsQFmxXldtI3NqBlQwUezxSqI4MJhrMoN6rLt2igi7Co5AdQNqKA22Jo4iC3ihMQaVmRyJAPnA+Ne2xo7RhwYOBhOJl/YkrAwh9FlKRa+ZVKnY4JlcQyNS2BqLX7oicUETEdBgJU3gP7/yD6kn9HSn+h6lt5mf0tAwI675TTvYP6OUlg7S211tQ8D5rr7iTtZr7iy+43AjQCTJ0/2qVOnvt4q/d60adPQeZD+Qtez7Ip4QzNth34J4u2rIDJTDyZ45CVoy5MLjHwigbmTLhS7LGxu7cCmdJp3f+pDtJUSAIctf42rpj2+7S8xd8I4JgqMEQ2NpAvRNssNuPOoScw8YAQe2JZtvzR0EGtakwzJ5vn9oqEAhFFEOpenPZVkeEMjp81fRGMqxc0nHkNkAe+f+TynPP8imcLW7hXmTmU+x6AzDsM+/RZ85QYKb/oPaG7fGkQYwAG1JJ78ABbsdz1IpRvpZ7T0J7qeu5/GgNi5/e03+CPAuWaWLVU2vGsH7TYBlQDu3ggsLz0ZAzNLm1lZaVsXmFloZoMpVj48VZp/YWn+MOC00jZfBgab2Yml7STNbNuvf0REREqCmnLSv7sS0h26OiQCUtd/iOCmy+H84yGdIJkISWQSeBDQnghx2DJFFRlunXIkbsXEQE1zC2fNfpGa5hbMnbjULnCnsrWdFQMq+f4Zp7GotoaCFZ9wsTkRccIrS3BjyzgRBhy0pp7AHcNJ5/MkChEnL3iV//jrg3zmH49x4czZDN7UTEV7O2fMnc/l059k8aCB/P64I2kPQyIzcKciKlB7yYnwX5cWtz28hvD2q2D0IMgkIZXApowjcdfnlHwQERHpw/arCgh3f9bMbgNmAUuA6Tto+gfgf8zs08B5wCXAL83sP4A88H7gzxTHe3ie4v3b1e7+mpn9GXgLMBuYDzxc2nfOzM4D/svMqiie+58Ac/fJwYqISJ8Xnj6JsqU/IXpuCRQigsljsc3VED+5BL5/IdbcTnpgOan2AtHsZXgqQZBNQlmK1MharsgV+OCLq2hJp6gdkMLfVUfLqIGsbygw8JVVLH1+Jd9NDebVTDlXPvQ4Z855mZeHDiZbKFDb3EouDEgXIqaPH8ucYXWMbNjIkKZmqltambxkBc+uWUfLqAounjGLg9asZXBTC1EQUNnWTksmjVuxe8WE1fUUasr50EWHEb3WwIhPHkt26ADCmjLCyux2xx5MORB7+puwqgEySWxg191RREREehONAbFz+1UCAsDdv0Nx8MeOruvU5jHg0E5t3tLF5v61NHVc14GrdrDvWRQrJURERHZZePTorhdkksUJsEySxHHjtmtiqQSVR44qlvUBDK+hCjh2CDBhIGPPnMSpm5d9cjz5pjbm/f0lvjSriXVlZdQ2tzC/bjAxzpsXLGZoYxPj167j+MXLSMbF4TCDOOakRUvY3KkidKeirZ1N2QzPjxhKfUUZH5hYwQmf21wUOHKXjtvMYHjNLrUVERGR3m+/S0CIiIjIjiUrMhx53lH85X3Ot342k99XDKY1lWRM/Xre/9wc5gyvY0XVgC77uAYUSwJjoDGbZklNFf88aAw3f3wio0ZWd++BiIiISK+jBISIiIhsx8z4+qcn8++bWnnyK/9H08xlDGpqYdCAFloSCe46/GDe/tLCLYmIzeNOYMUnYCweNJBXBg3krs9OorJa3SdERKT/c8DVA2OnNJKTiIiI7FBQmeVNP7uQ8PpL+cUpU1hZNYDyfJ7Hx49l6hcu55XBtbgZzckETekUGzNpbjzpOKaPO4AvXnm0kg8iIiKyhSogRERE5HWdfnQdiyphplcxuKmJbC4PQENZlpow4pKPXUQmX2DB4IEM3tTCV15+gVFHj+rhqEVERLqXoxKInVEFhIiIiOyST3zvTM59bQWYccKiJQQdBoJYNLiWecPrKIQJDlmxivd9++yeC1RERER6JSUgREREZJe940+fYPzBtYxfXc9FM57F3MGLT8Kw2Dlm8TKuPf9ABlRnejpUERGRbufWvVNfowSEiIiI7JapPziXxIfeTCaXY/T6DSTimLfNm89nZzzFnz58IIccM6KnQxQREZFeSGNAiIiIyG474+PH85ZLCjz+wg9pbWvmtm+eRDIV9nRYIiIi0oupAkJERET2yKZF9TSu2kScj2h4ZnFPhyMiItLjHOvWqa9RBYSIiIjstl9/4a8sWJ8jbskRliV48Jq/8/zwoXz0Mycy4ejhPR2eiIiI9EKqgBAREZHd8vAX72RxfRunv7wIgCgIuPuIQ8ilkvzg18/z3euf7uEIRUREeoYGodw5JSBERERkl83/9aPc0pohky8wZ/gQNpRniYG2VJIltdVsKsuyYeZS/n7nnJ4OVURERHoZJSBERERkl7Q0NPOpZUkeHT+OII55ctxo3Dp8/WJGIQjIRjG5nzzQc4GKiIj0ADfr9qmvUQJCREREXpe787Uv3s+ymmoKiZDbJx9JLtHFUy8CY1lNFUcvX8VjP/pH9wcqIiIivZYSECIiIrJT7s7N7/kfFtQNxgPDKHa52JHa5hbCOCa67anuC1JERKQX8G6e+holIERERGSHlq5q4tyvPcYvjz+WZTXVUCr3jIOAhrLsdjc/yUKBM+fMx4HBDY08c+19uPfFWyQRERHZ2/QYThEREQGKlQ65GHKFiH99pJ5HZ6+jprWNMJ2htqWNFan0Nu1XVQ2gEBS/ywjimGwuzzmz5jJp1Rqi0vIJNzzAS396iomP/RtBUrcdIiIi+zPdCYiIiPQi7s5zDRGbCs5xNQmy6xphznIYORCbOIzVrzWxcdYyRo6toWzi0C3rNeVjHljZzj9XFzhwTT3n5hp4eehgftKU5bmNMeYxn5g3j/SGJlaVlfHS+FEsTmRpiZxMUxvvem4ObZk0E19by1lz53PtpiZWVA3gf48/ihU11QxpbgaMhUNqqWlp5eQFr1LXuIkftefwrPGvf3+YyrZ2mlNJ3J2yQoGjVr5GMnbKV9Sz5JCvcv2pJzC2MuSEQ2upfXEpbQVYPWIQY845ktGHDOm5ky4iIrKX9MWBIbuTEhB7iZn9CviRu88zs+8AlwI17l7RoU0auBk4FlgHXODui3siXhER6X3mb4o4c3oTa9piAoOovcB///4vXDJ7Hp4vsKa8nMqGTaSTCbwQs3ziCEbceRX/15zgI481ErTlueXXt3LSwsV8/4zTuP60OqCd9kSCkRs28uNxBxOXbowCd7K5PFEQsHZQDT9/+ykYcPYL8yjLF7jniENwoK5xE0OamwkcDlxbz4Fr1zF1/iIADKhqbcMqU+QTIesry4mAACfhvqVzasKdqrZ2Jq6p5/OnvpNRGzby8yemc/jKNQxyZ9EfnuCRIw7kgv93EalQvUNFRET6K/2W30vc/ePuPq/08a/AlC6afQzY4O4HAT8Gru2u+EREpHeL3Tn94U282hzTFEFjAZrDBFec/25mDajGWvMMrm8gW4ioam2nLJ9n8ItLmfWJ/+VjjzeSi+Hbf7mPkxcs5v5JE7nh1BNoTyZpTyZxYFV1FXEQFMdwMCM2oyWdoiGb3jLfzbj7iEP5zIXv4uGJ43hk4jhWVg/Ykkg4eeESzpg7H6OYfAAwdxx4YeQw5gyvo76ynDCOtzu+ZBzz1pcWMn7tOpYNrOaKi98LFG9Exq3fwIgFy7nlW3pqhoiI9G0ahHLnlIDYA2ZWbmb3mNnzZjbHzC4ws2lmNhnA3Z9091VdrHoO8NvSjQeLbgAADv1JREFU+zuA081UoyMiIjC9vsDGvG93M5FLhNxwyvHA1j/6N0tFMQ8lK8lHgDuXzHiObKHAz057Ey3p1JZ2QVeDQJrhQNB5kRmFMCQu7ay5tJ3K1jYOXfka7R0evelAvvQ5l0zQlkqyvKaKvx82ke1TEOAYRy1bSRwErKoewJNjR27Z0KCmFqqmv7ij0yMiIiL9gLpg7JkzgJXufjaAmVUBV+7CeiOAZQDuXjCzjUAtUN+xkZldBlwGUFdXx7Rp0/Ze5H1UU1OTzoP0G7qepSsNeeebFhN3/s2cgOoTCzx80Ju6XG9YVTnfzL4AwDP/dhwA5w9by7sTG7a02Vmm22HLky06zrVUsbohONgZOAqy+ZDFJ07Ck4kt23MzEv+ZwEJj2JnlW/fnlTz+rirShWib/WzKpJmabePw7AuYO+2XHMBzrcWxH/JBQJhI6P+G9Dj9jJb+RNdz99MYEDunBMSemQ1cZ2bXAne7+/RdLGToqtF2X0u5+43AjQCTJ0/2qVOnvoFQ+4dp06ah8yD9ha5n6cqatpiL7tlIW6fSgfL2dn5621859fGZXa43feJYrvqXj9Aew4M3P8lxi5dzz7ln8stTjiSfKP2adyd03/6XkDvtiRAPgu3mZ3P5LWWSh658jUtmPMeKqgG4wdHLVpGMY5oyadrXRaRrQ1bd27zNJia8tpajFy0Fg9iMpTXVPHjs4Twzpo7HDxpLEMc8+8OfUtvSRmTwct1g1owayjmXn79H509kb9HPaOlPdD1Lb6MuGHvA3edTHEhyNvA9M/v6Lq66HBgFYGYJoApYv0+CFBGRPmVIJuDLB2co39rDgbJcjoPWrucDTz1PHATEQHspWRCZ0ZJKMuGTp/D+0WkC4HPnv4vmdIqrHnqM2uYW0vk8UHyyRsfX0gcSUbTl/bbz421uEBbUDeLFoYO5b9IE/nz04bwyuJZcEBCZ7TCz/vBBY/j9lCN5aMKB/P64o7h1ylFsymaYOXokYRRx7nNztiQfNmSzNGQzjP/86W/0NIqIiPQYp1gB0Z1TX6MKiD1gZsOB9e7+OzNrAj68i6veBXwIeAI4D3jIvauOuSIisj/6xqQsJ9QmuH5hGxvyzvk1aT664lUyx4+FA+uYdcZk5v1lDpNmvkx+xEBGfuFtDHvzQdzgzntH5/jWCyGnfO1f+MTDT3Lz//2NW6Yexx9HjKYpTOCFAsMam6ivLMfcGVO/nuZkEhtQQUsqSRSGBO6MXbOOjWVZEnGMm5GMIs6b+QLZfIHWVPFpF786eQq1Tc0Mbmwieqbrm5/q1jZmjBlFMopIFyLWVJbz6EHjqGxr58Knn+fjjz7FurIsqwdUsmTiSI78/Okcdszwbj7jIiIi0p2UgNgzhwM/NLMYyFMc/+G6zQvN7AfAB4AyM1sO/MrdrwF+DfyvmS2kWPlwYXcHLiIivds7hiZ5x9Dk1hlHnQ1Xnw3A0cDR7zh4u3XMjHeMSPOOEWmgFq4cD8DJwA073NOILe/aCjEvNeRpmr6QtU8/TUO788SQOpKx05JM8NsTj6UQhgzbuIkgjomDgHUV5ayrKGdtZQWjaMXi4njciTgmH4Yk3MnkC7w8dAhfuedBshdO4bfvraW8thyuGAecC8B44M1v7JSJiIhIH6EExB5w9/uA+zrNntph+dXA1V2s1wa8f58GJyIispsyiYCjBqXh3EnFCfgI8I0n1/PHJ1czbs06WtMp1lSWU5YrkIwiojAkEUXEZgTuTFq5GjdIRBHLB1bz2oBKyvN5Pj/zGd7++NXooU8iIrI/UHn7zikBISIiIl365gkD+eYJA8m15fjRpbexaMggpo8fywmLltJQlmVs/XoeqF8PQ1Kko61PvEjnC5g7Ry1ZzrvvvVLJBxEREQGUgBAREZHXkcqkuOrbb2f6x37Hu2e/xKoBlZTncoxoaOSfcUyhQ9vIjKZ0ilQ+T/DuY5R8EBGR/YfpMZyvR0/BEBERkddVMaGOA7/9bmKcdD5PSzJJLhFu0yYG2hIhr1VWUNmW4z0fmdwzwYqIiEivpASEiIiI7JIJp45nycghGE4+DFlcU02+9FjQghnzhg3hZ285iY3ZDMOuOo3KrAotRURk/+LdPPU1SkCIiIjILrv8VxeQac9TX57l+VHDaU6nKAQBP3rbydx6/NG0pJKc9r7DeMfZE3s6VBEREelllIAQERGRXZbKJjn4uvdxyKrVbCjL0FCWJQoCNmYzpAoFjsw18/azJ/R0mCIiIj3AcOveqa9RbaSIiIjslsOPHcnEu6+g/NN38HhLK0Em5KANDbzrtFG85+wpPR2eiIiI9FJKQIiIiMhuS5VnOPPXH2T01F/R0NDAr687vadDEhERkV5OCQgRERERERGRN8gB73u9IrqVxoAQERERERERkX1OFRAiIiIiIiIie4GjEoidUQWEiIiIiIiIiOxzqoAQERERERER2Qs0BsTOqQJCRERERERERPY5VUCIiIiIiIiI7AUaA2LnVAEhIiIiIiIiIvucEhAiIiIiIiIiss+pC4aIiIiIiIjIXqBBKHdOFRAiIiIiIiIiss+pAkJERERERETkDXIDN5VA7IwqIERERERERERkn1MFhIiIiIiIiMhe4D0dQC+nCggRERERERER2eeUgBARERERERGRfU5dMERERERERET2Ag1CuXOqgBARERERERGRfU4VECIiIiIiIiJ7gQah3DlVQIiIiIiIiIj0Q2Z2hpm9bGYLzezLXSw3M/uv0vIXzOyYfRmPKiBERERERERE3jDrVWNAmFkIXA+8DVgOPG1md7n7vA7NzgTGl6bjgV+UXvcJVUCIiIiIiIiI9D9TgIXuvsjdc8AfgHM6tTkHuNmLngSqzWzYvgpIFRC93MyZM+vNbElPx9ELDALqezoIkb1E17P0N4PMTNe09Bf6GS39SW+/nkf3dAB71aJZ93H+wEHdvNeMmT3T4fON7n5j6f0IYFmHZcvZvrqhqzYjgFV7O1BQAqLXc/fBPR1Db2Bmz7j75J6OQ2Rv0PUs/Y2uaelPdD1Lf6LruXu5+xk9HUMnXfUH6TxO5q602WvUBUNERERERESk/1kOjOrweSSwcg/a7DVKQIiIiIiIiIj0P08D481srJmlgAuBuzq1uQu4tPQ0jBOAje6+T7pfgLpgSN9x4+s3EekzdD1Lf6NrWvoTXc/Sn+h63o+5e8HMrgLuA0LgN+4+18yuKC2/AfgbcBawEGgBPrIvYzL3fda9Q0REREREREQEUBcMEREREREREekGSkCIiIiIiIiIyD6nBIT0GWb2QzN7ycxeMLM/m1l1T8cksqfM7P1mNtfMYjPT47GkTzKzM8zsZTNbaGZf7ul4RN4IM/uNma0xszk9HYvIG2Vmo8zsn2b2Yul+4zM9HZMIKAEhfcsDwGHufgQwH/i3Ho5H5I2YA7wXeKSnAxHZE2YWAtcDZwKHAheZ2aE9G5XIG3ITcEZPByGylxSAL7j7IcAJwKf0M1p6AyUgpM9w9/vdvVD6+CTFZ9SK9Enu/qK7v9zTcYi8AVOAhe6+yN1zwB+Ac3o4JpE95u6PAOt7Og6RvcHdV7n7s6X3m4AXgRE9G5WIEhDSd30UuLengxAR2Y+NAJZ1+Lwc3dyKiPQ6ZjYGOBqY0bORiECipwMQ6cjMHgSGdrHoq+7+f6U2X6VYVnZLd8Ymsrt25XoW6cOsi3l6treISC9iZhXAn4DPuntjT8cjogSE9Cru/tadLTezDwHvBE53d93oSq/2etezSB+3HBjV4fNIYGUPxSIiIp2YWZJi8uEWd7+zp+MRAXXBkD7EzM4AvgS8291bejoeEZH93NPAeDMba2Yp4ELgrh6OSUREADMz4NfAi+7+o56OR2QzJSCkL/k5UAk8YGazzOyGng5IZE+Z2blmthw4EbjHzO7r6ZhEdkdpUOCrgPsoDm52u7vP7dmoRPacmd0KPAFMNLPlZvaxno5J5A04CbgEeEvpvnmWmZ3V00GJmKrYRURERERERGRfUwWEiIiIiIiIiOxzSkCIiIiIiIiIyD6nBISIiIiIiIiI7HNKQIiIiIiIiIjIPqcEhIiIiIiIiIjsc0pAiIiI9GJm9lUzm2tmL5Qeo3Z8af40M5vcod0YM5vTad2fmtkKMws6zPuwma0tbWuemX1iL8Q41czufqPbERERkf4t0dMBiIiISNfM7ETgncAx7t5uZoOA1C6uGwDnAsuAU4BpHRbf5u5XmdkQYK6Z3eXuq/du9CIiIiLbUgWEiIhI7zUMqHf3dgB3r3f3lbu47mnAHOAXwEVdNXD3NcArwOiO881shplN6vB5mpkda2ZTzOxxM3uu9Dqx8zbN7Boz+2KHz3PMbEzp/QfN7KlS9cUvzSzcxWMRERGRfkAJCBERkd7rfmCUmc03s/82s1M7Lb+l9Mf8LOBvnZZdBNwK/Bl4p5klO2/czMYB44CFnRb9ATi/1GYYMNzdZwIvAae4+9HA14Hv7uqBmNkhwAXASe5+FBABF+/q+iIiItL3KQEhIiLSS7l7E3AscBmwFrjNzD7cocnF7n5U6Q/6szbPNLNU6fNf3L0RmAG8vcN6F5SSFrcCl7v7+k67vh14f+n9+cAfS++rgD+Wxpr4MTCJXXd66VieLu37dIrJDxEREdlPaAwIERGRXszdI4rjN0wzs9nAh4CbXme1MygmC2abGUAZ0ALcU1p+m7tftZN9rjCzdWZ2BMWqhctLi74F/NPdzy11q5jWxeoFtv2CI1N6NeC37v5vrxO7iIiI9FOqgBAREemlzGyimY3vMOsoYMkurHoR8HF3H+PuY4CxwNvNrGw3dv8H4Gqgyt1nl+ZVAStK7z+8g/UWA8eU4j+mtG+AfwDnlQa+xMwGmtnoLrcgIiIi/ZISECIiIr1XBfDb0uMyXwAOBa7Z2QqlJMM72FrtgLs3A48C79qNfd8BXEixO8ZmPwC+Z2aPATsaQPJPwMBSN4srgfmlGOYB/w7cXzqWBygOsikiIiL7CXP3no5BRERERERERPo5VUCIiIiIiIiIyD6nBISIiIiIiIiI7HNKQIiIiIiIiIjIPqcEhIiIiIiIiIjsc0pAiIiIiIiIiMg+pwSEiIiIiIiIiOxzSkCIiIiIiIiIyD73/wEu2oAp1f9MKwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on the response. The effect of a variable is measured in change in the mean response. PDP assumes independence between the feature for which is the PDP computed and the rest." + ], + "text/markdown": [ + "\n", + "> Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on the response. The effect of a variable is measured in change in the mean response. PDP assumes independence between the feature for which is the PDP computed and the rest." + ], + "text/plain": [ + "\n", + "> Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on the response. The effect of a variable is measured in change in the mean response. PDP assumes independence between the feature for which is the PDP computed and the rest." + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAKACAYAAACVLK27AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXyV9Z33//c3CSErSyCEhC1sIQlh3zESVgNJXEERqCgiUP3NbUfb+el0qqOd2tJWvavTezrto+NUra06rVp7ThZ2EBEEZN+3sGRhDVkICUnO9/4jJ7lTCrIIuZKc1/Px4EFyznVd53N9TyzJq9c5MdZaAQAAAAAA+BI/pwcAAAAAAABobAQRAAAAAADgcwgiAAAAAADA5xBEAAAAAACAzyGIAAAAAAAAn0MQAQAAAAAAPocgAgC4KmPM940xv73ObX9njPnR7Z6pMRhjco0xk52e43oYY2KNMdYYE3CLjtfPGLPFGFNqjHn6VhzzKo9zhzHmgDGmzBhz3+16HAAAgKshiABAM+b9wf2i94fKk8aY/zbGhN3kscYbY040vM1a+2Nr7RO3YM7HjDE13jnLjDFHvLPGfdNj4/oZY14yxvz+Gpv9/5JWWWvDrbVv3qLHfMn79bWqwV0/lPRLa22YtfaTmzhurDEm1/txrjEm9pvOCgAAfAtBBACav7uttWGShkoaIekHN3qAW3V1wTV84Z2zraTJki5K2myMSWqEx8b16yFp183seINfR1d9HFOL71EAAMBtxTcbANBCWGvzJGVJSpIkY8w8Y8we70sfDhtjFtVtW3c1iDHmOWNMoaQ/eveNaXAVR8zlVxQYY/7HGFNojCk2xqwxxvS/iTlrrLWHrLVPSVot6aUGxx9tjFlnjDlvjNlmjBnf4L5VxpifGGO+9D7+X4wxETew778ZYz73rscSY0zHBvc/Yow5aow5a4z5l4bzGmP8jDHPG2MOee//sO5xG7xc5VFjzDFjzJmG+xtj/L0vOzrkfdzNxphu3vvijTFLjTHnjDH7jDEPXW3NrnXul20bY4z51Hvcg8aYBd7bp0r6vqSZ3ud32xX2XSFpgqRfereJM8a0Nca8Y4w57V2jH9TFCu+VP58bY/63MeZcw+fy6xhjDknqJemv3sdp7T3HV4wxn0sql9TrRs4bAADgRhFEAKCF8P6gnSZpi/emU5IyJLWRNE/S/zbGDG2wS2dJEar9f+rnSpomKd/7EoYwa23+FR4mS1JfSZ0kfSXpvW849keS7vTO30WSW9KPvHN9T9KfjTGRDbafK+lxSTGSqiW9eQP7zlbtOnSSFOjdRsaYREm/kvSI97gdJHVtsN/Tku6TlOK9v0jS/7nsPJIl9ZM0SdKLxpgE7+3PSpql2ueljXf2cmNMqKSlkv7gnWeWpP+4RmC64rlfwR8lnfBuN0PSj40xk6y12ZJ+LOkD7/M76PIdrbUTJX0m6R+82+yX9O+qvaqnl3cN5qp2HeuMknTYex6vXOGYL3n/rLLWjvfe1lvSMXmvbrLWVno3f0TSQknhko5+3Xlba3OttbHej2OttblXWQ8AAIArIogAQPP3iTHmvKS1qr3i4seSZK11e6/EsNba1ZKWyBsfvDyS/tVaW2mtvXg9D2StfctaW+r9AfYlSYOMMW2/wez5qg0YkvQtSZnW2kxrrcdau1TSJtXGhDrvWmt3WmsvSHpB0kPGGP/r3Pe/rbX7vef6oaTB3ttnSHJZa9d4z+sF1a5NnUWS/sVae6LBec8wf/vykJettRettdskbZNUFxuekPQDa+0+7/OwzVp7VrWhKtda+9/W2mpr7VeS/uyd5Wqudu71vFEsWdJz1toKa+1WSb9VbWi4Yd7jz5T0z97nPVfSa5cdL99a++/e87iur6Ov8Ttr7S7vsaq8t13zvAEAAG5GY7xmHABwe91nrV12+Y3GmGmS/lVSnGoDeIikHQ02OW2trbjeB/H+EPqKpAclRer/RYOOkopvbnR1kXTO+3EPSQ8aY+5ucH8rSSsbfH68wcdHvfd3vM59Cxt8XC6p7s1nYxoe11p7wRhztsG2PSR9bIxpGElqJEVdx7G7STqkv9dD0ihvyKoTIOndK2xb52rn3lCMpHPW2tLLth3+Ncf9Oh1VezXN0Qa3HVXt83alub6pKx3raud98hY+LgAA8EEEEQBogYwxrVV7xcFcSX+x1lYZYz6RZBpsZi/b7fLPLzdb0r2qfUPUXNW+jKLosmPeqPtV+xINqfYH33ettQu+ZvtuDT7uLqlK0pnr3PdqCiTVvcRFxpgQ1b5sps5xSY9baz+/fEdz7d9sclxSb0k7r3D7amvtlBuY82rn3vD2fEkRxpjwBlGku6Q878fXeo4vd8b7OD0k7b7C8W7mmF/nSse62nkDAAB8I7xkBgBapkBJrSWdllTtvVrkrmvsc1JSh695CUy4pEpJZ1V7tcmPb2Yw7xuN9jTG/Luk8ZJe9t71e0l3G2NSvdsEmdo3f234fh7fMsYkeqPFDyX9yVpbc537Xs2fJGUYY5KNMYHe4zb89/E/Jb1ijOnhnT/SGHPvdZ7ubyX9mzGmr6k10BjTQZJLUpypfTPXVt4/Ixq898iVXO3c61lrj0taJ+kn3jUYKGm+/t97vZyUFGuu8ze4eI//off8w71r8Kxq17uxXPO8AQAAbgZBBABaIO/VAU+r9ofZItVe3fHpNfbZq9o35Dxsan9TS8xlm7yj2pcs5Kn2aoH1NzjWGGNMmaQSSatU+yajI6y1O7yPf1y1V6B8X7Uh57ikf9Lf/lv1rqTfqfYlKkHec7zefa/IWrtL0v+n2jc4LVDtep1osMkbql27JcaYUu95j7rOc35dtc/BEu95/5ekYO/zc5ekh1V7VUehpJ+qNmJdzRXP/QpmSYr1Hvdj1b5PzFLvff/j/fusMear6zyH/yXpgmrfOHWtatfprevc91a43vMGAAC4IcbaW3mlKwAAt4cxZpWk31trf+v0LI3NV8/dV88bAAA0Dq4QAQAAAAAAPocgAgAAAAAAfA4vmQEAAAAAAD6HK0QAAAAAAIDPCXB6gFuhY8eONjY21ukxvtaFCxcUGhrq9Bg+i/V3FuvvLNbfWay/s1h/Z7H+zmL9ndVY67958+Yz1trI2/5AQAvUIoJIbGysNm3a5PQYX2vVqlUaP36802P4LNbfWay/s1h/Z7H+zmL9ncX6O4v1d1Zjrb8x5uhtfxCgheIlMwAAAAAAwOcQRAAAAAAAgM8hiAAAAAAAAJ9DEAEAAAAAAD6HIAIAAAAAAHwOQQQAAAAAAPgcgggAAAAAAPA5BBEAAAAAAOBzCCIAAAAAAMDnEEQAAAAAAIDPIYgAAAAAAACfQxABAAAAAAA+hyACAAAAAAB8DkEEAAAAAAD4HIIIAAAAAADwOQQRAAAAAADgcwgiAAAAAADA5xBEAAAAAACAzyGIAAAAAAAAn0MQAQAAAAAAPocgAgAAAAAAfA5BBAAAAAAA+ByCCAAAAAAA8DkEEQAAAAC4huLiYqdHAHCLEUQAAAAA4Cpyc3P1y1/+Ui+88ILKysqcHgfALRTg9AAAAAAA0NQcOXJELpdLO3fuVGhoqKZOnaqAAH58AloS/osGAAAAAK9Dhw7J5XJp9+7dCg0N1f3336/x48crKCjI6dEA3GIEEQAAAAA+7+DBg3K5XNqzZ4/CwsL0wAMPKCUlhRACtGAEEQAAAAA+68CBA3K5XNq7d6/Cw8M1ffp0paSkqHXr1k6PBuA2I4gAAAAA8Dn79++Xy+XSvn37FB4erhkzZmjcuHGEEMCHEEQAAAAA+Ix9+/bJ5XJp//79atOmjR588EGNGzdOgYGBTo8GoJERRAAAAAC0aNba+hBy4MABtW3bVg899JDuvPNOQgjgwwgiAAAAAFoka6327t0rl8ulgwcPql27dpo5c6buvPNOtWrVyunxADiMIAIAAACgRbHWas+ePXK5XDp06JDat2+vhx9+WMnJyYQQAPUIIgAAAABaBGutdu3aJZfLpSNHjqh9+/aaPXu2xo4dSwgB8HcIIgAAAACaNWutdu7cKZfLpdzcXEVERGjOnDkaM2YMIQTAVRFEAAAAADRL1lrt2LFDbrdbubm56tChg771rW9pzJgxCgjgRx0AX4//lQAAAADQrFhrtX37drlcLh07dkwdO3bUI488ojFjxsjf39/p8QA0EwQRAAAAAM2CtVbbtm2Ty+XS8ePHFRkZqblz52r06NGEEAA3jCACAAAAoEnzeDzaunWr3G63Tpw4oU6dOumxxx7TyJEjCSEAbhpBBAAAAECTdKUQMm/ePI0YMYIQAuAbI4gAAAAAaFI8Ho+2bNkil8ul/Px8RUVFEUIA3HIEEQAAAABNgsfj0ebNm5WZman8/Hx17txZ8+fP1/Dhw+Xn5+f0eABaGIIIAAAAAEd5PB5t2rRJmZmZKigoUHR0tJ544gkNGzaMEALgtiGIAAAAAHCEx+PRxo0blZmZqcLCQsXExGjBggUaOnQoIQTAbUcQAQAAANCoampq6kPIyZMn1aVLFy1cuFBDhgwhhABoNAQRAAAAAI2ipqZGX375pTIzM3Xq1Cl17dpVixYt0uDBgwkhABodQQQAAADAbVVTU6P169crKytLp0+fVrdu3fTkk09q4MCBhBAAjiGIAAAAALgtampq9MUXXygrK0tnzpxR9+7d9dRTT2ngwIEyxjg9HgAfRxABAAAAcEtVV1fXh5CzZ8+qR48emjlzpgYMGEAIAdBkEEQAAAAA3BLV1dVat26dsrOzdfbsWcXGxmrWrFlKSkoihABocggiAAAAAL6RqqoqrVu3TllZWSoqKlLPnj01e/Zs9e/fnxACoMkiiAAAAAC4KVVVVVq7dq1ycnJUVFSk3r17a+7cuUpISCCEAGjyCCIAAAAAbkhVVZU+++wz5eTk6Pz58+rTp48effRRxcfHE0IANBsEEQAAAADX5dKlS/UhpLi4WH369NG8efPUr18/QgiAZocgAgAAAOBrXbp0SWvWrFFOTo5KSkoUFxen+fPnKy4ujhACoNkiiAAAAAC4okuXLmn16tVasmSJSkpK1K9fPy1YsEBxcXFOjwYA3xhBBAAAAMDfqKysrA8hpaWlio+P18KFC9W3b1+nRwOAW4YgAgAAAECSVFFRodWrV2vp0qUqLS1VQkKCMjIy1KdPH6dHA4BbjiACAAAA+LiKigqtWrVKS5cuVVlZmRITE5WRkaHevXs7PRoA3DYEEQAAAMBHXbx4UStXrtSyZct04cIFJSUlKT09Xb169XJ6NAC47QgiAAAAgI+5ePGiVqxYoWXLlqm8vFwDBgxQenq6evbs6fRoANBoCCIAAACAjygvL9eKFSu0fPlylZeXa+DAgUpPT1dsbKzTowFAoyOIAAAAAC1ceXm5li9fruXLl+vixYsaNGiQMjIy1L17d6dHAwDHEEQAAACAFurChQv1IaSiokKDBw9Weno6IQQARBABAAAAWpwLFy5o+/bt+vjjj1VRUaEhQ4YoPT1d3bp1c3o0AGgyCCIAAABAC1FWVqZly5Zp5cqVqqio0NChQ5Wenq6uXbs6PRoANDkEEQAAAKCZKysr09KlS7Vy5UpdunRJQ4cOVadOnXTfffc5PRoANFkEEQAAAKCZKi0t1ZIlS7R69WpdunRJw4cPV1pammJiYrRq1SqnxwOAJo0gAgAAADQzJSUl9SGkqqpKI0aMUFpamqKjo50eDQCaDYIIAAAA0EwUFxfXh5Dq6mqNHDlSaWlp6ty5s9OjAUCzQxABAAAAmrji4mLl5ORozZo1qq6u1qhRo5SWlqaoqCinRwOAZosgAgAAADRR58+fV05Ojj777DPV1NTUh5BOnTo5PRoANHsEEQAAAKCJKSoqUnZ2ttauXSuPx6MxY8Zo2rRpioyMdHo0AGgxCCIAAABAE0EIAYDGQxABAAAAHHbu3DllZ2fr888/l8fj0dixYzVt2jR17NjR6dEAoMUiiAAAAAAOOXv2bH0IkaQ77rhDU6dOVYcOHRyeDABaPoIIAAAA0MjOnDmjrKwsffHFFzLGKDk5WVOnTlVERITTowGAzyCIAAAAAI3k9OnT9SHEz89Pd955p1JTUwkhAOAAgggAAABwm50+fVqZmZlav369/Pz8lJKSotTUVLVv397p0QDAZxFEAAAAgNvk1KlTyszM1IYNG+Tv76/x48crNTVV7dq1c3o0APB5BBEAAADgFjt58mR9CAkICNCECROUmpqqtm3bOj0aAMCLIAIAAADcIoWFhcrMzNSXX36pgIAATZo0SXfddRchBACaIIIIAAAA8A0VFBQoMzNTGzduVKtWrTR58mTdddddatOmjdOjAQCugiACAAAA3KT8/HxlZmZq06ZNCgwM1JQpUzRlyhRCCAA0AwQRAAAA4Abl5eXJ7Xbrq6++UmBgoFJTUzVlyhSFhYU5PRoA4DoRRAAAAIDrlJeXJ5fLpa+++kpBQUGaOnWqJk+eTAgBgGaIIAIAAABcw/Hjx+V2u7VlyxYFBQUpLS1NkydPVmhoqNOjAQBuEkEEAAAAuIpjx47J7XZr69atCgoKUnp6uiZNmkQIAYAWgCACAAAAXObo0aNyu93atm2bgoODlZGRoYkTJxJCAKAFIYgAAAAAXrm5uXK5XNqxY4dCQkJ09913a+LEiQoJCXF6NADALUYQAQAAgM87cuSIXC6Xdu7cqZCQEN1zzz2aOHGigoODnR4NAHCbEEQAAADgsw4fPiyXy6Vdu3YpNDRU9957ryZMmEAIAQAfQBABAACAzzl06JBcLpd2796t0NBQ3X///Ro/fryCgoKcHg0A0EgIIgAAAPAZBw8elMvl0p49exQeHq4HHnhAKSkphBAA8EGOBRFjTJCkNZJae+f4k7X2X40xEZI+kBQrKVfSQ9baIqfmBAAAQPO3f/9+uVwu7du3T+Hh4Zo+fbpSUlLUunVrp0cDADjEyStEKiVNtNaWGWNaSVprjMmS9ICk5dbaxcaY5yU9L+k5B+cEAABAM7Vv3z65XC7t379fbdq00YwZM5SSkqLAwECnRwMAOMyxIGKttZLKvJ+28v6xku6VNN57+9uSVokgAgAAgOtkra2/IqQuhDz44IMaN24cIQQAUM/UdgmHHtwYf0mbJfWR9H+stc8ZY85ba9s12KbIWtv+CvsulLRQkqKiooa9//77jTX2TSkrK1NYWJjTY/gs1t9ZrL+zWH9nsf7OYv2d1djrb63VyZMntXPnTp0+fVrBwcFKSEhQ7969FRDge2+dx9e/sxpr/SdMmLDZWjv8tj8Q0AI5GkTqhzCmnaSPJf0vSWuvJ4g0NHz4cLtp06bbPOU3s2rVKo0fP97pMXwW6+8s1t9ZrL+zWH9nsf7Oaqz1t9Zqz549crlcOnTokNq1a6epU6cqOTlZrVq1uu2P31Tx9e+sxlp/YwxBBLhJTSKVW2vPG2NWSZoq6aQxJtpaW2CMiZZ0ytnpAAAA0BRZa7V79265XC4dPnxY7du316xZs3THHXf4dAgBAFwfJ3/LTKSkKm8MCZY0WdJPJX0q6VFJi71//8WpGQEAAND0WGu1a9cuuVwuHTlyRO3bt9fs2bM1duxYQggA4Lo5eYVItKS3ve8j4ifpQ2utyxjzhaQPjTHzJR2T9KCDMwIAAKCJsNZq586dcrlcys3NVYcOHTRnzhyNHTvWJ98jBADwzTj5W2a2SxpyhdvPSprU+BMBAACgKbLWavv27XK73Tp69Kg6dOigRx55RKNHjyaEAABuGv+CAAAAoEmy1mrbtm1yu906duyYOnbsqLlz52r06NHy9/d3ejwAQDNHEAEAAECTUhdCXC6Xjh8/rsjISD366KMaNWoUIQQAcMsQRAAAANAkeDwebd26VW63WydOnFCnTp302GOPaeTIkYQQAMAtRxABAACAozwej7Zs2SK32628vDxFRUVp3rx5GjFiBCEEAHDbEEQAAADgCI/Ho6+++kput1v5+fmKiorS448/rhEjRsjPz8/p8QAALRxBBAAAAI3K4/Fo8+bNcrvdKigoUHR0tObPn6/hw4cTQgAAjYYgAgAAgEbh8Xi0adMmud1uFRYWKjo6Wk888YSGDRtGCAEANDqCCAAAAG6rmpoabdy4UZmZmTp58qRiYmK0cOFCDRkyhBACAHAMQQQAAAC3hcfj0RdffKHMzEydOnVKXbp00aJFizR48GBCCADAcQQRAAAA3FI1NTXasGGD3G63ysrK1LVrV0IIAKDJIYgAAADglqipqdH69euVmZmpM2fOqH379nryySc1cOBAQggAoMkhiAAAAOAbqamp0RdffKGsrCydOXNG3bt311NPPaVz585p8ODBTo8HAMAVEUQAAABwU6qrq+tDyNmzZ9WjRw/NnDlTAwYMkDFGq1atcnpEAACuiiACAACAG1JdXa1169YpKytL586dU2xsrGbNmqWkpCQZY5weDwCA60IQAQAAwHWpqqqqDyFFRUXq2bOn5syZo/79+xNCAADNDkEEAAAAX6uqqkpr165VTk6OioqK1Lt3b82dO1cJCQmEEABAs0UQAQAAwBVVVVXps88+U05Ojs6fP6/evXvr0UcfVXx8PCEEANDsEUQAAADwNy5dulQfQoqLi9WnTx899thjhBAAQItCEAEAAICk2hCyZs0a5eTkqKSkRHFxcZo/f77i4uIIIQCAFocgAgAA4OMqKyu1Zs0aLVmyRCUlJerXr58WLFiguLg4p0cDAOC2IYgAAAD4qMrKSq1atUpLly5VaWkpIQQA4FMIIgAAAD6moqJCq1evrg8hCQkJysjIUJ8+fZweDQCARkMQAQAA8BEVFRX1V4SUlZUpMTFRGRkZ6t27t9OjAQDQ6AgiAAAALdzFixe1cuVKLVu2TBcuXFD//v2VkZGhXr16OT0aAACOIYgAAAC0UBcvXtSKFSu0bNkylZeXKykpSRkZGerZs6fTowEA4DiCCAAAQAtTXl6uFStWaPny5SovL9eAAQOUkZGh2NhYp0cDAKDJIIgAAAC0EOXl5Vq+fLmWL1+uixcvatCgQUpPT1ePHj2cHg0AgCaHIAIAANDMXbhwoT6EVFRUaPDgwUpPT1f37t2dHg0AgCaLIAIAANBMlZWVadmyZVq5cqUqKio0ZMgQpaenq1u3bk6PBgBAk0cQAQAAaGbKysq0dOlSrVy5UpWVlRo6dKjS09PVtWtXp0cDAKDZIIgAAAA0Ew1DyKVLl+pDSJcuXZweDQCAZocgAgAA0MSVlpZqyZIlWr16tS5duqThw4crLS1NMTExTo8GAECzRRABAABookpKSupDSFVVlUaMGKG0tDRFR0c7PRoAAM0eQQQAAKCJKS4urg8h1dXVGjlypNLS0tS5c2enRwMAoMUgiAAAADQRxcXFysnJ0Zo1a1RdXa1Ro0YpLS1NUVFRTo8GAECLQxABAABw2Pnz55WTk6PPPvtMNTU19SGkU6dOTo8GAECLRRABAABwSFFRkbKzs7V27Vp5PB6NGTNG06ZNU2RkpNOjAQDQ4hFEAAAAGtm5c+eUnZ2tzz//nBACAIBDCCIAAACN5Ny5c8rKytLnn38ua63Gjh2radOmqWPHjk6PBgCAzyGIAAAA3GZnz55VVlaW1q1bJ0m64447NHXqVHXo0MHhyQAA8F0EEQAAgNvkzJkz9SHEz89PycnJmjp1qiIiIpweDQAAn0cQAQAAuMVOnz6trKwsffHFF/Lz89O4ceM0depUtW/f3unRAACAF0EEAADgFjl16pQyMzO1YcMG+fn5KSUlRampqYQQAACaIIIIAADAN3Ty5EllZWVpw4YN8vf31/jx45Wamqp27do5PRoAALgKgggAAMBNOnnyZP0VIQEBAZowYYJSU1PVtm1bp0cDAADXQBABAAC4QYWFhXK73dq4caMCAgI0efJkTZkyhRACAEAzQhABAAC4TgUFBXK73dq0aZNatWqlKVOmaMqUKWrTpo3TowEAgBtEEAEAALiG/Px8ud1ubd68WYGBgZoyZYruuusuhYeHOz0aAAC4SQQRAACAq8jLy5Pb7dZXX32lwMBApaamasqUKQoLC3N6NAAA8A0RRAAAAC5z4sSJ+hASFBSkqVOnavLkyYQQAABaEIIIAACA1/Hjx+VyubR161YFBQUpLS1NkydPVmhoqNOjAQCAW4wgAgAAfN6xY8fkcrm0bds2BQcHKz09XZMmTSKEAADQghFEAACAzzp69Kjcbnd9CMnIyNCkSZMUEhLi9GgAAOA2I4gAAACfk5ubK5fLpR07digkJER33323Jk6cSAgBAMCHEEQAAIDPOHLkiFwul3bu3KmQkBDdc889mjhxooKDg50eDQAANDKCCAAAaPEOHz4sl8ulXbt2KTQ0VPfee68mTJhACAEAwIcRRAAAQIt1+vRpvfHGG9q9e7dCQ0N1//33a/z48QoKCnJ6NAAA4DCCCAAAaHEOHjwol8ulPXv2KCwsTA888IBSUlIIIQAAoB5BBAAAtBgHDhyQy+XS3r17FR4ersGDB+vxxx9X69atnR4NAAA0MQQRAADQ7O3bt08ul0v79+9XmzZtNGPGDKWkpGjdunXEEAAAcEUEEQAA0CxZa7V///6/CSEPPvigxo0bp8DAQKfHAwAATRxBBAAANCvWWu3du1cul0sHDx5U27ZtNXPmTCUnJxNCAADAdSOIAACAZsFaqz179sjlcunQoUNq166dHn74YSUnJ6tVq1ZOjwcAAJoZgggAAGjSrLXavXu3XC6XDh8+rPbt2xNCAADAN0YQAQAATZK1Vrt27ZLL5dKRI0fUvn17zZ49W2PHjiWEAACAb4wgAgAAmhRrrXbu3CmXy6Xc3FxFRERozpw5GjNmDCEEAADcMgQRAADQJFhrtX37drndbh09elQdOnTQt771LY0ZM0YBAXzLAgAAbi2+uwAAAI6y1mrbtm1yu906duyYOnbsqEceeURjxoyRv7+/0+MBAIAWiiACAAAc4fF46kPI8ePHFRkZqblz52r06NGEEAAAcNsRRAAAQKPyeDzaunWr3G63Tpw4oU6dOumxxx7TyJEjCSEAAKDREEQAAECj8Hg82rJli9xut/Ly8hQVFaV58+ZpxIgRhCizrSkAACAASURBVBAAANDoCCIAAOC28ng82rx5szIzM5Wfn6+oqCg9/vjjGjFihPz8/JweDwAA+CiCCAAAuC3qQojb7VZBQYGio6M1f/58DR8+nBACAAAcRxABAAC3lMfj0aZNm+R2u1VYWKjo6Gg98cQTGjZsGCEEAAA0GQQRAABwS9TU1Gjjxo3KzMzUyZMnFRMTo4ULF2rIkCGEEAAA0OQQRAAAwDdSU1OjL7/8UpmZmTp16pS6du2qRYsWafDgwYQQAADQZBFEAADATampqdGGDRuUlZWlU6dOqVu3bvr2t7+tQYMGEUIAAECTRxABAAA3pKamRuvXr1dmZqbOnDmjbt266cknn9SgQYNkjHF6PAAAgOtCEAEAANelurpa69evV1ZWls6cOaPu3bvrqaee0sCBAwkhAACg2SGIAACAr1VdXa1169YpOztbZ8+eVY8ePfTwww8rKSmJEAIAAJotgggAALiiqqqq+hBy7tw5xcbGatasWYQQAADQIhBEAADA36iqqtLnn3+u7OxsFRUVqWfPnpozZ4769+9PCAEAAC0GQQQAAEiqDSFr165Vdna2zp8/r969e2vu3LlKSEgghAAAgBaHIAIAgI+7dOmS1q5dq5ycHJ0/f159+vTRY489pvj4eEIIAABosQgiAAD4qEuXLumzzz5TTk6OiouL1bdvX82bN0/9+vUjhAAAgBaPIAIAgI+5dOmS1qxZo5ycHJWUlCguLk7z589Xv379nB4NAACg0RBEAADwEZWVlVqzZo2WLFmikpIS9evXTwsWLFBcXJzTowEAADQ6gggAAC1cZWWlVq1apaVLl6q0tFTx8fFauHCh+vbt6/RoAAAAjiGIAADQQlVUVNSHkLKyMiUkJCgjI0N9+vRxejQAAADHEUQAAGhhKioqtHLlSi1dulQXLlxQYmKiMjIy1Lt3b6dHAwAAaDIIIgAAtBAXL17UypUrtWzZMl24cEFJSUlKT09Xr169nB4NAACgySGIAADQzF28eFErVqzQsmXLVF5ergEDBig9PV09e/Z0ejQAAIAmiyACAEAzVV5eruXLl2vFihUqLy/XwIEDlZ6ertjYWKdHAwAAaPIIIgAANDN1IWT58uW6ePGiBg0apIyMDHXv3t3p0QAAAJoNgggAAM3EhQsX6kNIRUWFBg8erPT0dEIIAADATSCIAADQxJWVlWnZsmVauXKlKioqNGTIEKWnp6tbt25OjwYAANBsEUQAAGiiysrKtHTpUq1cuVKVlZUaOnSo0tPT1bVrV6dHAwAAaPYIIgAANDGlpaVaunSpVq1apUuXLtWHkC5dujg9GgAAQItBEAEAoIkoLS3VkiVLtHr1al26dEnDhw9XWlqaYmJinB4NAACgxSGIAADgsJKSkvoQUlVVpREjRigtLU3R0dFOjwYAANBiEUQAAHBIcXFxfQiprq7WyJEjlZaWps6dOzs9GgAAQIvnWBAxxnST9I6kzpI8kn5jrX3DGBMh6QNJsZJyJT1krS1yak4AAG614uJi5eTkaM2aNaqurtaoUaOUlpamqKgop0cDAADwGU5eIVIt6bvW2q+MMeGSNhtjlkp6TNJya+1iY8zzkp6X9JyDcwIAcEucP39eOTk5+uyzz1RTU1MfQjp16uT0aAAAAD7HsSBirS2QVOD9uNQYs0dSF0n3Shrv3extSatEEAEANGNFRUXKzs7W2rVr5fF4NGbMGE2bNk2RkZFOjwYAAOCzjLXW6RlkjImVtEZSkqRj1tp2De4rsta2v8I+CyUtlKSoqKhh77//fuMMe5PKysoUFhbm9Bg+i/V3FuvvLNbfORcuXND27dt17NgxWWvVq1cvJSYm8nw0Ir7+ncX6O4v1d1Zjrf+ECRM2W2uH3/YHAlogx99U1RgTJunPkv7RWltijLmu/ay1v5H0G0kaPny4HT9+/G2b8VZYtWqVmvqMLRnr7yzW31msf+M7d+6csrKy9Pnnn8vj8Sg5OVlTp05Vx44dnR7N5/D17yzW31msv7NYf6DpczSIGGNaqTaGvGet/ch780ljTLS1tsAYEy3plHMTAgBw/c6cOaPs7GytW7dOknTHHXeoXbt2Sk9Pd3gyAAAAXM7J3zJjJP2XpD3W2tcb3PWppEclLfb+/RcHxgMA4LqdOXNGWVlZWrdunfz8/OqvCImIiNCqVaucHg8AAABX4OQVIndIekTSDmPMVu9t31dtCPnQGDNf0jFJDzo0HwAAX+v06dPKysrSF198IT8/P40bN05Tp05V+/Z/99ZXAAAAaGKc/C0zayVd7Q1DJjXmLAAA3IhTp04pMzNTGzZskJ+fn1JSUpSamkoIAQAAaEYcf1NVAACai5MnTyozM1Nffvml/P39NX78eKWmpqpdu3bX3hkAAABNCkEEAIBrKCwsrA8hAQEBmjBhglJTU9W2bVunRwMAAMBNIogAAHAVhYWFcrvd2rhxowICAjR58mTdddddatOmjdOjAQAA4BsiiAAAcJn8/HxlZmZq06ZNatWqlaZMmaIpU6YQQgAAAFoQgggAAF55eXlyu9366quvFBgYqLvuuktTpkxReHi406MBAADgFiOIAAB8Xl0I2bx5s1q3bq3U1FRNmTJFYWFhTo8GAACA24Qgchvl5+fXf1xVVfU3nzspJibG6REAoEk4ceJE/RUhQUFBmjZtmiZPnkwIAQAA8AEEEQCAzzl+/LhcLpe2bt2qoKAgpaena9KkSQoNDXV6NAAAADQSgggAwGccO3ZMLpdL27ZtU3BwsDIyMjRx4kRCCAAAgA8iiAAAWryjR4/K5XJp+/btCgkJUUZGhiZNmqSQkBCnRwMA4JbbvHlzp4CAgN9KSpLk5/Q8gIM8knZWV1c/MWzYsFOX30kQAQC0WLm5uXK5XNqxY4dCQkJ0zz33aOLEiQoODnZ6NAAAbpuAgIDfdu7cOSEyMrLIz8/POj0P4BSPx2NOnz6dWFhY+FtJ91x+P0EEANDiHDlyRC6XSzt37lRoaKjuvfdeTZgwgRACAPAVScQQQPLz87ORkZHFhYWFSVe6nyACAGgxDh06JJfLpd27dys0NFT33XefJkyYoKCgIKdHAwCgMfkRQ4Ba3v8WrvjSMYIIAKDZO3jwoFwul/bs2aOwsDDdf//9Gj9+PCEEAAAAV0UQAQA0WwcOHJDL5dLevXsVHh6uBx54QCkpKYQQAAAAXBPvOAwAaHb279+v119/Xa+++qry8vI0Y8YMvfLKK0pNTSWGAADQRDz33HOd+/Tp0z8uLi4xPj4+ccWKFaE//OEPO5WWlt7Uz6Fvvvlmh7lz53a/2Xm6dOkyoKCgIECS/P39h8XHxyfW/fn+97/f+WaPe7OeffbZmBdffDHq8tv37dsX2Ldv3/43e9yXX365U+vWrYeePXvWv+42l8sVPmHChD7S367js88+G2OMGbZz587WDfc3xgxbs2bNdf86vut5br7p83c7cIUIAKDZ2Ldvn1wul/bv3682bdpoxowZSklJUWBgoNOjAQDQJH137Z+67S0qvKW/Zz6+fefy15JnHP+6bZYtWxaak5PTbseOHbuDg4NtQUFBQGVlpXnkkUd6LViw4Fx4eLjnVs50o1q3bu3Zu3fvbidnuF3+9Kc/dUhKSrrw3nvvtXv66afPXmv7vn37XnznnXcifvaznxVI0l/+8peI3r17V9z+SZ3HFSIAgCbNWqu9e/fq1Vdf1euvv67CwkI9+OCDeuWVVzRlyhRiCAAATVBeXl6riIiI6uDgYCtJ0dHR1b///e/bnzp1qlVKSkrcqFGj4iRpzpw53ZOSkhL69OnT/5lnnomp23/16tUhQ4YMie/Xr1/igAEDEoqKiv7mZ9f333+/7eDBg+MLCgoC8vPzA1JTU3snJSUlJCUlJSxZsiRUkgoLC/3vuOOOvgkJCYmzZ8/uYe2132e2S5cuA5555pmYxMTEhLi4uMQtW7YESZLb7Q6ru5okISEhsW6eF154ISopKSkhLi4usW7+ffv2Bfbs2bP/zJkze/Tt27f/Pffc0/OTTz4JHzp0aHyPHj2SVq5cWR+otm/fHjJ69Oi4Hj16JL322msdL5+nurpaixYt6lr3GD//+c//bpuGdu3a1bq8vNzvhz/8Yd6HH34Ycc0TlpSWlnY+MzOznSTt3r07MDw8vDoiIqK67v5f//rXEXFxcYl9+/bt/+STT3apu/2NN97oEBsbmzRixIh+69atC6u7/WrPR0NvvfVW+759+/bv169f4vDhw/tdz5y3A1eIAACapLoQ4nK5dPDgQbVr104zZ85UcnIyEQQAgOt0rSs5bpf77ruv5Cc/+UlMbGxsUnJycsmsWbPO/eAHPzj1q1/9Kmr16tX7o6OjqyXp9ddfz4uKiqqprq7W2LFj+23YsCF40KBBFXPmzOn93nvvHUpJSSk/d+6cX1hYWP0VJe+88067N954I2rp0qUHIiMja+6+++6ezz777MnU1NSyAwcOBKampvY9fPjwrueffz5mzJgxZa+++mrB+++/3/aPf/xjfUyorKz0i4+PT6z7/Lvf/W7BggULiiSpY8eO1bt3796zePHiyMWLF0d98MEHR1977bXOb7755tG77rrrQnFxsV9ISIjno48+anPw4MGg7du377HWavLkyX2ysrLCevXqden48eNBH3zwweFhw4YdHThwYMJ7773XYdOmTXv/8Ic/tHvllVeiJ0yYcEiS9uzZE7x58+Y9paWl/kOGDEmcPn16ccN1/MUvftGxbdu2NTt37txz8eJFM2LEiPi77767JD4+/tKV1v3tt9+OeOCBB85NnTq1bOHChUF5eXkBXbp0qb7StnXatGlTExMTc2njxo1Bf/rTn9rNmDGj6N133+0oSbm5ua1eeumlLps3b94TGRlZfeedd8a9++677caNG3dh8eLFMZs3b94TERFRM3bs2H5JSUnlkrRo0aJuV3o+Gj7m4sWLo5csWbK/Z8+eVWfOnPG/0lyNgSACAGhSrLXas2ePXC6XDh06pHbt2unhhx9WcnKyWrVq5fR4AADgOrRt29azc+fO3dnZ2eHLly8Pf/TRR3u/+OKLJy7f7u2334743e9+17G6utqcPn261bZt24KMMerUqVNVSkpKuSRFRETUx5B169aFb9u2LWTlypX7627//PPP2xw4cCC4bpuysjL/oqIiv/Xr14d/9NFHByXp4YcfLl60aFFN3TZf95KZ2bNnF0nSyJEjyz/99NP2kjR69Oiy733ve90eeuihc7NmzSrq3bu3Jzs7u82aNWvaJCYmJkpSeXm53969e4N69ep1qUuXLpUjR468KElxcXEXJ06cWOLn56ehQ4eW/+hHP6q/EmbatGnnw8LCbFhYWPWYMWNKPvvss9CRI0eW192/bNmyNnv37g2pm6O0tNR/9+7dQVcLIh9//HHERx99dNDf31/Tpk0reuedd9r/8z//8+lrPV8PPfTQuXfffTdixYoVbdesWbOvLoisXbs2dPTo0aUxMTHVkjRz5sxzq1evDvOuSf3tDzzwwLn9+/cHfd3z0fDxhg8fXjZnzpzY6dOnF82ZM6foWvPdLgQRAECTYK3V7t279de//lVHjhxR+/btNWvWLN1xxx2EEAAAmqGAgABlZGSUZmRklA4cOPDiu+++26Hh/Xv37g385S9/GeW9+qBm+vTpsRUVFX7WWhljrvj6lu7du1ceO3as9c6dO4PGjRtXLtV+D7Fp06Y9YWFhf7ePn9+Nv0tEUFCQ9c5vq6urjST9+Mc/LrzvvvuK//KXv7QdO3ZsQnZ29n5rrf7xH/+x4J/+6Z/ONNx/3759gYGBgfWz+Pn51R/T399fNTU1pu4+Y0zDXf/uc2utee21145Nnz695Fpzb9iwIfjo0aOtp06dGidJVVVVplu3bpXXE0Qefvjh8y+++GLXAQMGlDcMUF/3MqPLZ224z9Wejzp/+MMfjq1YsSL0008/bTt48OD+W7du3dW5c+eaq21/u/AeIgAAR1lrtXPnTv30pz/Vm2++qfPnz2v27Nn6t3/7N40fP54YAgBAM7Rt27bWO3bsqP/NJVu2bAnu2rXrpdDQ0Jri4mI/SSoqKvIPDg72RERE1Bw/fjxg1apVbSVp0KBBFSdPngxcvXp1iHc7v6qqKklS165dL/35z38+OG/evJ6bNm0KkqTk5OSSn/70p53qHmvdunXBUu0VDG+99VYHSfrwww/blJSU3PRLM3bt2tV65MiRF1955ZXCAQMGXNi5c2fQtGnTSt59992Odedz5MiRVnl5eTd00UFWVla78vJyU1hY6L9+/frw5OTkCw3vnzJlSvGvfvWryMrKSiNJ27dvb11SUnLFn+PfeeediO9+97v5eXl5O/Ly8nacOnVqe2FhYeD+/fuv+VrjsLAw+9JLL5144YUXChrePm7cuAsbNmwILygoCKiurtb//M//RIwfP75s3LhxF9avXx9eWFjoX1lZaT7++OP2dftc7floaNeuXa0nTpx44Re/+EV++/btqw8fPuzI66G5QgQA4Ii6EOJyuZSbm6sOHTpozpw5Gjt2rAIC+OcJAIDmrKSkxP/pp5/uXlJS4u/v729jY2Mr33777aNvvfVWxLRp0/p26tSpasOGDfuTkpLK+/bt27979+6Vw4YNK5Nqr9B47733Dj399NPdKyoq/IKCgjxr1qzZX3fsQYMGVb7zzjuHZ86c2fvTTz89+Jvf/Ob4E0880T0uLi6xpqbGjBo1qnTs2LHHFi9enD99+vReiYmJCWPGjCmLjo6uf5nJ5e8hMnHixOL/+I//yLva+fzsZz/rtG7dujZ+fn42Li7u4owZM4qDg4Ptrl27gkaMGBEvSSEhIZ733nvvSEBAwLXfvdVryJAhFyZNmtQ3Pz8/8Hvf+15BbGxs1b59++rjwDPPPHMmNze39YABAxKstSYiIqIqMzPz0JWO9cknn0S4XK4DDW+bNm1a0dtvvx0xZsyYC1fap6GFCxf+3UtXevToUfXiiy/mpaSkxFlrzaRJk4q/9a1vnZek5557Ln/06NEJkZGRVQMHDiyvu/Llas9Hw+M+88wzXXNzc1tba01ycnLJ6NGjL17fit1a5nreabepGz58uN20aZPTY/yd/Pz8+o937dql/v1v+ldJ31IxMTHX3qiFWbVqlcaPH+/0GD6L9XdWU1t/a622b98ut9uto0ePqkOHDkpLS9Po0aNbZAhpauvva1h/Z7H+zmL9ndVY62+M2WytHd7wtm3btuUOGjTozNX2AXzNtm3bOg4aNCj28ttb3neeAIAmyVqrbdu2ye1269ixY+rYsaPmzp2r0aNHy9/fsTcXBwAAgI8iiAAAbiuPx1MfQo4fP67IyEhCCAAAwE368ssvg+fOnduz4W2BgYGe7du373VqpuaKIAIAuC08Ho+2bt0qt9utEydOqFOnTnrsscc0cuRIQggAAMBNGjly5MWr/cpg3BiCCADglvJ4PNqyZYvcbrfy8vIUFRWlefPmacSIEYQQAAAANBkEEQDALeHxeLR582ZlZmYqPz9fUVFRevzxxzVixAj5+fFb3gEAANC0EEQAAN+Ix+PRpk2blJmZqYKCAkVHR2v+/PkaPnw4IQQAAABNFkEEAHBTPB6PNm7cqMzMTBUWFio6OlpPPPGEhg0bRggBAABAk8d3rACAG1JTU6P169frpZde0ltvvSU/Pz8tXLhQL774Ii+PAQAA9Z577rnOffr06R8XF5cYHx+fuGLFitAf/vCHnUpLS2/qm4U333yzw9y5c7vf7DxdunQZUFBQECBJ/v7+w+Lj4xPr/nz/+9/vfLPHvVnPPvtszIsvvhh1+e379u0L7Nu3b/8bPd6+ffsCg4KChsbHxyf269cvcciQIfHbtm1rfTOzPf/883+zHocOHWo1adKk3j169Ejq1q1b0rx587pVVFSYuvvvvvvunnFxcYkvv/xyp+nTp8d26dJlQN3a/uhHP+p0MzM0lJub22rq1Km9JMnlcoVPmDChzzc9psQVIgCA61RTU6Mvv/xSmZmZOnXqlLp27apFixZp8ODBRBAAAJqowv+a363yxK6QW3nM1l37l3ee/1/Hv26bZcuWhebk5LTbsWPH7uDgYFtQUBBQWVlpHnnkkV4LFiw4Fx4e7rmVM92o1q1be1rib2rp1q1bZd15/fznP+/48ssvR3/00Ue5N3qcN998M3rx4sWFUu1Vwffdd1+fJ5544tR3vvOdQ9XV1Zo9e3aP73znO11+/etfnzh27FjA5s2bw/Lz83dI0vTp02N/9KMfnZg3b17RrTqv2NjYquzs7MO36nh1+A4WAPC1ampqtG7dOr300kv63e9+p9atW+vb3/62/uVf/kVDhw4lhgAAgL+Tl5fXKiIiojo4ONhKUnR0dPXvf//79qdOnWqVkpISN2rUqDhJmjNnTvekpKSEPn369H/mmWdi6vZfvXp1yJAhQ+L79euXOGDAgISioqK/+Ybj/fffbzt48OD4goKCgPz8/IDU1NTeSUlJCUlJSQlLliwJlaTCwkL/O+64o29CQkLi7Nmze1hrrzl3ly5dBjzzzDMxiYmJCXFxcYlbtmwJkiS32x1Wd8VDQkJCYt08L7zwQlRSUlJCXFxcYt38+/btC+zZs2f/mTNn9ujbt2//e+65p+cnn3wSPnTo0PgePXokrVy5sj5Qbd++PWT06NFxPXr0SHrttdc6Xj5PdXW1Fi1a1LXuMX7+85//3TZXU1JS4t+uXbuarzvO0aNHWw0fPrxffHx8Yt++fftnZ2eHPfXUU10qKyv94uPjE++5556ef/3rX8Nbt27t+c53vnNWkgICAvSf//mfxz/44IOOpaWlfpMnT447d+5cq/j4+MTs7Oywq81ztee6S5cuA/7hH/6hy+DBg+OTkpIS1q5dG5KcnNy3W7duST/72c8i69b08qtmampq1KNHj6T8/PyAus+7d++eVHcV0PXgChEAwBXVvTQmMzNTZ86cUbdu3fTkk09q0KBBMsZc+wAAAMBx17qS43a57777Sn7yk5/ExMbGJiUnJ5fMmjXr3A9+8INTv/rVr6JWr169Pzo6ulqSXn/99byoqKia6upqjR07tt+GDRuCBw0aVDFnzpze77333qGUlJTyc+fO+YWFhdVfUfLOO++0e+ONN6KWLl16IDIysubuu+/u+eyzz55MTU0tO3DgQGBqamrfw4cP73r++edjxowZU/bqq68WvP/++23/+Mc/1seEuh/46z7/7ne/W7BgwYIiSerYsWP17t279yxevDhy8eLFUR988MHR1157rfObb7559K677rpQXFzsFxIS4vnoo4/aHDx4MGj79u17rLWaPHlyn6ysrLBevXpdOn78eNAHH3xweNiwYUcHDhyY8N5773XYtGnT3j/84Q/tXnnllegJEyYckqQ9e/YEb968eU9paan/kP/L3n1HRXnlbwB/3qEjRTrSRKUjYkEUYsVYENRV7C1qNLFFo7FkdWMSUzRrEl03v2Q3hSS4tmRjogyIYkEssWAB6aJSBFFQep1h3t8fCksMICAwoM/nHE9m3nLvdy7uHubxvvf26eMSEBBQUHscd+zYYayvr18VGxubUFZWJvTv399p3LhxhU5OTpV1jXtGRoaGk5OTS0lJiaS8vFxy7ty5xIba2bt3r8GIESMKPvnkk2y5XI6ioiLJmDFjin/44QfT6pkmH374oam7u3tp7X4MDQ0VXbp0qYyPj9cIDg5O8ff3t6++/ptvvjH+29/+ZvXJJ590efzzuu3p6VlW1896wIABZQBgbW1dee3atcRXX33VesGCBbYXLlxILCsrk/Ts2dN13bp1OXV9VhUVFUyePPnBt99+a7hp06b7Bw8e1HN2di6r/rvVGAxEiIjoD+RyOc6fP4/Dhw8jNzcXNjY2WLp0KXr16sUghIiIiBpFX19fERsbGx8WFqZ7/Phx3VdeeaXHpk2b7jx53Y8//mj4ww8/GMvlciEnJ0ctOjpaUxAEmJqayoYOHVoKPPryXX39uXPndKOjo7VPnjyZXH387Nmzejdu3NCqvqa4uFglLy9Pcv78ed0DBw6kAMD06dMLXn/99arqaxp6ZGbmzJl5AODp6Vl66NAhAwAYOHBg8Zo1a6ynTp36cMaMGXk9evRQhIWF6UVGRuq5uLi4AEBpaakkMTFRs3v37pWWlpYVnp6eZQDg4OBQ5uPjUyiRSNC3b9/SDz/8sGZ2hK+vb76Ojo6oo6Mj9/LyKjx9+nQnT0/PmvDh2LFjeomJidrVdRQVFanEx8dr1heI1H5k5ptvvjFYsGBB19OnT9+or52BAweWvP7667YymUwyefLkPG9v77In2xRFEYIg/Gl6zePjdZWBuh6ZqetnXR2ITJ06NR8A3NzcSktKSiQGBgYKAwMDhYaGhiI3N1elzk4ALFmyJHf8+PF2mzZtuh8YGGg8b9683PqurUujAxFBEDqJoljSlMaJiKjjkMvlOHfuHMLCwvDgwQPY2tpi+vTp6NmzJ4MQIiIiajJVVVX4+/sX+fv7F/Xq1ats165dRrXPJyYmqn/xxRdmly9fTjAxMakKCAiwLS8vl9T3BRwAbGxsKtLT0zViY2M1hwwZUgo8+mIeFRWVoKOj86d7mvNor6ampvi4flEulwsA8PHHH2f/5S9/KTh48KC+t7e3c1hYWLIoinjzzTfvrl279g9fwpOSktTV1dVrapFIJDVtqqiooKqqquYXqyd/x3ryvSiKwmeffZYeEBBQ2NTPMWPGjPwVK1bYPq2dyMjIpF9++UV/3rx53VasWHFv+fLlD2qfd3NzKzt48KBB7WMPHz6UZGdnqzs7O1dUP7LSkPp+1tXnq8dHIpHgybGTyWT1/iJqZ2cnMzY2lh86dEj36tWrnX777bcmrTPy1L8dgiB4C4IQDyDh8Xt3QRC+bEonRETUfslkMpw6dQrvvPMOdu/eDT09Pbzxxht4EulrHwAAIABJREFU++234ebmxjCEiIiImiw6Olrj+vXrNTucXL16VcvKyqqyU6dOVQUFBRIAyMvLU9HS0lIYGhpWZWRkqEZEROgDgLu7e/m9e/fUT506pf34OolMJgMAWFlZVf7yyy8p8+fP7xYVFaUJAIMGDSr85JNPanYyOXfunBYADBw4sCgwMNAIAH766Se9wsLCemcaPE1cXJyGp6dn2UcffZTt5uZWEhsbq+nr61u4a9cu4+rPc/v2bbXMzMwmPYVx+PDhzqWlpUJ2drbK+fPndQcNGvSHSQgjR44s+Oqrr0wqKioEAIiJidEoLCxsVMoTHh6ua21tXdFQO8nJyeqWlpayt956K3f27Nm5V65c0QYehUHV144fP76ovLxc8sUXXxgBj/4RbenSpdZTpkzJbeziuPX9rFvCggULchYuXNht/PjxD1VVm/YQTGOu3g5gNIBDACCKYrQgCEOaXiYREbUnMpkMZ8+eRVhYGPLy8tCtWzfMnj0bLi4uDEGIiIjomRQWFqqsWLHCprCwUEVFRUW0tbWt+PHHH9MCAwMNfX197U1NTWUXLlxI7tmzZ6m9vb2rjY1NRb9+/YqBR7MFdu/efXPFihU25eXlEk1NTUVkZGRyddvu7u4VQUFBt6ZNm9bj0KFDKV9//XXGwoULbRwcHFyqqqqEAQMGFHl7e6dv3bo1KyAgoLuLi4uzl5dXcZcuXWoeM3lyDREfH5+CL7/8MrO+z/P3v//d9Ny5c3oSiUR0cHAomzx5coGWlpYYFxen2b9/fycA0NbWVuzevfu2qqrq01dvfaxPnz4lI0aMsM/KylJfs2bNXVtbW1lSUpJ69flVq1blpqamari5uTmLoigYGhrKQkNDb9bXXvUaIqIoQk1NTfzXv/6V1lA7R44c0d25c6e5qqqqqK2tXbV79+7bADBr1qwcZ2dnl549e5YeOnTo9m+//Zby2muvdd22bVsXhUIBHx+fgp07d9Y7Xk/y8vIqq+tn3RJmzJhRsHz5cpXXXnvtwdOv/iPhaSvtCoJwQRTFAYIgXBVFsc/jY9GiKLo3s94W5+HhIUZFRSm7jD/JysqqeR0XFwdX1yZvJd0qLCwsnn7RcyYiIgLDhg1TdhkvLI6/cj05/jKZDGfOnEFYWBjy8/PRo0cP+Pv7w9nZmUFIK+Dff+Xi+CsXx1+5OP7K1VbjLwjCZVEUPWofi46OTnV3d2/SWgpEHVVkZKT2qlWrrC9fvpxU3zXR0dHG7u7utk8eb8wMkQxBELwBiIIgqANYgcePzxARUcdRWVmJM2fO4MiRI8jPz4ednR3mzZsHJycnBiFERERE1OFs2LDB/IcffjD5/vvvbzfn/sYEIosB/AOAJYA7AI4CWNaczoiIqO3J5XIcO3YMR48eRUFBAezt7TF//nw4OjoyCCEiIiLqYC5evKg1d+7cbrWPqaurK2JiYhKVVZOyfPzxx9kff/xxdnPvf2ogIopiLoBZze2AiIiUo7KyEqdOnYJUKkV5eTkcHBzw6quvwtHRUdmlEREREVEzeXp6ltW3ZTA1zVMDEUEQ/g7gQwBlAMIAuAN4UxTF/7RybURE1AwVFRU4deoUjh49iqKiIpiZmWHZsmVwcHBQdmlERERERO1GYx6ZGSWK4jpBECbi0SMzUwCcBMBAhIioHSkvL8epU6cQHh6OoqIiODs7w9/fH3fu3GEYQkRERET0hMYEImqP/zsWwF5RFB/ymXMiovajvLwcERERCA8PR3FxMVxcXODv748ePXoAAO7cuaPkComIiIiI2h9JI64JFgQhEYAHgOOCIJgAKG/dsoiI6GnKysoQGhqKDRs24Ndff0XXrl2xbt06rFy5siYMISIiIlKWjIwM1XHjxnWzsrJyc3V1de7du7dTUFBQZ6lUqqurq9vbycnJxcHBwcXb29shMzNTFQB27txpJAhCv4MHD+pWtxMUFNRZEIR+33//vcGz1hQZGak9b94867rOWVpaut29e7cxkwZqTJkyxdbQ0NDd3t7e9Vlra4rVq1dbbNq0yexZrlm9erWFqalpLycnJxcnJyeX/fv361efu3Dhglbv3r2d7OzsXB0cHFxKS0ufy1kRjVlU9W1BED4BUCiKYpUgCCUAJrR+aUREVJeysjKcPHkSx44dQ0lJCXr27Al/f39069bt6TcTERERtQGFQoFx48bZzZw580FwcPBtAEhOTlb/+eefOxsaGpZ5eHgUnzx5MgUAli1bZvnpp5+abt++PQsA7O3ty/bs2WM4YcKEIgDYv3+/oaOjY9mz1iSTyTBkyJDSIUOGlD5rW9UWLFiQu3Llyvvz58/vkL+ILV68+N7mzZvv1T4mk8kwZ86cbj/++ONtLy+vsuzsbBV1dXVRWTW2psamX84AbAVBqH19UCvUQ0RE9SgrK8OJEydw7NgxlJaWws3NDX5+fgxCiIiIqF4/7Y22zs4u1G7JNs3N9UqnznDPaOia4OBgXTU1NXHdunU51cccHBwqN27ceF8qldbM/lAoFCgqKlKxs7OreQphwIABxRcuXNCpqKgQysvLhdTUVA1XV9cGQ4z9+/frv/3221aGhoZyNze30rS0NI2TJ0+mrF692uLu3btq6enp6oaGhvLXX38997PPPjM7efJkSnZ2tkpAQED3hw8fqvXp06dEFJv+nd/X17c4KSlJvTHXenp6Orq5uZVGR0drP3z4UPX777+//dFHH3VJSkrSmjBhwsOdO3dmAcB7771ntnv3bmMAmDNnTs6mTZvuA8D69evN9+/fb2xhYVFpZGQk69OnTykAxMXFaSxevNjm4cOHqpqamopvv/02rU+fPs1+quPAgQP6zs7OZV5eXmUAYG5uXtXcttq7xuwyswtADwDXAFQPhAgGIkREbaK0tBTHjx/HiRMnUFpail69esHPzw+2trbKLo2IiIioTtevX9fq1atXvSFGVFSUjpOTk0t+fr6qlpZW1Y4dO2oWPRMEAUOGDCk8cOCAXn5+vsqYMWPyU1NTNeprq7S0VFi5cmXXiIiIRCcnp8px48b94V+LYmJitC9cuJCoo6Mj1g5j3n77bQsvL6/iTz/99O6+ffv09+7da/ysn/tp1NXVFVFRUUkffPCB6ZQpU+wuXbqUYGpqKre1tXXbsGHDvRs3bmjs2bPH6PLlywmiKKJfv37OI0aMKFIoFMKvv/5qeP369XiZTIbevXu7VAciCxcu7Pr111+nubm5VZw4caLTkiVLbM6fP5/cmHq+++4703379hm5u7uXfvnllxkmJiZVSUlJGoIgYNCgQfYPHz5UnTRp0sMPP/zw3tNb63gaM0PEA4CL2Jy4jIiImq2kpKQmCCkrK4O7uzv8/f1hY2Oj7NKIiIiog3jaTI62MmfOHJuLFy/qqKmpiVu3br1T+5GZjRs3mi9fvtxqz5496dXXz5o16+GOHTvMioqKVHbs2JHx/vvvd6mv7WvXrmlaW1tXODk5VQLA9OnTH3777bcm1efHjBmTr6Oj86fvs+fPn9c9cOBAyuN7Cl5//fVWnwkxceLEfABwd3cvs7OzK+vatasMAKytrStu3bqlHhERoTN27Nh8PT09BQD4+fnlnTx5UlehUGDs2LH5urq6CgAYNWpUPgAUFBRIrl69qjNlypSaBeQqKysbtd7HqlWr7v/973/PEgQBb775puXSpUutf/7551S5XC5cunRJJyoqKkFHR0cxePBgh/79+5dWP8L0PGlMIBILwBzA3VauhYiI8CgIOXbsGE6cOIHy8nL07t0b/v7+sLauc/0vIiIionbHzc2t7ODBgzWLoO7atSv97t27qh4eHs5PXhsQEJBf+ws9AAwfPrx0yZIlWpqamopevXpVNNTX0/7tvlOnTor6zkkkjdlnpOVoamqK1f1qaGjUFC6RSCCXy4WGPktdu71WVVVBV1dXnpiYGN/UWqytreXVr5cvX57j7+9vDwBWVlaVAwcOLOrSpYscAEaOHFkQFRWl/TwGIo356RsDiBcE4YggCIeq/7R2YUREL5ri4mL89ttv2LBhA0JDQ+Hi4oJ33nkHS5YsYRhCREREHcq4ceOKKioqhE8++aRmpkZxcXGd3z9Pnjyp07Vr1z+FHps3b77zwQcfZD6tL3d39/KMjAyN6rU89u/fb9iYGgcOHFgUGBhoBAA//fSTXmFhoUpj7mtNPj4+xaGhoZ2LiookhYWFktDQUIPhw4cX+fj4FIeEhHQuLi4W8vLyJOHh4Z0BwNDQUGFlZVUZGBhoADxak+X333/XakxfaWlpatWv9+3b17l64dqJEycWJiQkaBUVFUlkMhnOnj2r6+rq+lzuNNuYGSLvtXYRREQvsuLiYoSHh+PkyZOorKxE37594efnB0tLS2WXRkRERNQsEokEwcHBN5ctW2a9c+dOc0NDQ7m2tnbVe++9dwf43xoioihCV1e3KjAwMPXJNqZOnVrYmL50dHTEzz//PG3MmDH2hoaG8j59+pQ05r6tW7dmBQQEdHdxcXH28vIq7tKlS2WTPiSAcePGdTt//rxuXl6eqpmZWa+33347a9WqVblNbafaoEGDSmfOnPmgb9++zsCjRVVfeuml6qDiYc+ePV0tLS0rPD09i6vv2bt3761FixZ1/eSTT7rI5XJh4sSJD6sXRG3IypUrreLj47WAR7NCvv/++zQAMDExqVq+fPm9Pn36OAuCgBEjRhRMnz69oLmfqT1rcEpOzUWCYAag/+O3F0VRvN+qVTWRh4eHGBUVpewy/iQrK6vmdVxcHFxd23Rr6npZWFgou4Q2FxERgWHDhim7jBcWx79uRUVFCA8PR0REBCorK9GvXz/4+fm1+P9GOf7KxfFXLo6/cnH8lYvjr1xtNf6CIFwWRdGj9rHo6OhUd3f3Zn8p74gKCgok+vr6CoVCgblz59rY29uXv/vuu+3qeyspT3R0tLG7u7vtk8cbs8vMVADbAEQAEAD8UxCEtaIo/reliyQiehEUFhbWBCEymQweHh4YO3bsCxlWEhEREbWEHTt2GO/du9dYJpMJrq6upatXr36hAiFqnsY8MrMRQP/qWSGCIJgAOAaAgQgRURMUFhbi6NGjOHXqFGQyGfr37w8/Pz+Ym5sruzQiIiKiDmHkyJE9MjIy/rAF70cffXTn3Xffvd8SM0Kys7NVhg0b5lj7mELxaE3WJxdgjYiISDI3N//TzjRz5syxuXTpkk7tY0uWLLm3cuXKB89aX3O0t3rak8YEIpInHpF5gMYtxkpERAAKCgpw5MgRREZGQi6XY8CAAfD19WUQQkRERNRE4eHhN1uzfXNz86rm7NhS265du9KfflXbaW/1tCeNCUTCBEE4AmDv4/fTAIS2XklERM+HgoIChIWF4fTp06iqqoKnpyfGjh0LMzMzZZdGRERERPTCe2ogIoriWkEQJgEYhEdriHwtiuKvrV4ZEVEHlZeXhyNHjuD06dNQKBQYMGAAxo4dC1NTU2WXRkREREREjzVmhggAnANQBUAB4FLrlUNE1HHl5eUhLCwMZ86cgUKhgJeXF3x9fWFiYqLs0oiIiIiI6AmN2WVmIYBNAE7gf7vMbBZFMbC1iyMi6ggePnyIsLAwnD17FgqFAt7e3vD19YWxsbGySyMiIiIiono0ZnHUtQD6iKI4TxTFVwD0A7C+dcsiImr/Hj58iN27d+Nvf/sbzpw5Ay8vL3zwwQeYM2cOwxAiIiJ6oaWkpKhZWlq63bt3TwUAcnJyVCwtLd2Sk5PVr1+/rjF8+HA7a2vrnq6urs4DBgxwOHz4sA4A7Ny508jAwMDdycnJxc7OznXMmDHdi4qKWmxTj3Pnzmnt379fv6XaGzp0qF1ubq7Kk8dXr15tsWnTpiYtHBcYGGhgZ2fnKpFI+kVGRmq3VI1Pk5SUpG5vb+/6LNckJSWpa2pq9nVycnJxcnJymTlzpk31uTfeeMPS3Ny8l7a2dp+WrLslNOYv1h0ARbXeFwHIaJ1yiIjav9zcXPznP//B3/72N5w9exYvvfQSPvjgA8yePZtBCBEREREAOzs72fz58++/+eabVgCwcuVKq7lz5+ZYWVnJxo0bZ79w4cKcjIyM2Li4uIQvvvgi/caNGzVb6Y4bNy4vMTExPiUlJU5NTU0MDAw0aKm6oqKitENCQp45EFEoFKiqqsKpU6dSjI2N/7T1bnP07t277Jdffknx8PAobon22pq1tXVFYmJifGJiYvyePXtqdrb5y1/+kn/hwoUEZdZWn8asIZIJ4IIgCAcBiAAmALgoCMJqABBF8fNWrI+IqN3Izc3F4cOHce7cOUgkEgwaNAhjxoyBoaGhsksjIiIiqlPBxsPW8hu5LTrbQNXeuFT/I9+n/iP5O++8c9/Nzc158+bNphcvXtQJDAxM/+qrr4z69u1bPGvWrILq6/r371/ev3//8ifvl8lkKC0tlRgaGlYBQHJysvorr7xi++DBA1UjIyN5UFBQqr29fWV9xwMDAw22bNliIZFIRF1d3aozZ84kb9myxaK8vFzi5OSk89Zbb91dtGhR3pP9ZmVlqU6ePLlbfn6+au/evUsjIiL0Ll++nFBYWCjx9fW19/b2Lrp8+bLOwYMHU4YPH+4YFRWV0KVLF/n69evN9+/fb2xhYVFpZGQk69OnT2lTxrVv375/GoP67Ny50+jQoUOdFQqFkJSUpLVs2bLsyspKyf79+43U1dUVR48evWFmZlZ17tw5rSVLlnQtKyuTdO3atWLPnj2pJiYmVadPn9ZeuHChrZaWlmLAgAE1AYxcLseyZcuszp49q1tZWSksWrTo/tq1a3Ob8jmeNGLEiJJnub81NWaGyE0Av+FRGAIABwHcBaD7+A8R0XMtJycHQUFBeOedd3D+/HkMGTIEH374IWbOnMkwhIiIiKgeGhoa4pYtW+68++671tu2bcvQ1NQU4+LiNJ8WFAQHBxs4OTm5mJubu+fn56vOmDEjHwAWL15sM3PmzAfJycnx06ZNe7BkyRLrho5v3bq1y9GjR5OTkpLiw8LCUjQ1NcW//vWvWdUzUOoKQwDg7bffthg6dGhRfHx8wqRJk/Lu3r2rXn0uNTVVc/78+Q8SEhLiHRwcKquPnz59WvvXX381vH79erxUKk2Jjo7u1BJj2JDk5GStX3755dalS5cStmzZYqmtra1ISEiI9/DwKPn3v/9tBADz5s3r9vHHH99JTk6Od3V1LVu/fr0FALz66qu2n3/+efq1a9cSa7e5Y8cOY319/arY2NiE6OjohB9//NEkMTFRva7+n3Tnzh11Z2dnl/79+zuGhYXptPwnbnmN2Xb3/erXgiBIAOiIoljYqlUREbUD9+/fR2hoKC5cuACJRIKhQ4di9OjRMDBosVmbRERERK2qMTM5WlNISIi+iYmJLCYmRnPixIl/+h45cuTIHqmpqZrdunUrP3r06E3g0SMzQUFB6QqFAnPnzrXZtGmT+ccff5x99erVTocPH74JAEuWLHn4/vvvWwFAfcc9PDyKZ82aZRsQEJA3a9asOsOPuly8eFHnt99+SwGAyZMnF+rp6dU8EtOlS5fKumY8nDx5Umfs2LH5urq6CgAYNWpUflPGqTm8vb2LDAwMFAYGBgodHZ2qKVOm5AOAm5tbaUxMjPaDBw9UioqKVPz8/IoBYNGiRQ+mTJnS/cnjCxYseHDixAl9ADh27JheYmKi9qFDhwwAoKioSCU+Pl7T1dW1wdkrNjY2stu3b8eYm5tXnT59WnvKlCl28fHxsYaGhorWHYVn05hdZvYAWIxH2+5eBqAvCMLnoihua+3iiIiU4d69ewgNDcXFixehoqKCYcOGYfTo0ejcubOySyMiIiLqMM6dO6cVGRmpd/bs2cQhQ4Y4zps3L8/V1bX89OnTNbMHwsPDb0ZGRmqvWbPG+sn7JRIJxo8fn/9///d/ps3pf8+ePeknTpzodOjQIf3evXu7Xrt2La4x94miWO85bW3ter/gC4LQjCqbT11dvaZQiUQCTU1Nsfq1XC6vtxhRFOutVRRF4bPPPksPCAj4Q3iVlJTU4CwRLS0tUUtLqwoABg8eXGpjY1MRGxurOWTIkCY9NtTWGvPIjMvjGSF/ARAKwAbAnFatiohICbKzsxEYGIh3330Xly9fxvDhw/HRRx9h2rRpDEOIiIiImkChUGDp0qVdt23blmFvb1+5fPnye2+88YbVokWLHkRFRens3r27ZmHTkpKSer+Xnj59WtfW1rYCAPr06VPy7bffGgDAv//9b8PqxUfrOx4XF6fh4+NTsmPHjiwDAwP5rVu31PX09KqKi4sb/B7s6elZvGvXLkMAOHDggF5hYeGfdpF5ko+PT3FISEjn4uJiIS8vTxIeHq70Xx6NjIyq9PT0qqofX/nuu++MvLy8io2Njat0dHSqjhw5ogMAP/zwQ80z4CNHjiz46quvTCoqKgQAiImJ0SgsLHxqbpCVlaUql8sBAPHx8eqpqakajo6OFa3ywVpQYxZVVRMEQQ2PApEvRFGUCYJQf2RGRNTBZGdnIyQkBJcuXYKqqipefvlljBw5Evr6LbYjGxEREdEL5fPPPze2tLSsrH5MZv369ffd3d2dT5061engwYMpb775ptX69ettjI2NZZ06darasGFDVvW9j9cQ0VEoFOjSpUvlnj17UgHgq6++Sn/llVds//GPf5hXL57a0PFVq1ZZpaamaoiiKAwaNKhw4MCBZT169Kj89NNPuzg5ObnUt6jq1q1bsyZPntzdxcXFwMvLq9jExETWuXPnqoaCgUGDBpVOnDjxYc+ePV0tLS0rPD09m7xTTFBQUOe1a9fa5OXlqU6cONHe2dm59MyZMzea2k5t33///e0lS5Z0XbFihcTGxqZi7969qQDw3XffpVYvqurj41MzG2TVqlW5qampGm5ubs6iKAqGhoay0NDQm0/r5+jRozoffvihpYqKiqiioiLu2LEjzczMrAoAFi9ebPXrr78alpeXS8zMzHrNmjUr9/PPP896WpttQWhoOhAACIKwAsB6ANEA/PBohsh/RFEc3PrlNY6Hh4cYFRWl7DL+JCvrfz/juLg4uLo2uLVzm7GwsFB2CW0uIiICw4YNU3YZL6z2Ov5ZWVkIDQ1FVFQU1NTUMGzYMIwcORJ6enrKLq1Ftdfxf1Fw/JWL469cHH/l4vgrV1uNvyAIl0VR9Kh9LDo6OtXd3f2ZdgZ5kZWVlQmqqqqimpoajh071mn58uVdExMT45VdFzVfdHS0sbu7u+2TxxuzqOpOADtrHUoTBGF4C9ZGRNSmMjMzERISgitXrkBdXR2jRo3CyJEjoavLjbOIiIiIXnQpKSnqU6dO7aFQKKCmpib++9//TlV2TdQ6GrOoqhmAjwFYiKLoKwiCCwAvAN+1dnFERC0pMzMTUqkUV65cgYaGBkaPHo2RI0dCR6dD7ApGRERERC3oH//4h9FXX31lVvtY//79i3ft2pWekJDQIjNC5syZY3Pp0qU//LKZlpam0bVr1z+sr7FkyZJ7K1eufPDk/b/88ovexo0brWofs7a2rggPD3/qYyytob3V86was4bIDwC+B7Dx8ftkAPvBQISIOoiMjAyEhITg6tWr0NTUhK+vL15++WUGIUREREQvsJUrVz6oK4RoSbt27Up/lvsDAgIKAwIC2s3jOu2tnmfVmEDEWBTFnwRB+CsAiKIoFwSh6mk3EREpW0ZGBqRSKa5duwZNTU34+flhxIgR6NSpk7JLIyIiIiIiJWtMIFIiCIIRABEABEEYCKCgVasiInoG6enpkEqliI6OhpaWFvz9/eHj48MghIiIiIiIajQmEFkN4BCAHoIgnAVgAmBKq1ZFRNQMaWlpkEqliImJgba2Nvz9/TFixAhoa2sruzQiIiIiImpnGrPLzBVBEIYCcAQgAEgSRVHW6pURETVSamoqpFIprl+/Dm1tbYwfPx4+Pj7Q0tJSdmlERERERNROSRpzkSiKclEU40RRjAUwTBCE8Faui4joqW7fvo1//vOf2LJlC27duoUJEybg448/hp+fH8MQIiIiIiVSUVHp5+Tk5GJnZ+fq6Ojo8t5775lVVT1ailIqlerq6ur2dnZ2dunWrZvra6+9VrNryc6dO40MDAzcnZycXJycnFwmTpxoW18fgYGBBnZ2dq4SiaRfZGQkpwRTk9U7Q0QQBB8A/wJgAeA3PNp6NwiPZol81CbVERHV4ebNm5BKpYiPj0enTp3wl7/8BcOHD4empqaySyMiIiIiABoaGorExMR4AMjMzFSdMmVK94KCApXt27dnAYCHh0fxyZMnU4qLiwU3NzeXo0eP5o0aNaoEAMaNG5cXFBT01N1ZevfuXfbLL7+kLFq0yLZVPww9txp6ZOYzAK8B+B2AL4DzAN4RRfEfbVEYEdGTUlJSIJVKkZCQAB0dHUycOBHDhg1jEEJERERUjx8vrLXOyk9q0dkTFp0dS18ZsC2jsddbWlrKv/3221Rvb2+Xzz77LKv2OR0dHdHV1bUsPT1dHUBJU+ro27dveVOuJ3pSQ4GIKIpixOPXvwmCkMMwhIiU4caNG5BKpUhMTISuri4mTZqEoUOHMgghIiIi6iBcXFwqFQoFMjMz//AdNCcnR+X27dsao0aNKqo+FhwcbODk5KQDAEuWLLm3cuXKB21dL70YGgpEOguCMKnWe6H2e1EUD7ReWUREQHJyMqRSKZKSkqCrq4vJkydjyJAh0NDQUHZpRERERB1CU2ZytDZRFGteR0VF6Tg4OLikpqZqLlu2LNvGxkZefa6xj8wQPauGApFTAMbV814EwECEiFpFUlISpFIpkpOToaenhylTpmDIkCFQV1dXdmlERERE1Azx8fHqKioqsLS0lEdHR9esIRITE6MxbNgwpylTpuR5e3uXKbtOerHUG4iIoji/LQshohebKIo1QciNGzegr6+PqVOnYvDgwQxCiIiIiDqwrKws1UWLFnWdP3/+fYnkjxu+7UmlAAAgAElEQVSd9urVq2LlypV3t2zZYh4cHHxbSSXSC6qhGSJERK1OFEUkJiZCKpUiJSUFnTt3xrRp0zBo0CAGIUREREQdVEVFhcTJyclFLpcLKioq4rRp0x68++679+q69q233srp3r27eWJiYpN++QsKCuq8du1am7y8PNWJEyfaOzs7l545c+ZGy3wCehEwECEipRBFEQkJCZBKpbh58yY6d+6M6dOnY9CgQVBTU1N2eURERET0DKqqqi7Xd87f37/I39+/ZhFVHR0d8f79+zEA4OTk9ABAoxZRnTt3bv7cuXPzn7lYemExECGiNiWKIuLi4iCVSnH79m0YGBhg5syZ8Pb2ZhBCRERERERtplGBiCAI3gBsa18vimJQK9VERM8hURQRGxsLqVSK1NRUGBoaYtasWfDy8mIQQkRERET1mjNnjs2lS5d0ah/jdrzUEp4aiAiCsAtADwDXAFQ9PiwCYCBCRE8liiIyMzOxZcsWpKWlwcjICLNnz4aXlxdUVTlJjYiIiIgatmvXLm7BS62iMd9GPAC4iLU3jSYiegpRFBETEwOpVIr09HQYGRlhzpw5GDhwIIMQIiIiIiJSusZ8K4kFYA7gbivXQkTPAVEUER0dDalUioyMDBgbG8PT0xPz5s2DioqKsssjIiIiIiIC0LhAxBhAvCAIFwFUVB8URXF8q1VFRB2OQqHAtWvXEBISgjt37sDExASvvPIKBgwYgNOnTzMMISIiIiKidqUxgch7rV0EEXVcCoUCV69eRWhoKO7cuQNTU1PMmzcPnp6eDEGIiIiIiKjdemogIoriqbYohIg6luogRCqVIisrC2ZmZpg/fz769+/PIISIiIjoBZeSkqI2dOhQpytXrsSbmZlV5eTkqPTu3dvl66+/vh0QEOBga2tbLpPJhF69epXs27cvTSqV6m7cuNEKANLT0zVMTU1lmpqaCmdn59Jff/019cn2s7OzVSZMmNDj+vXrnSZPnvwgKCiIC69SkzVml5mBAP4JwBmAOgAVACWiKOq1cm1E1A4pFApcvnwZoaGhyMrKgrm5OV599VV4eHhAIpEouzwiIiIiagfs7Oxk8+fPv//mm29a7d27N23lypVWc+fOzbGzs6u0trauSExMjJfL5Rg0aJBDYGCgwZIlSx4GBATEA4Cnp6fjp59+mjFkyJDS+trX1tYWN2/enBUdHa0VGxur1XafjJ4njXlk5gsA0wH8jEc7zswFYN+aRRFR+6NQKBAVFYXQ0FDcvXsXXbp0wcKFC9GvXz8GIURERETtVH7Uq9bygjjtlmxTVd+1tLPHdxlPu+6dd9657+bm5rx582bTixcv6gQGBqanpaWp1bSjqoq+ffuWZGZmqjXUTl309PQUo0ePLk5KStJo6r1E1Rq196UoiimCIKiIolgF4HtBEM61cl1E1E4oFApcunQJoaGhyM7OhoWFBRYtWoS+ffsyCCEiIiKiemloaIhbtmy5M3nyZPsDBw7c0NTUFGufLy0tFS5fvtxp586dTw1XiFpDYwKRUkEQ1AFcEwTh73i0/W6n1i2LiJStqqqqJgi5d+8eLCws8Nprr6FPnz4MQoiIiIg6iMbM5GhNISEh+iYmJrKYmBjNiRMnFgJARkaGhpOTk0taWpqGr69v3oABA8qUWSO9uBoTiMwBIAGwHMAqANYAAlqzKCJSnqqqKly8eBGhoaG4f/8+rKys8Prrr6N3794MQoiIiIio0c6dO6cVGRmpd/bs2cQhQ4Y4zps3Lw8AqtcQSUtLUxs6dKjj7t279WfNmlWg7HrpxdOYXWbSBEHQAtBFFMX326AmIlKCqqoqnD9/HocPH0ZOTg6sra2xePFiuLu7MwghIiIioiZRKBRYunRp123btmXY29tXLl++/N4bb7xhtW3btszqa7p27SrbvHnznW3btnVhIELK0JhdZsYB+BSPdpjpJghCbwCbRVEc/6ydC4IQCMAfwH1RFHs+PmYIYD8AWwCpAKaKopj3rH0RUd2qqqrw+++/4/Dhw8jNzYW1tTWWLFkCd3d3CIKg7PKIiIiIqAP6/PPPjS0tLSurH5NZv379fXd3d+eUlBT12tfNnj07/6OPPrIICwvTGTNmTHFT+rC0tHQrLi5WkclkwpEjRzqHhoYm9+vXr7wlPwc93xrzyMx7ADwBRACAKIrXBEGwbaH+f8CjXWyCah17G8BxURS3CoLw9uP361uoPyJ6TC6X1wQhDx48gI2NDZYuXYpevXoxCCEiIiKiZ7JmzZrcNWvW5Fa/V1VVRVxcXAIA+Pn5xVUfl0gkSEpKiq9978WLF5Ma00dmZub1lqqXXkyNCUTkoigWtMYXJFEUI+sIVyYAGPb49Y94FMQwECFqIXK5HOfOnUNYWBgePHgAW1tbzJgxAz179mQQQkRERERELwxBFMWGLxCE7wAcx6OZGgEAVgBQE0VxcYsU8CgQkdZ6ZCZfFMXOtc7niaJoUMd9rwF4DQDMzMz67du3ryXKaVEymazmdXl5OTQ1NZVYzf+oqTV5m+8Or7i4GDo6OsouQ6mqqqpw69YtxMfHo7S0FEZGRujZsye6dOnS6kEIx1+5OP7KxfFXLo6/cnH8lYvjr1xtNf7Dhw+/LIqiR+1j0dHRqe7u7rn13dOR/PLLL3obN260qn3M2tq6Ijw8/KayaqKOJzo62tjd3d32yeONmSHyBoCNACoA7AVwBMAHLVpdM4ii+DWArwHAw8NDHDZsmHILqkNWVlbN67i4OLi6uiqxmv+xsLBQdgltLiIiAu3x70hbkMlkOHv2LMLDw5GXl4fu3bvD398fLi4ubTYj5EUe//aA469cHH/l4vgrF8dfuTj+ysXxbxkBAQGFAQEB8U+/kqjpGrPLTCkeBSIbW78cAMA9QRC6iKJ4VxCELgDut1G/RM8VmUyGM2fOICwsDPn5+ejRowfmzp0LZ2dnPhpDREREREQvvHoDEUEQDjV0Y0vsMlOPQwBeAbD18X8PtlI/RM+lyspKnDlzBkeOHEF+fj7s7Owwb948ODk5MQghIiIiIiJ6rKEZIl4AMvDoMZkLAFr8m5QgCHvxaAFVY0EQ7gB4F4+CkJ8EQXgVQDqAKS3dL9HzqLKyEpGRkThy5AgKCwthb2+P+fPnw9HRkUEIERERERHRExoKRMwBjAQwA8BMACEA9oqiGNfAPU0iiuKMek6NaKk+iJ53lZWVOHXqFI4ePYrCwkI4ODhg4cKFcHR0VHZpRERERERE7ZakvhOiKFaJohgmiuIrAAYCSAEQIQjCG21WHRHVq6KiAkePHsWGDRvw3//+F126dMFbb72Ft956i2EIERERESmViopKPycnJxc7OztXR0dHl/fee8+sqqqqxfvx9PR0jIyM1G7xhuvx97//3eSLL74waqv+atu9e7f+hg0bzOs6p62t3aep7Q0ePNheV1e39/Dhw+2evbrGCwgIsP3+++//tJNsU67p16+fo5OTk4uTk5OLqalpr5dffrlHc2ppcFFVQRA0APjh0SwRWwA7ARxoTkdE1DLKy8tx6tQphIeHo6ioCM7OzvD394edXZv+/xgRERERUb00NDQUiYmJ8QCQmZmpOmXKlO4FBQUq27dvz3ravcqkUCggiiJUVFTqPL9u3bqcNi4JwKMNE2bNmlUAoKCl2lyzZk12SUmJ5JtvvjFpqTbbyuXLl5OqX48ePbrHuHHj8pvTTkOLqv4IoCeAwwDeF0UxtjkdEFHLKC8vR0REBMLDw1FcXAwXFxf4+/ujR49mhaFERERE9AK48PMa6/zspBadQdHZ3LF0wJRPMxp7vaWlpfzbb79N9fb2dvnss8+yFAoFli1bZnX27FndyspKYdGiRffXrl2bCwDvvPOO2a+//mpYWVkp+Pn55W/fvj0rKSlJfcyYMfZ9+vQpiY2N1e7evXv5zz//nKqrq6uoqz+5XF5n+wUFBZIxY8bYFRQUqMjlcmHTpk1Zs2fPzk9KSlL39fW19/b2Lrp8+bLOwYMHU3r37u366quv3j969Ki+pqamQiqVplhbW8tXr15toaOjU7V58+Z7np6ejv369Ss+c+aMXlFRkcq//vWv1DFjxhQXFRVJpk2bZpuSkqJpb29fnpGRof7FF1+kDxkypLSuerdv3278j3/8w9zU1FTWvXv3cnV1dTEoKCg9ICDA1sDAQH79+nXtXr16lbq5uZVFRUV1CgoKSk9MTFSfPn16d7lcLowYMaJZIcmECROKpFKpbiN/hm4TJ058eObMGV25XC7861//Snv77bct09LSNN54441769aty1EoFFiyZInViRMn9AVBENeuXXt30aJFeQqFAvPmzbM5e/asrrW1dYUoijXtnj59Wnv16tXWpaWlEgMDA/nu3btTu3btKmvsZ8jLy5P8/vvvunv37r3djCGo/5EZAHMAOABYCeCcIAiFj/8UCYJQ2JzOiKjpysrKEBoaig0bNuDXX39F165dsW7dOqxcuZJhCBERERF1CC4uLpUKhQKZmZmqO3bsMNbX16+KjY1NiI6OTvjxxx9NEhMT1Q8cOKCXkpKiGRMTk5CQkBB/7do17cOHD+sAQGpqqubixYtzkpOT43V1dRXbtm2rd1ZDfe1ra2srQkJCUuLj4xNOnTqVvGHDBiuF4lGmkpqaqjl//vwHCQkJ8Q4ODpVlZWUSLy+v4qSkpHgvL6/if/7zn3X2J5fLhevXryd88sknGZs3b7YAgG3btpl07ty5Kjk5Of69997Lio+P71RframpqWqffvpplwsXLiScPn06+caNG5q1z9+8eVPz7Nmzyd98882d2seXLl1qs3DhwpzY2NgEc3PzRgcIz8La2rry2rVriQMGDChesGCBbXBw8M0LFy4kbt261QIAgoKCOl+/fl0rISEh7vjx48mbNm2ySktLU9u1a1fnlJQUjaSkpLgffvgh7cqVKzoAUFFRIaxYscLm4MGDN+Pi4hJeeeWV3DVr1lg2pabdu3cbeHt7FxoaGtYZjj1NvTNERFFsKCwholZWVlaGEydO4Pjx4ygpKUHPnj3h7++Pbt26Kbs0IiIiIuogmjKTo7VVzww4duyYXmJiovahQ4cMAKCoqEglPj5eMywsTC8yMlLPxcXFBQBKS0sliYmJmt27d680NzevHDVqVAkAzJkz58HOnTtNAdyrq5/62u/WrZvszTfftDp//ryORCLB/fv31e/cuaMKAF26dKkcMWJESXUbampq4vTp0wsAoF+/fiXHjh3Tq6uvKVOm5AGAt7d3ydq1a9UB4Ny5czorV668DwD9+/cvd3BwqHNmCACcPn2604ABA4rMzMyqAGDixIl5ycnJNaHIpEmT8lRV//y1/cqVKzqHDx++CQCvv/76gw8++MCqvj5aytSpU/MBwM3NrbSkpERiYGCgMDAwUGhoaChyc3NVTp8+rTt16tSHqqqqsLa2lg8YMKD4zJkz2qdOnao5bmtrK/Py8ioCgJiYGI0bN25o+fj4OACPHlcyMTFpUrjz008/GS5YsKDZjzE1uIYIEbW9srIyHD9+HMePH0dpaSnc3Nzg7+8PW1tbZZdGRERERNQs8fHx6ioqKrC0tJSLoih89tln6QEBAX948uDw4cN6b7755t3qx2eqJSUlqQuC8If2nnxfW33t79y50+jBgweq169fT9DQ0BAtLS3dysrKJACgra39hxkGqqqqokQiqX4NuVxeZ4eamppi9TVVVVXC4/4bHIsnam3wvI6OTr0zHyQSSeM7agHVn1UikUBdXb2mb4lEAplMJjT0Wer6eYmiKNjZ2ZVdu3YtsTn1ZGdnq8TExHSaOnVqSnPuBxp+ZIaI2lBpaSmCg4Px17/+FcHBwbCzs8Nf//pXLF++nGEIEREREXVYWVlZqosWLeo6f/78+xKJBCNHjiz46quvTCoqKgTg0UyBwsJCia+vb+GuXbuMCwoKJABw+/ZttczMTFUAuHv3rvqxY8c6AcCePXsMvb29i+vrr772CwoKVIyNjWUaGhpicHCwblZWlnprfF5vb+/iffv2GQDA5cuXNZOTk7Xqu3bw4MElFy5c0M3JyVGRyWQ4ePBgg7uvVOvbt2/xN998YwgA33zzjVJ2vXnS0KFDi/773/8ayuVyZGVlqV68eFFn8ODBJUOHDi36+eefDeVyOdLS0tTOnz+vCwC9evUqf/jwoWr1z7WiokKIiorSbLiX/wkKCjL08fHJ19bWbnYwxBkiREpWUlKC48eP48SJEygrK4O7uzv8/f1hY2Oj7NKIiIiIiJqloqJC4uTk5CKXywUVFRVx2rRpD9599917ALBq1arc1NRUDTc3N2dRFAVDQ0NZaGjozUmTJhXGxcVp9u/f3wl4NGtj9+7dt1VVVcXu3buXBwYGGi1durRrt27dKtasWVPzmMTEiRPtVVVVReBRUCCVSm/V1f7ChQsf+vr62vXs2dPZ1dW1tFu3buWt8dnXrl2bM3XqVFsHBweXnj17ljo6OpYZGBjUuedwt27dZKtWrbrbv39/Z1NTU5mDg0OZvr7+U/cn/vLLL9OnT5/e/csvvzQbP358XnPq7Nevn+OtW7c0y8rKVMzMzHp9+eWXqU/OqmmKOXPm5J87d07H2dnZVRAE8f33379jY2MjnzNnTv7x48f1HB0dXbt161bu6elZBDyacbJv376bK1assCkqKlKpqqoSlixZcs/Dw6NRP5f//ve/huvWrbvb3HoBoMFpLR2Fh4eHGBUVpewy/iQr6387SsXFxcHV1VWJ1fyPhYWFsktocxERERg2bJiyy/iDkpISHDt2DCdOnEB5eTl69+4Nf39/WFtbK7u0Ftcex/9FwvFXLo6/cnH8lYvjr1wcf+Vqq/EXBOGyKIoetY9FR0enuru759Z3T0eTlJSk7u/vb3/jxo04ZdfSGHK5HJWVlYK2trYYFxenMWrUKIebN2/GVj9y8qSCggKJvr6+QiaTYfTo0Xbz5s3LnTt3brO2kaW6RUdHG7u7u9s+eZwzRIjaWHFxMY4dO4aTJ0+ivLwcffv2hZ+fH6ysWn0dJCIiIiIiamVFRUWSwYMHO1avq7F9+/a0+sIQAFi7dq1FZGSkXkVFhTB06NDC2bNnMwxpIwxEiNpIcXExwsPDcfLkSVRWVtYEIZaWTdpZioiIiIjoheLo6FjZUWaHAICBgYEiNjY24cnjvXr1cqqsrPzDOp5BQUG3v/766ztPXtscFy9e1Jo7d+4ftqTMzs5WNzc3r6x9TF1dXRETE1PnQqYjR47skZGRoVH72EcffXTnWR6leRatXQ8DEaJWVlRUhKNHj+LUqVOorKxEv3794Ofn90I+ukRERERE9KKqL4RoKZ6enmWJiYnxz9JGeHj4zZaqpyW0dj0MRIhaSWFhYU0QIpPJ4OHhgbFjxzIIISIiIiIiagcYiBC1sIKCgpogRC6Xo3///vDz84O5ubmySyMiIiIiIqLHGIgQtZCCggIcOXIEkZGRkMvlGDBgAMaOHQszMzNll0ZERERERERPYCBC9Izy8/Nx5MgRnD59GlVVVRgwYAB8fX0ZhBAREREREbVjDESImikvLw9hYWE4c+YMFAoFBg4cCF9fX5iamiq7NCIiIiIipcvIyFBdunSp9dWrV3X09fXlampq4urVq7MNDQ2rPvvsM7OTJ0+m1L7e09PTMSMjQz0zM/O6RPJoM5aXX365x7lz5/RKS0uv1tfP4MGD7a9du9bJw8Oj+Mk2iRrCQISoiZ4MQry8vODr6wsTExNll0ZERERE1C4oFAqMGzfObubMmQ+Cg4NvA0BycrL6zz//3NnQ0LCsvvt0dXWrwsPDdUaPHl2cm5urcv/+fbWn9bVmzZrskpISyTfffMNfyKlJGIgQNdLDhw8RFhaGs2fPQqFQwNvbG76+vjA2NlZ2aUREREREdfrxxx+ts7KytFuyTQsLi9JXXnklo6FrgoODddXU1MR169blVB9zcHCo3Lhx432pVKpb332TJk16uHv3bsPRo0cX/+c//+k8bty4/O3bt2s11NeECROKGmqTqD4MRIie4sGDBzVBCAC89NJLGDNmDIyMjJRcGRERERFR+3T9+nWtXr16lTb1vlGjRhUtXry4q1wux88//2wYGBiYtn379i6tUSMRAxGieuTm5uLw4cP4/fffIQgCBg0ahDFjxsDQ0FDZpRERERERNcrTZnK0lTlz5thcvHhRR01NTdy6deud+q5TVVUVPT09i7/99lvD8vJyiaOjY2Vb1kkvFgYiRE/IycmpCUIkEgkGDx6M0aNHMwghIiIiImokNze3soMHDxpUv9+1a1f63bt3VT08PJyfdu+sWbMezpgxw27t2rVZrVslvegYiBA9lpOTg9DQUJw/fx4SiQRDhgzBmDFjYGBg8PSbiYiIiIioxrhx44reeecd4ZNPPjFZv359DgAUFxdLGnPv6NGji1esWHF3wYIFD1u3SnrRMRChF979+/cRGhqKCxcuQEVFBcOGDcPo0aPRuXNnZZdGRERERNQhSSQSBAcH31y2bJn1zp07zQ0NDeXa2tpV77333h0A+P333/XMzMx6VV+/e/fum7Xv3bx5873G9tWvXz/HW7duaZaVlamYmZn1+vLLL1MDAgIKW/YT0fOIgQi9sO7du1cThKiqqmL48OEYPXo09PX1lV0aEREREVGH17VrV5lUKr1V17ny8vIrTx57+eWXk+q6trS09GpD/Vy+fLnO+4iehoEIvXCys7MRGhqKixcvQlVVFSNGjMCoUaMYhBAREREREb1AGIjQC+Pu3bsIDQ3FpUuXoKamhpdffhmjRo2Cnp6esksjIiIiIqIGXLx4UWvu3Lndah9TV1dXxMTEJCqrJur4GIjQcy8rKwtnz57Fvn37oK6ujpEjR2LkyJEMQoiIiIjoeaVQKBSCRCIRlV1IS/H09CxLTEyMV3Yd1PEoFAoBgKKucwxE6LmVmZmJkJAQXLlyBSoqKhg9ejRGjhwJHR0dZZdGRERERNSaYnNyclxMTEwKnqdQhKipFAqFkJOTow8gtq7zDETouZOZmQmpVIorV65AU1MTY8aMgZaWFkaPHq3s0oiIiIiIWp1cLl+YnZ39bXZ2dk8Ajdrqlug5pQAQK5fLF9Z1koEIPTcyMjIQEhKCq1evQlNTE2PHjsXLL7+MTp06ISIiQtnlERERERG1iX79+t0HMF7ZdRC1dwxEqMNLT09HSEgIrl27Bk1NTfj5+WHEiBHo1KmTsksjIiIiIiKidoqBCHVY6enpkEqliI6OhpaWFvz9/eHj48MghIiIiIiIiJ6KgQh1OKmpqZBKpbh+/Tq0tbUxbtw4+Pj4QFtbW9mlERERERERUQfBQIQ6jNu3b0MqlSI2Nhba2toYP348fHx8oKWlpezSiIiIiIiIqINhIELtXu0gpFOnTpgwYQKGDx/OIISIiIiIiIiajYEItVs3b96EVCpFfHw8OnXqhIkTJ2LYsGHQ1NRUdmlERERERETUwTEQoXYnJSUFUqkUCQkJ0NXVxaRJkzB06FAGIURERERERNRiGIhQu3Hjxg1IpVIkJiZCV1cXAQEBGDp0KDQ0NJRdGhERERERET1nGIiQ0iUnJ0MqlSIpKQl6enqYPHkyhg4dCnV1dWWXRkRERERERM8pBiKkFKIo1gQhycnJ0NPTw5QpUzBkyBAGIURERERERNTqGIhQmxJFEUlJSQgODkZKSgr09fUxbdo0DBo0iEEIERERERERtRkGItQmRFFEYmIipFIpUlJS0LlzZ0yfPh2DBg2CmpqasssjIiIiIiKiFwwDEWpVoigiISEBUqkUN2/ehIGBAWbMmIGXXnqJQQgREREREREpDQMRahWiKCIuLg5SqRS3b9+GgYEBZs6cCW9vbwYhREREREREpHQMRKhFiaKI2NhYSKVSpKamwtDQELNmzYKXlxeDECIiIiIiImo3GIhQixBFEdevX4dUKkVaWhqMjIwwe/ZseHl5QVWVf82IiIiIiIiofeE3VXomoigiJiYGUqkU6enpMDY2xpw5c+Dl5QUVFRVll0dERERERERUJwYi1CyiKCI6OhpSqRQZGRkwMTHB3LlzMXDgQAYhRERERERE1O4xEKEmUSgUuHbtGkJCQnDnzh2Ymppi3rx58PT0ZBBCREREREREHQYDEWoUhUKBq1evIiQkBJmZmTAzM8P8+fPRv39/BiFERERERETU4TAQoQYpFIr/Z+/Ow+O47zvPv6v6wn1242jcBwESIHgA4CGSJimJlBzLijMee5LVjBNvfOx6NrvZZLMzT+JnnYyfZJKJM8l4FMexnfhK7MhHoliJZFHiKYk3AV4CwBsECIDERZAUjgYa3bV/dKMJkCBFkQALx+elB093V9fxrUILRH3wO2hsbOTVV1+lq6uL7Oxsfv3Xf501a9Zgmqbd5YmIiIiIiIg8FAUiMq1wOExDQwOvvvoqV69eJTc3l8985jPU19crCBEREREREZF5T4GITBEOhzl27BivvfZaLAj57Gc/S11dnYIQmfcsy4LxMIyHscbDEApjBUMQsrDGQ1Pfsyy7y50xnivDBFu67Tm4YYAxzXMMDCO6LPJy6nMmbzf9esb99j/lWFNfG3e+N8scg0HCA8OP74ALmGVZEA6DFcYKhyAcwrIirwmHIsuscHQZYIVxdXcxev5MZFui/29bkcfIsug+sbCij1Pen7zd5HVi606sN3XfWLffx4psZxEmbIWjiywi/0E4VsvEcghbYHF7HcsKE+b2dpF1I6/DkTVi+4lUbEXKtGBiT+HIjgjH9mnF9heetM+Z1N3VyTs9jTO707luhn++PMruejo72d+7yK7/LKt//gt44uLtLkNEZogCEQEgFApx9OhRXnvtNbq7u/H7/Xzuc5+jtrZWQcgMscIWjIewgmEIhiI34uPhux/HJ96PPo7f53Es8jhlH8FxwqPB6C/fUUbk3mDyDaYVvam0pnnfir2+Y53ojaeg9LIAACAASURBVKqFFd3GiC6zsCZuYA3j9i/rhoEFOK92cqkhENl24hjhMFZwHMbHo3WHsMZDGBPBRDAEoTBEXxvRAMMIRUONkIUx+WvcgjDR12CEufvReox3wXNICdBPk91lLFpLgB5O2F3GolUGDNBpdxkPzIh+LZR/ecvJAUJ2l7Folen6z7hba3rwFRfZXYaIzBAFIovU0EAnPZcO4kr0cq79FnveOkJPby95eXl8/vOfZ/Xq1Q8UhFiWBcEw1tg41ug4BMaxxkJYgWDkMbZsHCswjjUagtjzyOP4aJBQYIzxkTHCgSDhkVHCgbHIepGjcPvO3or+9Wryn7AmLbNiS2LvAXiHhrn04ru335tmH7c3n9iJNXVfk2qAyI03IQtjPBy54R63IATmxA15yIjejBuYYWPWb8atyEHBCEWfW1NTDqLPLTCm/On99vK7lt3eeXTJpL/MT7ONcY9f4csB6L933dxOLaxYenH7uRV7PfFoRc/Tin6FCRsWlhkGp0XYHf1rqRmOhDux9cAyo38dNa3INtGgJ2xAyDQIRR8nAqNYndNWP53pr8H9tr/zWFNWvvO9x+bRj2sA1qTPvTHlMzX5GFM/a3cd2brjMzyxtykXdfp6I//fGbFLakQ/t/f+fky/H+sB1rm97h3vv8+lvGv92PEmbo3vrGHq9bCmXNZpruldx5gUdE5Zd5rlEwHmXfszI4EoZuTLMCO1xJZFHpn83JhYZkT3N/G9Mae+tsxJ5z71GiwYC/CU7slicZ3vXKPrP+OeT86wuwQRmUEKRBahy8df5vA/fpGuoVTaAmWMhBNJNG+xIqGDglun6fvBft76bgru0STcgUQ8I0l4hhJxjbgxg2AEIzf/ZtDADD34jX7kZtYCM3z7ywhhOUfBEQTHGJZjDMMZxOEIYpnjkQ1ju590S3LnsljLhYllxpR1UhwGjE26tzSsSetP3efdywwgcuM85ebUETmniRvtcPSmOxy9AQ9Hf6cPA2HDiN5wR55HbrhNQiaEDJOwaRA2TUKGg5ABYdNByDAImSbWxHLTJGSahA1HdBsHYcNk3IzcjERuKhzR83JFbzymepjfiSa2mRwW3XnbdNv0f4WyQiEM0zH1tsuyCBlmJAywHFg4ohlUdO+WcZ/f4+64PTUeNK64ez1j2vOY+6a7iX6Q77B11/+v97oZv/c6d+9jmuPM4d/A5/r3/ME/z/fYfurO7nhq3H5uTLM+k5cbU37kGZP3ZRqYRvTRNDAMA4dpTHltmmAaJobDwIy9jq5jGLHlk/cV2Yc5Zd+meXu9yH6j+5r02rhjPTP689oALl26SPmSJZFoJZLLRM8lcn6mefv5xHsT18qI1jxxzSZqmLgepmnE/pm4va0RbSwX2d6Ibnz7uItLY2MjtbW1M7zXuXwdH+L/34fup/T+2x0/fpzVq1c/5P5lOq50dZcRWUgUiCwi46ODnH3zTznd3MyVkTUME4fPMcTm5GZy3N2MGSECVpiA1ckNl0U4Yer2pmHhcYLHGSbOFcbtCuNxhfG4Q5EvTxjDDINpgWFhGGEMw4p+he/5h+7p/vYrIiKLVDj6OEOt/Fc6gEsPt601c2UsWkVA/x67q1i8CoH+vXZXsbCkPddBfHyu3WWIyAxRILJIXO84we6ffJWL72URsGrITe7j2ZIDFGR2RVo3YERaMhD5y27IgvFxg7GgyfioSTBoEBxzEBozGRwzuTnswBp33XEUC8NlYbjDEPuywG0Rdoex3BZhB9HB3iaOZ8QGj5tYZk1afuffPqZrtj7930emNrW2LDBME+POpvPRVhRTupAYt7c1iHRnMCb2ZUzuNBJdbtwR6sRe3F6TSX9hvL3eNF0DHmjJPda7a5HF1CMY91nZmG4t7q7wAVKtO7czDAIjI8TFx9+1v0f5O/jDtkCYyy0XPoj3O4vJ7w+NDJEYnzjNWpNbXU36vN5rnXsd965v5MO32LGm23baRdMtnG5/9zruTH8O7r2/kcAI8R9wAL653YblEa7eQ7SQeKhjTTrOyMgI8fEPcv0f7qym+0k+783gKY0MDxOfkPD+Kz6g+XC1H+7/34f9N+3+Zvr6C/yyqRYiIguJApEFbjw4yu4ff43jF7sJWMVkJfTz/JL9XMm4wR5qcDurcZhOTMOBw3DhMB04zMmPTpymC4fDidN04nC4cJounA4nDgsco8OYgWGMkUGs4UGsoZuEhm4SGhxg/OaN6Cj8EQbgjkvCk+LDk5JFXGo28ak5xKflEJ/qJzE9j7ikLJwOFw7DGWlqHe2XbkwKJSaex5o8Y2AY5n2bIu/du5etW7fO8tWWe9H1t5euv710/e2l628vXX976fqLiNyfApEFKhQKcXT/Ht7at5eRsIsM1yi/tOxtxr197AtX8NH6v+LTZc/Oan/mcDhE4FYPQzc6GbrRyfCNToYGoo83Oum90sT46OCUbUynh8Q0PwlpflJ8ZWSVPkF22RN4EjWAlYiIiIiIiMwcBSILzPj4OMePH2ffzjcYGhsnxTHIU2XHKS1u5/VxH17v7/H7W38Hp8M967WYpoOEtFwS0nLxUX/X+5ZlEQzcmhKSDN3oZHigk6EbXbQ2/CPnD34fgDR/NdllG8gu20BW6TpcnqRZr19EREREREQWLgUiC8T4+DiNjY288/bbvDc4SIpjgHUZZ9hUdZYGdwKvu1/g+TW/TbIn87GEIQ/CMAzc8am441NJ91fd9X44FOR6xym6Lx7g2oX9nD/4fc6+/S0M00Fm/iqyyzeQXb4Rb2EtDlecDWcgIiIiIiIi85UCkXlufHychoYG9u/fz3vvvUeaeZMViWdYVXiZUO4Y/8Rati7/ElvSq+0u9QMzHS68RXV4i+qofur/ZDwYoK/tGN0XDtB98QDNe/+Kpt0vYjo9+IrqyC7fRHbZBjLyV2A69NEWERERERGRe9Nd4zwVDAZjQcjg4CC+8CilySfJTuimuPQmh+KzKCj8Ip8q/IVZHSfkcXK64sgp30RO+SYAgoH36Gk9HA1I9nNqx59G1vMkkVW6juyyjWSXbyQtu9LOskVERERERGQOUiAyzwSDQY4dO8aBAwcYHBwkx3CzwnMKV1wnWZnD3MgPccL7BZ6r+gJux8KeFswVl0zesm3kLdsGQGCwn55LB+m+sJ/uiwfoatkFgCcxAyO5nAtxHWSXbyQps3jBhEQiIiIiIiLycBSIzBNjY2OxIGRoaIj8lEy2DLYRKDgMhkVG4SDnsjeyZeV/IT3eb3e5tohLyqRwxUcpXPFRAIZudNF9cT/dFw7Q3rSboy//HgAJqf7I+CNlG8gu20hCWq6dZYuIiIiIiIgNFIjMcWNjYxw9epSDBw8yNDREUV4B2zotnOk/pT8/QGJCkOtFyeSu/hq/5F1jd7lzSmKan9K6T1Ja90kCe/ZQt7woGpDsp7NlF60NPwUg2VsaDUg2aopfERERERGRRUKByBw1NjbGkSNHOHjwIMPDw5SWlFLVB4WX93Kx4hSjYybunCChut9gW9mvYRoOu0ue0wzDIMVXSoqvlCXrP4UVDnPjWkts/JHLjS9z4dDfA5CWW0V2+cbIFL8la3HFJdtcvYiIiIiIiMw0BSJzzOjoKEePHuXAgQOMjIxQVlbGqowCCl7ez7VN/0yzw8AJWCtrWLXxz4l3pdhd8rxkmCbp/mrS/dUs3fy5B5riN6tsA76iOk3xKyIiIiIisgAoEJkjRkdHYy1CRkZGKC8vZ8PqNbi/tRtn+Z9xaX0Ht254MDJclH7kRXIzV9ld8oLywaf43UjOkg+RkbcCwzTtLl9EREREREQ+IAUiNgsEArEgJBAIsGTJErZ8aDPB14+T+v2vM7jlDS50JBIadpO25nlq1v8upm7AZ937T/H7FU7t+Apxyb7ITDdVz5BdvhGnWo+IiIiIiIjMCwpEbBIIBDh8+DCHDh0iEAhQUVHB5s2bcfcMEv6jH+J49qf0JIxwrS0ZR2oqqz/21ySnl9hd9qI13RS/V8/to7P5DdpOvMLFI/+AwxVPbsVm8qqewb/0KeKSMm2uWkRERERERO5FgchjFggEOHToEIcOHWJ0dJTKyko2b96MNzWD9t//ASz5F+I/fprzl9IJjCaSs/qTLNn4m5gOfavmkrikTEpqP05J7ccJjY/Sc/EQHc1v0Nn8Jh1NO8Aw8BbVkV/1DHlV20nxldldsoiIiIiIiEyiu+zHZGxsjD179nD48GFGR0dZunQpmzdvJjc3l7Pfe53QhdfJeO5VBq87Od3ixZmQxspP/AlpeavtLl3eh8PpIbdyC7mVW6j/pT9koOtdOpvfpLN5Jyde+6+ceO2/kuwtJa9qO/lV28ksqsM0NSuQiIiIiIiInRSIzLKRkREOHjzIwYMHGR8fZ9myZWzevJmcnBy6mi5y4U++Qty2H5P1dA/vXsxkcNCNb8nTLHnqP+OK0wwy841hGGTk1ZCRV0PN9t9maKCTzpaddDa/ybn93+bMW9/AnZBO3rKnyavaTs6Szbg8iXaXLSIiIiIisugoEJklg4OD7Nq1iyNHjjA2NkZeXh7PP/882dnZBIYDnPi97xFf9o8U/buT3Bpwc7jJj4GHyu2/Q/ay5zAMw+5TkBmQmJ5HxYZfo2LDrzE2cotr5/bR0bKTjuY3aG34KabTQ075RvKWbcNftY2ElBy7SxYREREREVkUFIjMkp07d/LOO+9QXV3N5s2b6e3tJTs7m4a/30nc5Z+R++zreM1RTrVmcavfSXL2MpY++wckpBfaXbrMEnd8CoUrn6dw5fOEQ0F6Lx+NjDnS/AZdZ3bDy79HRv5K8qq2k1e1nbScpQrGREREREREZokCkVmybds2iouLycrKAuBM41kavv8VEre8xNKSHnoH4zhypYKxoSEK6n+V4vWf08Cpi4jpcJFdtoHssg2s/uiXuNl9LjruyJucfuPPOP3Gn5GYXkBe1TbyqraTVbIO0+Gyu2wREREREZEFQ3fgsyQpKYmsrCzeey/Aif/+ExLLXmLpL75LvBWmqW8Z/e1DuBMSWPlv/xtp+XV2lys2MgyDtJxK0nIqqX7qNxi51U1nyy46W97k4uEfcm7/d3DFpeBf+iR5y7aTW7kFd3yq3WWLiIiIiIjMawpEZkkoFGbf3+/B1fNjip/aSaEzwLVABud6V3Dr2nm85U9R8fR/xhWnG1uZKj4lm/J1L1C+7gXGx4a5dv6dSLeall20nfgZhukkq3Qd+VXP4F+2jaSMArtLFhERERERmXcUiMySH/6n3yS95iesKuklaDk4fetZbra1Ew51ULHti+RUfVTjQ8j7croTyK9+hvzqZwiHQ/S3H6ez5U06m96k4ZXfp+GV3yctdxl5Vc+QV7WNDH8NhmnaXbaIiIiIiMicp0BkllTUH6bQ1Uufo56+myvoP7uD5KxlLP3wf9HAqfJQTNOBr7geX3E9q37hd7nVeyk6pe8bNO9+kaZdXyU+JZu8ZdvIq3qG7LIncLji7C5bRERERERkTlIgMkvqPv4a54/8HRf3/xMjA28QX/wRVn30dzUwpsyYFF8pKb7Ps2zz5xkduk7Xmd10Nr/J5eMvc+HwD3C6E8hZsjkype+yp4hL8tpdsoiIiIiIyJyhQGSWtJ18k5OvvYgrIZ0VH/9Lum7FKQyRWeNJzKCk7hOU1H2CUDBA98UD0dYjO+loeh0MA29BLf6qp8lftp2U7Ap12RIRERERkUVNgcgsSfaW4i3bwpKn/hOuuFS6mprsLkkWCYcrDv/Sp/AvfYr6X/ojBrqa6Gx+k66WnZx6/U859fqfkphREO1asx1f8VocTrfdZYuIiIiIiDxWCkRmSVbpOqriNPuH2MswDDLylpORt5ya7b/F8M1rdLXspLNl5+0pfT3J5FZuIa9qO7mVT+JJSLO7bBERERERkVmnQERkEUlIzaF8/X+gfP1/iE3p29myk66WXbSf+lcM04G3qJ68qu3kLdtGiq/U7pJFRERERERmhQIRkUVq8pS+VjhMf8fJWOuRE6/+ISde/UOSvaWxcMRbVIfp0I8MERERERFZGHR3IyIYpom3cDXewtWsePb/ZWigIzYo67n93+bMW9/AnZCGv/JJ8pZtI6diC+74FLvLFhEREREReWgKRETkLonp+VRs+DQVGz5NMPAeV8+9Felac2Y3l4+/jGE6ySpdT17VNvKWbSMpo9DukkVERERERD4QBSIicl+uuGQKVzxH4YrnCIdD9Lc1RFqPtOyk8ZU/oPGVPyA1pzIya82y7WQWrMIwTbvLFhERERERuS8FIiLywEzTga9kLb6Staz6yO/xXt/lWDjSsu+vad7zNTxJXvxLn4p0rVnyIVyeRLvLFhERERERuYsCERF5aMneYpZ+6LMs/dBnGRu+Qde5fXS17KSj6XVaj/0Y0+khu2wDQ84ihm9UkpCWa3fJIiIiIiIigAIREZkh7oQ0ild9jOJVHyMcCtJ7+SidzTvpbHmTwf49/Kzpu6T7l5O37GnyqraTnleDYRh2ly0iIiIiIouUAhERmXGmw0V22Qayyzaw+qP/Hztf/SF5SbfoatlJ0+4XeXfXV4lPziKnYgu5lVvIWbIZT0Ka3WWLiIiIiMgiokBERGaVYRi4kvKo2vrvqdr6BUaHrtN1ZjddZ/fS2fImrQ0/wTBMMgpWkVuxhdzKrWTkr8A0HXaXLiIiIiIiC5gCERF5rDyJGZTUfYKSuk8QDoe43nGKq2f3cvXcPt7d9T94d+df4E5II2fJ5khAUrGZ+JRsu8sWEREREZEFRoGIiNjGNB14C1fjLVxNzfbfYnRogGsX3ubq2X1cPbeX9pOvAJCWW0Vu5RZyK7biLarD4XTbXLmIiIiIiMx3CkREZM7wJKZTtPIXKVr5i1iWxY2rLVw9t5erZ/dx5q1v0bL36zjdiWSXb4wFJEkZBXaXLSIiIiIi85ACERGZkwzDIN1fRbq/iqqt/5Hg6CDdFw7EApLO5jcASPaVxcYeySpdj9MVZ3PlIiIiIiIyH8zZQMQwjA8DXwUcwN9YlvUnNpckIjZyeZLIr36G/OpnsCyL9/ouRcYeObuPi4d/wLn938bh9OArXU9uxRb8lVtJ9pVpal8REREREZnWnAxEDMNwAF8DtgMdwFHDMF6xLKvZ3spEZC4wDIMUXxkpvjIqN32G8WCA3kuHY61Hjv/rlzn+r18mMT0/Mjhr5VZyyjfiiku2u3QREREREZkj5mQgAqwFLliWdQnAMIyXgI8BCkRE5C5OV1xkTJHKLfA8DA10cPXcPq6e3UfbyVe4eOSHGKYTb1FdbOyR9NwqDNO0u3QREREREbGJYVmW3TXcxTCMTwAftizrs9HXnwLWWZb1G5PW+TzweYDs7Oy6l156yZZa7ycYDMaeBwIB4uLmxtgGLpfL7hIeu8HBQZKSkuwuY9Gy8/pb4XHGblxgtPc0o32nGL/VBoDpTsXjW47HuwKPdzmme+G2HtHn3166/vbS9beXrr+9dP3t9biu/5NPPtlgWVb9rB9IZAGaqy1Epuv0PyW5sSzrm8A3Aerr662tW7c+hrI+mK6urtjzpqYmqqurbazmNr/fb3cJj93evXuZi5+RxcL+678t9mzkvR6unXsr0oLk3Fvc6NwPhkFm/srY4KwZ+SsxHXP1x+MHZ//1X9x0/e2l628vXX976frbS9dfZO6bq7/xdwCT59LMB7rusa6IyAOLT86ipO4TlNR9gnA4xEDn6djgrE27X+TdXV/FFZ9CTtlGsss3kV2+kWRviQZnFRERERFZYOZqIHIUWGIYRgnQCfwK8IK9JYnIQmOaDjILVpFZsIrl2/5vRodv0H3+bbrO7qX7wjtceffnACSk5pJdvjH2lZCSY3PlIiIiIiLyqOZkIGJZ1rhhGL8B7CAy7e63LctqsrksEVngPAlpFK58nsKVz0en9m2l++J+ui/sp7NlJ60NPwUgxVdOdvmGSEBS+gTuhDSbKxcRERERkQ9qTgYiAJZlvQa8ZncdIrI4Rab2LSXFV8qS9Z/CCocZuNpM94VIQHLp2E84f/D7YBhk+JdHW49swle8Bqc73u7yRURERETkfczZQEREZC4xTJOMvOVk5C1n2Zb/jdD4GP1XjtN94QDdF/dz9p2/pWXfX2M63HiLaskui7QgySxYhelYfDM7iYiIiIjMdQpEREQegsPpJqtkHVkl66jZ/luMjw3T03ok1oLk9M6/4PSbf47TnUhW6TqyyyLjj6TlLMUwTbvLFxERERFZ9BSIiIjMAKc7AX/lVvyVWwEYHRqg59JBrkUDkq4zuwHwJGZEWo+UbSC7fBNJmUWawUZERERExAYKREREZoEnMZ2Cmo9QUPMRAIZvXOXaxXdiLUjaT/0rAAlpeWSXbySnfCPZZRuIT8m2s2wRERERkUVDgYiIyGOQkJZLad0nKa37ZHQGm0t0X9jPtQv76WzaQeuxHwOQkrUkEo6UbySrdD3u+FSbKxcRERERWZgUiIiIPGaRGWzKSPGVseSJXyUcDnGjqynWvebi0Zc4d+C7GIZJel5NrAWJt3gNTlec3eWLiIiIiCwICkRERGxmmg4y8leQkb+Cqq1fIDQ+Sn/7CbovvMO1i/s589Y3adn7V5hOD96iOnLKN5JV+gQZ+StwON12ly8iIiIiMi8pEBERmWMcTg9ZpevIKl1HDf8PwdFBeluPxFqQnNrxlch6rni8RbVklawnq3Q9mYWrcDg9NlcvIiIiIjI/KBAREZnjXJ4k/Eufwr/0KQBGh67T03qYnkuH6Ll0mNM7/xwsK9KCpHA1WSXr8JWux1tUpy42IiIiIiL3oEBERGSe8SRmULD8FyhY/gsAjA7foLf1SCQgaT1E0+4XsXZ9FdPhIqNgJSOOXK76TXzF9TjdCTZXLyIiIiIyNygQERGZ5zwJaeRXP0N+9TMAjI3covfyUXpaD9F76TBDba+y9+K/YJhOMvJXRLrjlKzHV1yPKy7Z5upFREREROyhQEREZIFxx6eQt+xp8pY9DcDunT9nWUECPa2H6Ll0iLNv/w0te78encVmeXQMknX4StZqml8RERERWTQUiIiILHCmM57cyi3kVm4BYHxshL72BnouRcYhOXfgu5x5+5tgGKTlVpFVso6s0vVklazDk5huc/UiIiIiIrNDgYiIyCLjdMeTU76JnPJNAISCAfqvnIgO0nqIi0d+yLn93wYgNacy1oIkq3Q9cUleO0sXEREREZkxCkRERBY5hysu0iKkdD0AofExrnecjLUgaW34CecPfg+AFF95pHtNaSQkSUjJsbN0EREREZGHpkBERESmcDjd+IrX4CteQ/VTv0E4FOR6x+noGCSHuXziZ1w4/AMAkjKLyS5dHw1I1pOY5re5ehERERGRB6NARERE7st0uPAW1eItqqVq638kHBpn4GoTPZcO03vpEO3vvsbFoy8BkJhREOliUxIZpDUpswjDMGw+AxERERGRuykQERGRD8R0OMnMX0lm/kqWbf484XCIm9fORMcgOUxny05aG34CQFyyD1/xWrJK1uIrWUtqzlJM02HzGYiIiIiIKBAREZFHZJoO0v3VpPurqdz0GaxwmFu9F+hpPUxv61F6W49w5fSrALjiUvAW1cUCkoz8FTicHpvPQEREREQWIwUiIiIyowzTJDW7gtTsCpas/xQAQwMd9LQeobf1CL2Xj3Dy7B4ATKeHzIJVkYCkeC3e4jpcniQ7yxcRERGRRUKBiIiIzLrE9HxK0vMpqf04AIHBfvrajkVDksM07/0rrPCLGIZJmr9qSjcbTfUrIiIiIrNBgYiIiDx2cUmZ5Fc/S371swAER4foa2ug93Kki83Fwz/g3P5vA5DsLcVXcjsgSUwv0ECtIiIiIvLIFIiIiIjtXJ5Ecis2k1uxGYDQ+BgDnacjLUguH+HKu69xKTqTTXxKzu2ApHgtqdkVGKZpZ/kiIiIiMg8pEBERkTnH4XTjLarDW1QHfAErHOZG99nIGCTRbjbtJ18BwB2fire4PtbNJj2vBofTbe8JiIiIiMicp0BERETmPMM0Sc9dRnruMio2/BqWZTF0vZ2ey0diM9l0tewCwOGKI7OwlqziNfhK1pJZWIvLk2jzGYiIiIjIXKNARERE5h3DMEjKLCIps4jSuk8CMPJeL32Xj8am+23a/SKWFcYwHaT7l0/qZrMGT2KGzWcgIiIiInZTICIiIgtCfLKPgpqPUFDzEQCCgffobWuITfV7/uD3Ofv2twBIySrHF21B4iteo4FaRURERBYhBSIiIrIgueKS8VduxV+5FYBQMMD1jlP0XD5C3+VjtJ96lYtH/gGA+JRsfMVr8ZWswVe8htScpZimw8bqRURERGS2KRAREZFFweGKi7QIKVkLQDgc4mb3uWg3m8hgre2n/gUAlycZb1FdNCBZS0bBSpyuODvLFxEREZEZpkBEREQWJdN0xAZqXfLEr2JZFsM3OulpPULf5aP0Xj7KqR1fiazrcJGRtyLWgsRbvAZPQprNZyAiIiIij0KBiIiICJGBWhPT8ylJz6ek9uMAjA4N0Nd2jN5oQHL2nb+lZd9fA5CaXRELR7JK1pKQlqdxSERERETmEQUiIiIi9+BJTCevajt5VdsBGA8GuH7lZCQgaT1C24lXuHD4BwAkpObGwhFv8RrSsisxTNPO8kVERETkPhSIiIiIPCCnK46s0nVkla4DouOQXDtL7+Uj9LYepbf1MO0nXwHAFZeCr7iewXAmPUXxZOavxKFxSERERETmDAUiIiIiD8k0HaT7q0j3V1Gx4dNYlsXQwJVoC5Kj9F4+wns9u9l17ieYDjcZBSsi0/0Wr8VXVIdb45CIiIiI2EaBiIiIyAwxDIOkjEKSMgopqf23AOx+41+oyPdEA5KjnHnrW7Ts/ToAqTmVkXCkODJYa2J6np3li4iIiCwqCkRERERmkelOJr9qK/lVzwAwPjZC/5UTsYFaLx9/mQuH+smWlQAAIABJREFU/g6AhLS8WDjiK15DanaFxiERERERmSUKRERERB4jpzue7LInyC57AoBwaJwb187EpvrtuXiAthP/DETGIfEW1cUCkoyClTg1DomIiIjIjFAgIiIiYiPT4SQjbzkZecup2Pi/RsYhud5Ob9uxWDebq2f3RNd1kZ5XEw1I6vEW1ROXlGnzGYiIiIjMTwpERERE5hDDMEjKLCIpsyg2Dsno8A362o7Futmc2/8dzrz1DQCSfWX4iuojIUnJGpIyizEMw85TEBEREZkXFIiIiIjMcZ6ENPKWbSNv2TYAQsEA1ztP03v5KH2Xj9HRvINLx34UWTfJOyUgSfdXYzpcdpYvIiIiMicpEBEREZlnHK642LgiAFY4zK3eC9EWJMfou3yUjqbXY+tmFqzGV7wGb3E93sJa3PEpdpYvIiIiMicoEBEREZnnDNMkNbuC1OwKytf9ewBGbnXTe/lYtBXJUZr3fg0rHALDIC1nWSwg8RWvITHNb/MZiIiIiDx+CkREREQWoPiUbApXPEfhiucACI4O0X/lOL2tR+lrO0Zrw085f/B7wMR0v/XRkCQy3a9pOuwsX0RERGTWKRARERFZBFyeRHLKN5FTvgmYmO63JTYOSc/Fg7Sd+Flk3bgUvIW1+Eqi0/3mr8TpjrezfBEREZEZp0BERERkEYpM91tDRl4NlRt/PTLd78CV2BgkvZePcmrHVwAwzMi6t7vZ1BOX5LX5DEREREQejQIRERERiUz3m1FIUkYhJbUfByam+22IjUNy7uD3OPP2NwFI9pbgLYqEI96ielKyyjXdr4iIiMwrCkRERERkWpHpfp8mb9nTAITGR7necZq+tshgrZ0tO2lt+AkA7oQ0vEV1kdlviurJyF+BwxVnZ/kiIiIi96VARERERB6Iw+mJDr5az7It/zuWZfFe36VoN5tj9LYdo6tlFwCmw01GXk2si423qJ64pEybz0BERETkNgUiIiIi8lAMwyDFV0aKr4yyNb8MQGCwP9LNpi0yWOu5/d/hzFvfACDZWxoJSKJdbZJ9ZepmIyIiIrZRICIiIiIzJi4pk/zqZ8ivfgaAUDDA9Y5T9LZFWpF0Nr9J67EfA+BOSMdXVIe3eA2+4noy8mrUzUZEREQeGwUiIiIiMmscrjh8JWvxlawFiHSz6b1I7+XIOCR9bcfobNkJRLvZ5Ee72RRFQhJPYoad5YuIiMgCpkBEREREHhvDMEjJKiclq5yytb8CQGCwLzqbTaQVybl3vs2ZfdFuNr4yfEX1sbFIkr2l6mYjIiIiM0KBiIiIiNgqLslLfvWz5Fc/C8B4MMD1jpOxgVo7mndw6diPAPAkZsRms/EW1ZORX4PD6bGzfBEREZmnFIiIiIjInOJ0xZFVso6sknUAWOEwt3ovRFqQtB2jNzoWCYDp9JCRX3O7FUmRutmIiIjIg1EgIiIiInOaYZqkZleQml1B+boXABh5rzfazSYym83Zd/6Wln1/DUzqZlNUR3AwhBUOY5imnacgIiIic5ACEREREZl34pN9FCz/MAXLPwxEu9lcORmZ7retYUo3m39q+G94C2vxRqf7zchfidMdb2f5IiIiMgcoEBEREZF5z+mKI6t0HVmlt7vZvNd3iXd2/IDMuEH62hroOrMbAMN0ku6vigQkRXV4i+pJSMu1s3wRERGxgQIRERERWXAM0yQlq5yEgi2s27oVgNGhAfraG+lrO0ZfWwMXj/yQc/u/DUBCWl5ksNaiOrzF9aTlLMN06NckERGRhUz/0ouIiMii4ElMJ2/Z0+QtexqAcCjIQFdzbKDW3tbDtJ98BQCHK57MwtWxsUi8hatxJ6TZWb6IiIjMMAUiIiIisiiZDheZBSvJLFhJ5abPYFkWwze6IoO1tkVmtGne+zWscAiA1OyKSDgSDUmSvSUYhmHzWYiIiMjDUiAiIiIiAhiGQWJ6HonpeRSt+kUAgqND9F85QV9bA31tDbSffpWLR/4BAE9iRjQgqcNXVE96/gqcrjg7T0FEREQ+AAUiIiIiIvfg8iSSU76RnPKNQGSw1ls95+lta4iNRdLZ/CYQaXGSnldzeyySojriU7LtLF9ERETuQ4GIiIiIyAMyTJPUnEpScyopX/cCAIHB/mgLkkhAcv7g9zn79rcASMwomDKbTWpOJabpsPMUREREJEqBiIiIiMgjiEvKJL/6GfKrnwEgND7KQGdTbCyS7vPv0Hb8ZQCcniQyC1bFApLMwlW441PtLF9ERGTRUiAiIiIiMoMcTg/eolq8RbUs5XNYlsXQwJVIQHL5GH3tjTTtfhHLCoNhkJq1ZNJgrbUke0s1WKuIiMhjoEBEREREZBYZhkFSRiFJGYUUr/43AARHByODtV6+e7BWd0J6NFCJDNaakb8SpzvezlMQERFZkBSIiIiIiDxmLk8SOeWbyCnfBEQHa+29EO1m00B/WyNdLbsAMEwH6blVU6b8TUjzqxWJiIjII1IgIiIiImIzwzRJza4gNbuCsrX/CwCjQwP0tTdGBmxtb+Ti0R9x7sB3AYhPyZ4SkKT7q3E43TaegYiIyPyjQERERERkDvIkppO37Gnylj0NQDg0zo1rLdEZbRroa2vkyunXADCdHjLya2LdbDILa4lP9tlZvoiIyJynQERERERkHjAdTjLyasjIq6Fiw6cBGL51jf62xlg3m3PvfIcz+74BQFJG4ZRWJJryV0REZCoFIiIiIiLzVEJKDgk1H6Gg5iMAhIIBrne+G2tFcu38O1yemPLXnUhm4apYQOItXK0pf0VEZFFTICIiIiKyQDhccfiK6/EV1wNMmfJ3optN88SUv0BK1hJ8E61Iius05a+IiCwqCkREREREFqjpp/wdikz5Gw1J2t99jYtHXwLAnZCGt7A22tWmjoz8lbg8iXaegoiIyKxRICIiIiKyiLg8ieSUbySnfCMwMeXvxdutSNob6DqzGwDDMEnLrcJbFA1JCmtJzChUKxIREVkQFIiIiIiILGKRKX+XkJq9hLK1vwLA6PAN+tuPxwKS1oZ/5PzB7wPgSfLiK6ojs7AWX1Ed6fkrcLri7DwFERGRh6JARERERESm8CSk4V/6JP6lTwIQDoe4ee1sLCDpa2uko2kHAKbDRbq/OhaQZBbVkZjmt7N8ERGRB6JARERERETuyzQdpPurSPdXseSJTwEQGOyjr70xNljrxcM/4Nz+bwOQkJpLZmEtQ8FU+kpTSfdX43C67TwFERGRuygQEREREZEPLC7JS37VM+RXPQNAOBRk4GpzLCDpa2tg+EYnb575IQ6nh/T8mug4JHV4i2qJT86y+QxERGSxUyAiIiIiIo/MdLjIzF9JZv5KKjf+OgC7Xv8nlvg9sZYk5975DmdC3wAgMaMgMt1vdFabtJylmA79aioiIo+P/tURERERkVnhiMugcMVWClc8B0AoGGCgq4netgb62xroubCftuMvA+B0J5CRvzI65W8t3sI6PInpdpYvIiILnAIREREREXksHK64aOBRB4BlWQzf6IwFJH1tDbTs+zpWOARAsrf0dkBSVE9q1hIM07TzFEREZAFRICIiIiIitjAMg8T0fBLT8yle9TEAxseGud5xKjoWSQNdZ3bR2vATAFyeZDILV8XGIsksXIU7PtXOUxARkXlMgYiIiIiIzBlOdwJZpevJKl0PRFqRDPZfjgUkfe2NNO36n1hWGAyDFF95bLpfb2EtKb4ytSIREZEHokBEREREROYswzBI9paQ7C2hpO4TAARHB+m/coK+y5GA5Mq7P+fi0ZcAcMenkllYGx2stZbMwtW4PEl2noKIiMxRCkREREREZF5xeZLIKd9ETvkmAKxwmFu9F+lrb4yMRdLeyOmzewAwDJPUnMrYbDbeojqSMosxDMPOUxARkTlAgYiIiIiIzGuGaZKavYTU7CWUrfllAMZGbtLffoK+9khXm7YTr3Dh8A8A8CRmkFm4+vZYJAUrcboT7DwFERGxgQIREREREVlw3PGp5FZuIbdyCwDhcIhbPRemjEXS1bILAMN0kJazbNKUv7UkZhSqFYmIyAKnQEREREREFjzTdJCWU0laTiXl614AYHRogP4rx2MhSWvDTzl/8HsAxCX5omOQRMYiychfidMVZ+cpiIjIDFMgIiIiIiKLkicxHf/Sp/AvfQqAcGicm91n6WtrjHa1aaSjaQcAhukk3V8daUES7WqTkOZXKxIRkXlMgYiIiIiICGA6IqFHur+aJU98CoDAYB997Y30tTXS397IxSP/wLn93wEgPiU7OlhrPd6iWtLzluNweuw8BRER+QAUiIiIiIiI3ENckpf8qmfIr3oGgHAoyI2rLbGQpK+tgSvv/hwA0+EmPW95bMrfSCuSXDvLFxGR+1AgIiIiIiLygEyHi4z8FWTkr6Biw6cBGHmvJxaO9LU3cP7Q33H2nb8BICHVP2kskjrS/dU4nG4bz0BERCYoEBEREREReQTxyVkULP8wBcs/DEBofIwbV5ujg7U20tfeSPupfwXAdHrIyFuOtzAyo01mUS0JKTl2li8ismgpEBERERERmUEOp5vMglVkFqyictNnABi+eS023W9/WyPnDnyXM29/E4DE9PzYbDbewjrS/VWYDpedpyAisigoEBERERERmWUJqTkUrniOwhXPARAaH2Wgsyk6FkkDva1HaD/5CgAOp4eM/BVkFtXiK6ons7CW+GSfneWLiCxICkRERERERB4zh9MTncK3Fj70WQCGbnTRH21F0tfWyLl3vs2Zfd8AIDGjINbNxltYS1ruMrUiERF5RApERERERETmgMQ0P4lpfgpXPg9AKBjgeue70W42DfRcPEDbiX8GwOGKJyN/Bd6iulhXm7ikTDvLFxGZdxSIiIiIiIjMQQ5XHL7ienzF9QBYlsXwjc7oQK2RAVvPvPVNrPA4AEmZRdEpf+vILKzFCofsLF9EZM5TICIiIiIiMg8YhkFiej6J6fkUrfpFAMaDAQY6TsXGIrl2/h0uH385sr7Dw64LddGQJNLVxpOYYecpiIjMKQpERERERETmKacrDl/JWnwla4FIK5KhgSv0tTVy8uArjAe6adn39VhrkWRvyZQZbVJzKjFNh52nICJiGwUiIiIiIiILhGEYJGUUkpRRyOWbaWzdupXxsRGud5yir+0Yfe2NXD27l8uN/wiA051IZsHKWDebSCuSdJvPQkTk8bAlEDEM45PAHwDLgLWWZR2b9N7vAp8BQsD/ZVnWDjtqFBERERFZCJzueLJK15FVug6ItCIZvN5GX1sj/dEZbZr3/tWkViSlsS42mUV1pGZXqBWJiCxIdrUQeRf4OPCNyQsNw6gCfgWoBvzATsMwKizL0ohQIiIiIiIzwDAMkjOLSc4spqT24wCMjw3Tf+Ukfe0N9Lc10nVmN60NPwXA6UmKtCKJTvubWViLJyHNzlMQEZkRtgQilmW1QOSH8R0+BrxkWdYo0GoYxgVgLXDw8VYoIiIiIrJ4ON0JZJc9QXbZE0C0FUl/W2w2m772Rpr3/CWWFQYg2Vc2abDWOlKyl6gViYjMO4ZlWfYd3DD2Ar8z0WXGMIy/BA5ZlvX30dd/C/zcsqyfTrPt54HPA2RnZ9e99NJLj63uBxUMBmPPA4EAcXFxNlZzm8vlsruEx25wcJCkpCS7y1i0dP3tpetvL11/e+n620vX314zff3D4wGCNy8RvHGBsYELjN24gBUcBMBwxuNKLcWdVo4rvRx3WjmmK3HGjj0fPa7P/5NPPtlgWVb9rB9IZAGatRYihmHsBHKmeeuLlmX97F6bTbNs2sTGsqxvAt8EqK+vt7Zu3fowZc6qrq6u2POmpiaqq6ttrOY2v99vdwmP3d69e5mLn5HFQtffXrr+9tL1t5euv710/e0129c/0orkMn1tDdFpfxu5eelfYq1IUrLKY91svIW1pGQtwTDNWatnrtHnX2Tum7VAxLKsbQ+xWQdQMOl1PtB1j3VFRERERMQmhmGQ7C0h2VtCSd0nAAiODtJ/5WR0sNYGOpp3cOnYjwBwxaWQWbAq1s0ms3AV7vhUO09BRBa5uTbt7ivADw3D+HMig6ouAY7YW5KIiIiIiDwIlyeJnPKN5JRvBCKtSN7ra40N1trX3kjTrv85qRXJErxFdbHxSFJ85YuqFYmI2MuuaXf/DfAi4ANeNQzjhGVZz1qW1WQYxo+BZmAc+D80w4yIiIiIyPxkGAYpvlJSfKWU1n0SmGhFciI27W9H0+tcOhoZD9AVn0JmwepoQFJHZsEq3PEpdp6CiCxgds0y8zLw8j3e+yPgjx5vRSIiIiIi8jhEWpFsIqd8EzDRiuRSZDab6Hgk7+76H2BZYBikZi0hs7BWrUhEZMbNtS4zIiIiIiKyiERakZSR4iujtD7aiiTwXqwVSV97Ix3v/lytSERkxikQERERERGROcUVl0zOkg+Rs+RDAFjh8O1WJO3TtyLxFtaSGR2PJMVXplYkIvK+FIiIiIiIiMicZpgmKVnlpGSVU7rm3wEwNnKL/isnojPaNNL+7mtcnNSKxFsQ6WIT6W6zGldcsp2nICJzkAIRERERERGZd9zxKeRWbCa3YjMQaUVyq/cife2N9Lc10HflOKd3/sXtViTZFZFuNoV1eItqSfaWqhWJyCKnQEREREREROY9wzRJzV5CavYSytb8MjBNK5LTr3LxyD8A4I5PjbUeUSsSkcVJgYiIiIiIiCxI79uKpL2R0+f23rsVia8MwzDsPQkRmTUKREREREREZFG4XyuSiSl/209N14okMh6Jr2QtDqfHzlMQkRmkQERERERERBat6VuRXIhN+dvX1sDVs3sA+PiXTioQEVlAFIiIiIiIiIhERVqRVJCaXUHZ2l8BYGzkJjeutuBJTLe5OhGZSRpWWURERERE5D7c8alkla63uwwRmWEKRERERERERERk0VEgIiIiIiIiIiKLjgIREREREREREVl0FIiIiIiIiIiIyKKjQEREREREREREFh0FIiIiIiIiIiKy6CgQEREREREREZFFR4GIiIiIiIiIiCw6CkREREREREREZNFRICIiIiIiIiIii44CERERERERERFZdBSIiIiIiIiIiMiio0BERERERERERBYdBSIiIiIiIiIisug47S5gIcvLy7O7hJjExESGhoYASE9PZ2BgIPbeypUrOXnyJKZpYpomv/3bv833vvc9+vv7qaiooKenh5s3b+J2u1m9ejU5OTm0tbVx7tw5XnjhBQ4cOEB7ezvPP/88LS0teDweuru7+c3f/E2+9a1vkZ+fz82bN6mpqSE5OZlr165RUVHBiRMnWLVqFSUlJSxdupQvfelLVFdXc+3aNV544QUuXLhAU1MT1dXVsZrLy8vx+Xz86Ec/oqmpiS9/+cv88R//MVu3biU9PZ2lS5dy8OBBnnjiCc6cOcPAwADp6ek0NzczOjrKhQsXuHHjBgBf/OIXaWxsjK03se/a2loaGxvJycnh9OnT+Hy+2LXq7e0FoKamhtOnT1NTUwPAtWvXqK2tpaurK/YaICcnB7/fT2NjI729vfh8PnJycti7dy+ZmZnU1NTEtm1sbIztY2LZjh07YjUB7Nixg2effTZWn9/vn3LMifUmlu3du5etW7fedYyJR2DK88nHmHheU1OD3++f8nnq6uqKHXtyDfdab/LrifXufH7ntne681iTjzd5+3s9f7/93uv1/da/37oP+96Dbnuvaz/58zOhr6/vnseavN/J+3mY2h7Fo+z3zs/wbBxjNvY9m/XMB3Pp/OdSLR/Eg3z2H+Vn0YOuI49G13j+0PdKZOFRILJITIQhwJQwBODMmTMAhMNhwuEwu3fvpru7G4Dz588TDAYBCAaDnDhxguTkZG7cuMHIyAh79+7l0qVLjI6O8tZbb9Hd3Y3D4SAQCLBnzx7OnDlDZ2cngUCA/v5+EhMT6evro6Ojg5aWFq5fv05FRQXhcJjDhw/T3d1NX18f5eXlnDx5kubmZnp6evD5fPT29nL9+nVKSkrYvXs3ly9fprm5mf3792NZFj6fj3A4zJ49e0hNTWX//v2xEKKjowOPx8PJkydj5//FL34xtv3kfdfW1tLc3IxlWRw5coSSkpLYtWptbQXA6/Vy5MgRvF4vAC0tLdTW1nL16tXYawDLsvD7/TQ3N9Pa2kpJSQmWZfH222/j9/vxer2xbZubm2P7mFg2cfyJX3iPHDnCs88+G6vP7/dPOebEehPL3n77bSorK+86xsQjMOX55GNMPPd6vXf943/16tXYsSfXcK/1Jr+eWO/O5+/3C8adx5p8vMnb3+v5++33Xq/vt/791n3Y9x5023td+8mfnwn9/f33PNbk/U7ez8PU9igeZb93foZn4xizse/ZrGc+mEvnP5dq+SAe5LP/KD+LHnQdeTS6xvOHvlciC4+6zIiIiIiIiIjIoqNAREREREREREQWHQUiIiIiIiIiIrLoKBARERERERERkUVHgYiIiIiIiIiILDoKRERERERERERk0VEgIliWNeX12NjYPd8Lh8OEQqHY8mAwGHs+Pj6OZVmEw2Esy2J4eBjLsgiFQoTDYYLBIGNjY4yPjxMIBAiFQgQCAQYHB++aClhERERERERkNjntLkBkQigUigUmt27dYnh4mGAwyPDwMIODgwwPD3Pr1i0GBgYYGxsjFAoxMDBAKBSKrTMwMMDw8DADAwOxbQYHB7EsK7bPQCAAQFdX15T1JvY9sby3t5dbt27ZfFVERERERERkNhh3tgCYjwzD6AXa7K5jGrV2F/CALMCY9HoYSLjHe2EgRCRMM4AA4Ik+HwNc0W3M/7+9u4uxoy7jOP792VJLQcQKqLQgNBKUECnYEBRCENSAIsULIyQkYGK8gQBGY9Abgwnxxhi9MBqDKFFAEREbLwwENb5cKK8GtBAQECovBQnUUl6sPF6c/wmTjS1rtzuz7Hw/yebM/M+cmWd/O92zfTLzP8AzwBvb9q9rz7/cXvsisLy9/kVgK7C6bbMUeKrVMN1mexvf1rY5AFgGbAJWAc+1bbYC+7Zj791es73tZ0vb55L2vdwHrOxsN9330238BWCfNja1rD1uac9NOybL2+tWdNZp+9jW9res7esFYL+2vKXz2pWdfUzH3tqpibb+eKe+7s9qeWe76dh+LcuZx1jZ2ba73D3GdHlLO07Xis6xuzXsaLtpHd3tZi7PfO1MM4/VPd6KWSy/2n53tL6z7Xe27a4+N9vX7ij77vkzdSDw6E6ON31ddz+7UttczGW/M8/h+TjGXPY9Pf/7rOe1oK/vf0f5D1HL7jabc38uv4tmu83OzCb/sZvP88/8d6//92fVV/5vr6r9eziOtOgsiobIa0GSW6tq3dB1jJX5D8v8h2X+wzL/YZn/sMx/WOY/LPOXFj7nEJEkSZIkSaNjQ0SSJEmSJI2ODZH+fGfoAkbO/Idl/sMy/2GZ/7DMf1jmPyzzH5b5Swucc4hIkiRJkqTR8QoRSZIkSZI0OjZEJEmSJEnS6NgQmWdJTk1yb5L7k1wydD1jkOSKJJuT3N0ZW5nkpiT3tcc3DVnjYpXkoCS/TrIxyV+SXNTGzb8HSZYn+VOSP7f8L23j5t+jJEuS3JHkF23d/HuS5KEkdyW5M8mtbcz8e5Jk3yTXJbmnvQ+81/z7keTwdt5Pv7Ykudj8+5PkM+299+4k17T3ZPOXFjgbIvMoyRLgm8BpwBHA2UmOGLaqUfg+cOqMsUuAm6vqMODmtq7dbzvw2ap6F3AccH47582/Hy8CJ1fVUcBa4NQkx2H+fbsI2NhZN/9+vb+q1lbVurZu/v35BvDLqnoncBSTfwfm34Oqured92uB9wDbgJ9h/r1Isgq4EFhXVUcCS4CzMH9pwbMhMr+OBe6vqgeq6iXgR8D6gWta9Krqt8DTM4bXA1e25SuBM3staiSq6rGqur0t/4vJH8OrMP9e1MTWtrpH+yrMvzdJVgMfAS7vDJv/sMy/B0n2AU4EvgtQVS9V1TOY/xBOAf5WVX/H/Pu0FNgzyVJgBfAo5i8teDZE5tcq4JHO+qY2pv69paoeg8l/2oEDBq5n0UtyCHA08EfMvzftdo07gc3ATVVl/v36OvB54OXOmPn3p4Abk9yW5NNtzPz7sQZ4Evheu2Xs8iR7Yf5DOAu4pi2bfw+q6h/AV4GHgceAZ6vqRsxfWvBsiMyv/I8xP+dYi16SvYGfAhdX1Zah6xmTqvpPu2R6NXBskiOHrmkskpwObK6q24auZcSOr6pjmNyqen6SE4cuaESWAscA36qqo4Hn8PaA3iVZBpwB/GToWsakzQ2yHjgUOBDYK8k5w1YlaTZsiMyvTcBBnfXVTC6fU/+eSPI2gPa4eeB6Fq0kezBphlxVVde3YfPvWbtU/TdM5tMx/34cD5yR5CEmt0ienOSHmH9vqurR9riZyfwJx2L+fdkEbGpXpQFcx6RBYv79Og24vaqeaOvm348PAA9W1ZNV9W/geuB9mL+04NkQmV+3AIclObR17M8CNgxc01htAM5ty+cCPx+wlkUrSZjcP76xqr7Wecr8e5Bk/yT7tuU9mfyBdg/m34uq+kJVra6qQ5j8vv9VVZ2D+fciyV5J3jBdBj4E3I3596KqHgceSXJ4GzoF+Cvm37ezeeV2GTD/vjwMHJdkRftb6BQm86iZv7TApco7OOZTkg8zuad8CXBFVV02cEmLXpJrgJOA/YAngC8BNwDXAgczedP6eFXNnHhVc5TkBOB3wF28MofCF5nMI2L+8yzJu5lM2raEScP72qr6cpI3Y/69SnIS8LmqOt38+5FkDZOrQmBy+8bVVXWZ+fcnyVomEwovAx4APkn7XYT5z7skK5jMXbemqp5tY57/PWkfdf8JJp+4dwfwKWBvzF9a0GyISJIkSZKk0fGWGUmSJEmSNDo2RCRJkiRJ0ujYEJEkSZIkSaNjQ0SSJEmSJI2ODRFJkiRJkjQ6NkRNB+p3AAABPUlEQVQkSZqlJBcm2ZjkqqFrkSRJ0tz4sbuSJM1SknuA06rqwc7Y0qraPmBZkiRJ2gVLhy5AkqTXgiTfBtYAG5IcDPwYOAR4KsmNwMeA1wOHAldX1aVD1SpJkqRX5xUikiTNUpKHgHXABcBHgROq6vkk5wFfAY4EtgG3AOdV1a0DlSpJkqRX4RwikiTtmg1V9Xxn/aaq+mcbux44YaC6JEmSNAs2RCRJ2jXPzVifecmll2BKkiQtYDZEJEnaPT6YZGWSPYEzgT8MXZAkSZJ2zElVJUnaPX4P/AB4B5NJVZ0/RJIkaQFzUlVJkuaoTaq6rqouGLoWSZIkzY63zEiSJEmSpNHxChFJkiRJkjQ6XiEiSZIkSZJGx4aIJEmSJEkaHRsikiRJkiRpdGyISJIkSZKk0bEhIkmSJEmSRue/wfrxZJKXu1wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
An Individual Conditional Expectation (ICE) plot gives a graphical depiction of the marginal effect of a variable on the response. ICE plots are similar to partial dependence plots (PDP); PDP shows the average effect of a feature while ICE plot shows the effect for a single instance. This function will plot the effect for each decile. In contrast to the PDP, ICE plots can provide more insight, especially when there is stronger feature interaction." + ], + "text/markdown": [ + "\n", + "> An Individual Conditional Expectation (ICE) plot gives a graphical depiction of the marginal effect of a variable on the response. ICE plots are similar to partial dependence plots (PDP); PDP shows the average effect of a feature while ICE plot shows the effect for a single instance. This function will plot the effect for each decile. In contrast to the PDP, ICE plots can provide more insight, especially when there is stronger feature interaction." + ], + "text/plain": [ + "\n", + "> An Individual Conditional Expectation (ICE) plot gives a graphical depiction of the marginal effect of a variable on the response. ICE plots are similar to partial dependence plots (PDP); PDP shows the average effect of a feature while ICE plot shows the effect for a single instance. This function will plot the effect for each decile. In contrast to the PDP, ICE plots can provide more insight, especially when there is stronger feature interaction." + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFcAAAKACAYAAABZtZdQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZhU1Z3/8c+3eu+m2RECCsQFcUNUVBYzwUSzTdTJmLhmjJNtkvlFZ8ky0UwmJCqaZWI0ZtHMaBY1jiYmYxITNRNRgQYFFxAFWVwQFREFmuq96/v749yqvrU0dNNLdTfv1/PU01V17r116t5b1XU/95xzzd0FAAAAAACAfZModgUAAAAAAAAGM8IVAAAAAACAHiBcAQAAAAAA6AHCFQAAAAAAgB4gXAEAAAAAAOgBwhUAAAAAAIAeIFwBisDMFpjZrdH9yWa228xKujDfj83sq3sodzM7tDfrV2xmtsjMPhndv9DM7t/DtO8ws3X9UKcBs376Q3f20X1Y9jwzWx8t/296e/n9zcxeMLPTemE5883s5d6oU3/YW33N7KdmdmUf1yHzGv2x/sxsavSdW9qFaS82s8V9WR8AAFBchCvAPuqtgyh3f8ndh7l7exem/Yy7X9HT1+wpMxtuZt8zs5eig+IN0eOxffm67n6bu78nVo+sMMndH3H3w/uyDnsTHdSlovUSv80pUn26fAAYmydr3+7OProPviHphmj5v+3pwqID7Iuj209jz3/CzNaaWb2ZbTWzP5hZbWyePj3w76lomzTm7FM3FLtexRAFrm+ZWUU35nnBzFpyv6PM7Mno8zG1t+vZF6Jg183spG7OlwmpuzG9m9mxOc//Nnp+fqw+XQ6azazCzP7bzF6MPotPmNn7c6Z5d/RZbTCzB81sSqzsi2b2dDTv82b2xZx5rzCz1WbWZmYLCrz+BdFrJ6P3Mjqn/DQzezwq32xm58TKZprZyqheK81sZqzsxzmfzWYzq+/C+vicma2Ipv9pgfJqM/uhmb1hZjvN7OFY2T+b2SYz22Vmr5jZtfHv+ei7/8Govmtzf6/saV2Y2XcshN710bwX5Sz3hej+C4PlswMA/YFwBUC3mFm5pP+TdJSk90kaLmmupO2SuvWDfwh7JQoL4re6YldqgJoiac2+zNjVwMjM3ilpoaTz3b1W0hGS7tyX1yyyM3L2qc8Vu0L9LTqQe4ckl3RmN2d/XtL5sWUdI6mqt+rW18zMJP2dpDclfawfXvI5SfGD6jGSZkva1oNllkraLOmdkkZI+qqkO9MH6FH4dXf0/GhJKyT9T2x+i+o0SuH/z+fM7LxY+QZJX5L0h9wXNrOjJN2osA7HS2qQ9MNY+ZGSbpf0lahuMyWtjMrKJf2vpFuj1/6ZpP+Nnk+f+Mh8NiX9UtJdXVgfr0i6UtLNnZTfFK2HI6K//xIr+52k4919uKSjJR0r6dJY+S8lPSFpTPSefmVm47qyLiQlJZ0RrYePSbrOzOZ24f0AwH6NcAXoBRY1+Y7O9rwVnVF7f6z87Wb2UHQW6AFJY2NlmZYFZnaema3IWfa/mNk90f2sM+zRWbxXo7NWH8+ZL+tMpeU0Szez66Izc7uis3Dv6OLbvUjSZEkfcvdn3D3l7q+7+xXufm+07COi199hZmvMLHMQFL2HH1hoOVBvZsvN7JBY+enRmbKdFs7MW6H3EDuD91R0pvBcy+kK0MN67Ov66ZSZjTazl83sjOjxMAutfi6K1enHZvZAVKeHLPus7fSo7E0zW2fZZ1WrzOw/ozORO6P9sUpSej3tiNbTHDM7xMz+YmbbLZwRvc3MRkbL+YXC9v1dNP2XLKf1i5lNNLN7onpsMLNPxeqxwMzuNLOfR+9hjZnN6mR9bJR0cOy1Krqw7F+Z2a1mtkvSxV1c9SdKqnP3JyTJ3d9095+5e72ZfVrShZK+FNXhd9FrfdnMNkbv4Rkz+1BO3T9lZs/Gyo8v8P6mW/guOC+23n5tZtui5y+NTVsVbf+3zOyZqM5dYnv//rnYwhnu9Nn+C2NlH4/ex1tmdl/O/uZm9o/WcQb7imjfqYs+F3dadHAZm+fyaJ96If46Ber8QQutRnaY2VIzm9HFt3uRpGWSfqruBwy/UCwsiOb/eU69RkT77rbos/TvZpaIykqidfyGmW2S9NcF5v1vC9/JW8zsSivQlc6Ca83s9eizusrMju5C/d8haaKkf5J0XnzdW04LEsv+v3JVNO8NFmvxZGZzzeyxqA6PWf7B822Szo29h/Ml/UZSSxfqWpC7J919gbu/EP3v+L1C6HVCNMnfSlrj7ne5e5OkBZKONbPp0fzfcvfH3b3N3dcpBB7zYsv/mbv/UVKhViMXSvqduz/s7rsVApy/tagFm6R/l3Sju/8xWv52d98Ylc1XCIa+5+7N7n69wv+md+W+iJnVSDpbIYDZ2/q4O2qxt73Acg5XCBA/7e7b3L3d3VfG5t3o7jvSk0tKSTo0mneapOMlfc3dG93915JWR/Xa67pw96+5+9poGy2X9IikorS+BIDBhHAF6D0nS1qnEJx8S9J/m1k6GLhd4QzYWElXqPODgnskHW5mh8WeuyCaP4uZvU/SFySdLukwSd3tovSYwpm50dHy7zKzyi7Md5qkP0U/yPKYWZnCGbX7JR0g6RJJt0U/FNPOl/R1hTOAGyRdFc07VtKvFX7kjpW0UbEfznHu/lfR3WOjs4Xxs5s9qkdkX9dPp9z9TUkfl/QTMztA0rWSnnT3+AHehQr7yFhJTyoc4KR/sD8Q1eWAqO4/tHAGUpK+o3CAMjeq85cUfmyn19PIWAsak3S1woHaEZIOUjiIkbv/naSX1NFK4lsF3sovJb0czf9hSQvN7N2x8jMl3SFppMI+XbD7irsfkvNazV1Y9lmSfhUt+7YCy7zY3X8a3S6Onl4u6b1m9nULY7xUxKa/KVrOt6I6nBEVbVQ4IB2hsI/camZvkyQz+0i0vi5SaLl1pnIOjqKw5X5Jl7j7HdEB+u8kPSVpkqR3S/pnM3tvNMvXJB0S3d6r7gcHBb9/ov3meknvj1rtzFXYr2RhjJvLFQ5oxykcQP0yZ7nvU9ivZivsUzcp7KMHKZwtPz827YTo9SdF9b8p5/MWXzc3S/oHhbPqN0q6x7rWzecihe11m8I2Hd+FedKWSRpuIXQtkXSuQkuEuO8rbPODFVpXXCTp76OyT0n6oKTjJM1S2D/jfiapTeEA9zhJ75FUqCvOexQ+l9MU9uNzVeDguoCPKexD6e+6D3ZhHrn7VxS27efSLZ4sdAH5g8K+MUbSdyX9wULrlLRXJD0T1VcK6yIrjOqpaPtNU0frtaMUPiPpuicVPotHFZjXFD6jXW35lrvsjQpB0bToqdnRcldHAdmt1tFV5ihJq9zdY8tbVaheCgHGNnUE2/vqZEkvSvp6FOitNrOz4xNY6NqzS9IbCi1XbozVd5O7x0Omp2L13du6iL9GlULYuyaa9gV3nxrdn+ruL/TwfQLAkEG4AvSeF939J9G4FD+T9DZJ481sssIPk69GZ7weVviBnMfdGxTOxJ0vSVHIMl3hADXXOZJucfenox+gC7pTWXe/NToz1+bu/ympQlJXxisZI+nVPZTPljRM0jXu3uLuf5H0e2UfhN3t7o+6e5vCQVK67/oHJD3j7r9y91ZJ35P0WnfeVy/VoyfrR5ImRmfk47eaaLn3KzQX/z+FM9//kDPvH6Kzic0KTbnnmNlBCgdSL7j7LVGdHlcIoj4cHbh/XNI/ufuW6Azn0mgZedx9g7s/EO2P2xQOrN7ZlTcW1eUUSf/m7k3u/qSk/1JoXp622N3vjT4Lv1D40d9by65z999GZ1Qbu7Jcd39EIUA4XuGAcruZfbdQq4LYPHe5+yvR6/yPpPXq6Pb2SYUw5jEPNrj7i7HZ36Hwmf2YhzPzUvgOGOfu34j2x02SfiIp3aXhHElXeWhVs1nhoDfXb3P2qU/Fygp+/0RlKUlHm1mVu7/q7umD0X+QdLW7Pxt9BhZKmmmx1iuSvunuu6J5npZ0v7tvcvedkv6oECLEpb/nHorW9TnK9ymFFgLLo331Z5KaFR3cdsbMTlHoRnanhzP4GxXC5+5It145XdJaSVtiy08HLpe5e3100Pif6tj/zlFoubA5Ckqvjs07XtL7Jf2zh9YZryuEp/EuK2mtkmoVvtstWv97+k6VmVVL+oik26Pvxl+pZ12D/lrSenf/RfR98kuF9XFGznQ/l3RRFJKN9F7s3hgF4LdJ+pm7r42eHiZpZ86kOxXWV64FCr9jb+niS+5t2QcqbOuzFU5YVCmEbd2t18ck/TwniNkXByoEmDsVwubPSfqZmR2RnsDdb/fQLWiapB9L2trF+nbn/fxYIYi5b5/fCQDsJwhXgN6TCQGikEQKP2AmSnorCkDS4gdiuW5XRwBwgaTfxpYXN1Gh73pXlpnHzD5voTvATjPboXC2tisD0m5XOHDrzERJm909lVO3SbHH8cCkQWE9ZeZNF0Q/TuPvsTt6Uo+erB8pjLkyMucW3/43KfxovsXdc89Yx9//boXxFSYqHFSeHD+4VmhBkG4tUKlwsLlXZnaAmd0RdV3YpXD2vqvvbaKkN3POiO5tvVZa18ZH6cqy92l/8NDU/wyFVj1nKXQp6nSATzO7yDq6rexQ2F7pdXSQ9ryuPyNpqbs/GHtuinJCN4VWI+kApCuf57/J2ad+Eisr+P0T7XfnRnV61UI3uOmxOl0Xq8+bCq2a4ut7a+x+Y4HHw2KPC33PTSzwPqZI+nzOujiok2njPqYQ7rwRPb5d+9Y16AKF7Z/bCmOspHJlr/v4/renbTRFUpnCOk6/pxsVWplliYLeGyT9QNJWM7vJzIbvpd4fUmgVc2/0+DZJ77doDI19MFH5+1juZ00K45+8S6Hl3y/28bXyRIHwLxRaS8THDtqt0BosbrhyuvmY2ecUQrK/7ixELmBvy25U+E5+LvruXagQ+HenXgcpBNW90cKnUSGIuzIKZB+S9KA6WhJluPt6hZYl6XFT9lbfrr6fbyt8953TC2ERAAx5hCtA33tV0qh0y4XI5D1Mf7+ksRauRHC+CnQJii33oD0sMympOvZ4QvqOhfFD/k3hTOwodx+pcNbKtHd/VmiOX9NJ+SuSDop+PMfrtqWT6eOy3lPU7Pugziffo32uRw/Xz96WXaJw0PVzSZ+1/Etnx9//MIUw4BWFg7qHcg6uh7n7ZxWahDcpdCnJVegH8dXR8zOis54fVfZ729OP6FckjbaOcQqkrm/fvenKsnv0Az9qifJ/kv6icNCQt8yo5cZPFA76xkTb/2l1rKPNKryu0z4jabKZXRt7brOk53O2X627pw/e9vZ53mfufp+7n64Qiq5VeG/pOv1DTp2q3H3pPr5Uoe+5VwpMt1mhlU78dauj1hMFRV0TzpH0TjN7zcxeUxjc81jLuaLNnkQtjJ5XOGi+O6f4DYWD2XjLnfj+t6dttFmh9c3Y2Hsa7u6Fuo3I3a939xMUumdMk/TFQtPFfEwhyHopeu93KYQ56SC+0+/79EvmPH5F2e8z/X6yPsdRUPdHSZ9VL4Ur0ff6fysEi2dHLXHS1ijW0i3anw5RrOuPhfHFvizp3e7enctt5y77YIUWic9FT61S598vayTNiOqeNkP5XZIuUghWN3WjXp1Z1c3pS9XxvbRG0sE536XHqqO+e1sXMrOvK7TGeo+77+pmXQBgv0S4AvSx6Mf8CoV+0+VR0/bcptfx6dsUmnx/W+HA+oFOJr1T0sVmdmTUZPxrOeVPKgxQVx0dwH8iVlarcBZ0m6RSM/sP5Z/F6swvFA4kfm1hwM6EmY2xMJDlBxTGt0gqDBBaZuGSnWcojMGxN3+QdJSZ/W3U0uFS5R8kxG1VGBuhkJ7UoyfrZ28uj/5+XGGclJ/ndE/5gJmdYmGwyiskLY+6ifxe0jQz+7vo/ZSZ2YlmdkTUOudmSd+1MGhqiYWBayui95BS9nqqVThzucPMJin/wK7T9RrVZamkq82s0sJApJ9QgfFPuquvlm1mZ1kYLHqUBScpnF1eFk2S+35rFA6ytkXz/706ghgpdFX6gpmdEC3vUMvuSlOvMFbJX5nZNdFzj0raZWb/ZmHw2hIzO9rM0gPX3inpsqiOByq0FOgxMxtvZmdGB6nNCts9fUntH0eveVQ07QgL48n0RPp77h0KXdkKXTHlJ5I+Y2YnR+uvxsz+OudAMNffRPU+UqH73kyF8YIeUfYgtV3xCUnvymllo6hL1Z2SrjKz2mib/qs6xmW5U9KlZnagmY1SOMBPz/uqQjD+nxYuVZ+wMPhvXne76HN7soVuMUmFYLTTy5xHn9F3K6zP9Hs/VtI31dFy50mF/W2ymY2QdFnOYnL38XsVvk8usDDo7bkK6/b3yne5pHd652NrJKLPa/q2t7FzfqSw7c7w/K59v1Howna2hTGu/kNhrJO1kmRhkOSFkk4vFGBE34uVCr9vS6P6pL9fb5N0hpm9I/o8fEOha2i6tcYtkv7ezA6O/qf+W2x9LFLYRpdaGHg73drmLzlVuEhhsOUuidZ9paQSSSVRfdOt/B5WGJPqsmi6eQoD694XzftJC2N3pa90dJlCd1O5+3MK+8TXomV+SCEM+nVX1oWZXabQwuv0Aq0rAQCdIFwB+scFCoPTvakQguytyfDtCgPH3hWFLXk8XBHhewo/7jYo/0fetQpNrrcqjMEQP0C9T+Fs5HMKTcGb1MXuFlET7NMUzoA/IGmXwoHjWIUgoEVhgM/3K5wJ/qGki2J96ve07DcUxhW4RqH70WGSluxhlgUKfdB3WOzKOdGy9rke6sH6iUy0cFWO+O1sMztB4WDtouhA7psKB/Ffjs17u8I+8qbCQKIXRu+nXqE5+HkKZ51fi+ZPH8h8QeFqEI9F835TUiI683yVpCXRepqtMEDr8Qqtcf6g/DP4V0v692j6LxR4f+dLmhrV4zcKV6ToLATsrr5Y9lsK43ysV9hfb5X0bXdPfyb+W9KR0fv9rbs/ozDWRp3C5+cYxfZDd79LYZ3erhCk/FYhCFVsmh0K43q838yuiLb3GQoHxs8r7JP/pdDdTArbJN2q4n4VbiXwu5x96jddeO8JSZ9XWJ9vKoRK/xjV8TcK+8kdFrqHPa3wedlXryms61cUvm8+U+jz5u4rFLbHDdH0G7T3Kz99TKHLxkvu/lr6Fi3jQuviZbmj198Y1aGQSxQCj02SFits4/Rlcn+i8N3wlKTHlf+5uUihW9Ez0fv6lQp3oRweLesthW2+XSFo7czfKQx8fX/Oe79eoTXF0dFn5H8UWjusVH5Icp3C+Exvmdn10QHzBxX2je0KgxV/MNblKsPD2EOLc5+POV+hC0v61mmXuSiw+geFz8FrsX05/T23TWHMk6ui9XOyssetuVJh3K/HYvP+OFb+k6gO5yuMWdUYrT95GDfoMwr75usKIfM/xt7nzQr/m5crbJdmRZc2jv6f/I3CNt6hEI7/TfR8+r3NURgnpSuXYE7796iOX1ZoQdgYPaeoRc9ZCq2sdkbvLf4/bJ6k1WaWVAjL7lVHeC+F9TZLYT1eI+nD0frd67pQCLAmS1ofW8/xZQMACjC6UALAwGBmP5X0srv/e7HrAgAAAKDraLkCAAAAAADQA4QrAACg6KLxQnK706VvvTbA70BlZms6ee8XFrtu3bG/b8c41gUA7F/oFgQAAAAAANADtFwBAAAAAADoAcIVAACKzMwuNrM9XZGlqCxcPvp3ZrbTzLpzNRQAAID9AuEKAACQJJnZVDN7Ibr/gplNjYo+LGm8pDHu/pF9XPYiM5tvZgvMbEEvVBcAAGDAIFwBAAB7M0XSc+7eVqjQzEr7uT4AAAADCuEKAGC/Z2ZHRC0rdkRXbTkzVvZTM/uBmf3BzOrNbLmZHbKHZZ1iZkujZW02s4uj50eY2c/NbJuZvWhm/25mef+Ho9YjHg8sorp9Mrp/sZktMbNro9fYZGZzo+c3m9nrZvaxfa1/gfp8XdJ/SDo3usrJJ3Lq8KakBbHnvh91H1prZu/u6usAAAAMZoQrAID9mpmVSfqdpPslHSDpEkm3mdnhscnOl/R1SaMkbZB0VSfLmizpj5K+L2mcpJmSnoyKvy9phKSDJb1T0kWS/n4fq32ypFWSxki6XdIdkk6UdKikj0q6wcyGdbf+7v6Cu0+N7k+NHn9N0kJJ/+Puw9z9v2N12KSwzq7KeW6spK9JutvMRkfLm+/ui9x9gbsv2Mf3DQAAMCARrgAA9nezJQ2TdI27t7j7XyT9XiGQSLvb3R+NusXcphCaFHKhpD+7+y/dvdXdt7v7k2ZWIulcSZe5e727vyDpPyX93T7W+Xl3v8Xd2yX9j6SDJH3D3Zvd/X5JLQpBS3fr3x2vuPv33b3N3Ruj516X9L3ovf+PpHWS/roXXgsAAGBAI1wBAOzvJkra7O6p2HMvSpoUe/xa7H6DQhhTyEGSNhZ4fqyk8mi5nb1Gd2yN3W+UJHfPfS5ex67Wvzs2F3hui7t77PGLCusXAABgSCNcAQDs716RdFDO+CeTJW3Zh2VtllRoPJM3JLUqDAy7t9dIRn+rY89N2Ie69DUv8NwkM7PY48kK6xcAAGBII1wBAOzvlisEGl8yszIzmy/pDIVxTLrrNkmnmdk5ZlZqZmPMbGbUfedOSVeZWa2ZTZH0r5JuzV2Au29TCF0+amYlZvZxFQ5sBqIDJF0arcePSDpC0r1FrhMAAECfI1wBAOzX3L1F0pmS3q/QwuSHki5y97X7sKyXJH1A0uclvakwmO2xUfElCiHOJkmLFQaivbmTRX1K0hclbZd0lKSl3a1LkSyXdJjCerxK0ofdfXtxqwQAAND3LLtrNAAAQPdFl5z+pLufUuy6AAAA9DdargAAAAAAAPQA4QoAAAAAAEAP0C0IAAAAAACgB2i5AgAAAAAA0AOlxXjRsWPH+tSpU4vx0vssmUyqpqam2NVAF7G9Bhe21+DBthpc2F6DB9tqcGF7DS5sr8GjWNtq5cqVb7j7uH5/YQwpRQlXpk6dqhUrVhTjpffZokWLNH/+/GJXA13E9hpc2F6DB9tqcGF7DR5sq8GF7TW4sL0Gj2JtKzN7sd9fFEMO3YIAAAAAAAB6gHAFAAAAAACgBwhXAAAAAAAAeoBwBQAAAAAAoAcIVwAAAAAAAHqAcAUAAAAAAKAHCFcAAAAAAAB6gHAFAAAAAACgBwhXAAAAAAAAeoBwBQAAAAAAoAcIVwAAAAAAAHqAcAUAAAAAAKAHCFcAAAAAAAB6gHAFAAAAAACgBwhXAAAAAAAAeoBwBQAAAAAAoAcIVwAAAAAAAHqAcAUAAAAAAKAHCFcAAAAAAAB6gHAFAAAAAACgBwhXAAAAAAAAeoBwBQAAAAAAoAcIVwAAAAAAAHqgtNgVAAAAAHqTu8tbW+XNzX2yfGtsVHt9fZ8sG72P7VU8iWHDZGbFrgbQLwhXAAAA0O+8rU2pxkZ5U6NSjelbQ/S4SammBnljR1l8Om9sUKqpqeN+Y6NSTY1h+mg6tbf3Wd3HS1rfZ0tHb2N7Fc/hK9ZIJSXFrgbQLwhXAAAA0KlUU5Pad+1Uqn6XUg0NsRCkqeN+OgTJCTjyApHGRqWamuSNDfLW1u5VpKREiaoqJSqrZFXVSlRWKlEV7peNHqNEZWV4vqoqer5KifIKqQ/Omm/YsEGHHnpory8XfYPtVUS0WsF+hHAFAABgiPO2NrXv2qVU/U6179yp9l27QmCyK3pcHz1O398Zle3aKW9p6dqLmIVQo7IqFnCEEKT0gAOUqIwFH1nThMAkcz+aJ3M/mk6lZQOme0HDokUaPX9+sauBLmJ7AegPhCsAAACDgKdSSiV3h5Bk544QkNTvUvvOHUpFYUn7ruhx/a7o/k6l6ncqlUzucdmJmholakeoZMQIlQwfroq3H6zE8Ohx7XAlhg9XyfARmbAjHnykgxKrqBgw4QcAAP2NcAUAAKAb3F1yl1IpyVPyVOy+u5RyyVNSKipL34/N56mUUg3JTEuRqkcf1faXNoVQZOfOjlYlu6KQZNcOperrw+t0wsrLQwAShSJl4yeoYtrhKhkeApKSEVHZ8BCglIwYEQKV2lpZWVk/rkEAAIYewhX0C3fv6JudNUBdg8wSKhk5UiUjRqpk5EhZWXmxqwsA6CZPpeQtLeEKLa3R38zjQs918rgr06Qft8Xut7cXDjtSKcm117Ajf76oLD5tKrXHcKMnRkjaJkmJhEqGD+8IQUaMVPlBk7NCkcSIESqJtTJJlyUqK/ukbgAAYO8IV5DhqVTHwHPRgHWZwefyQpGcsvRgdk2FysKAdnLvUj0S1dVKREFLyYiO0KXj/qi857jMG4D9lbe1yVualWpukbc0y5ublWpukre0qGzjeiUry5Rqbg4hRHNzmLapKftxujxdFg8wWlqyQ4xOQpBevzKLmay8XFZWLisri+6XRbfYc+XlStQMk0oSskSJlEiE/weJhGQJySRLJKLHFu5buK+EySwqi98365i2F+ezhIX7iVCvRHVNJjB57NlnNff09ypRUxPmAQAAgwrhyhDSXl+v5OKH1J7cnRWCdFzWMGdE/5xQxJuauveCpaX5A9BVValk2DDZuANiI/pnD0iX1U+7qkpqT6l95w6179gR/ubcb92yJdN/vNOAprQ0c4avZORIjWxt06uLHigc0GSeG0ErGfSpzFnx9vaOs96ekren8s+ix6dJnyVvb88/mx6fN73sVKqjq4GnpPbYGfto+dmvmcqvV/r5rLP2qdAaINaNoXrDBm3f9Fx4nVQnr7nXeu15XWS9ZqH3YyYrSUiJko6D2ERCVhIdWCeispLYX0tkH3wnElJJSWZaJSyUpZ8rKYlep6Rj2ZbIf934MnOnSb9uIpEJLry5WamWZnlzi7y5qeN+bllLFJDEyrIDlKbM/T2FGmMkbd7bjlpapkRFuay8IoyZUV6uRDrUiAKNROWwAiFHJ4+7Mk1X5indv36itG/dppLa2mJXAwAA7KP965fLELf95hv15k//K+s5KyvLvyxhZbVKRoxU2YS3yaqr84OPyvzB6go+7udgwtvbo8H53soLYlI5oUzJa68pufVVte/cscerHCRqagUTDhMAACAASURBVPLCl0TBIKajxUyipoZWMoOAt7V1HJw2N0Vn5JuzD1qbm2IHtOkz/un70YFvU+zMfvr5TCuApo7nW5qjrgkdYUFXW2sNJsMVdV3IZRaCiViLgXi4kDljnztNwjqCjER8+pxWAen5zCR3pVKxQCod5KTaO0Ki9HNZ07R3BDXtYfpMoNRHXT26yiorZeUVIdSoqMgEHYnyclllpRI1w0LoESvLPK6olFWUK1GeX7bq2bWaefLJhZdbURGCjP0sxAAAAOgL/KIaQpJLHlHVcbM08Zr/7GgZMoR+NFtJiUpHjVLpqFF7nXbRokWaP39+NNZLY0cY00nrmPT9lpc3h7CmflfnCy8tU8mwmhBaVdeEsCkdUlWHm6Xv5/7NlMXmq66WVVYN2cDG3aW21hBsNDVGYURT6HoQ3a9Y/aR2Ne7uKGtu6gg1Mt0XsoOMgs/Hujj0qIuCmayiUonK9MFoZTizXxEdANfUKDF6TDg4ragIB7WVleHzFmvBEO8uEG9hEe820NF9IB5GxLoZlCSyuhxkt7SITR+1nsgLI9KvY+kQIxZ05NQra/pO6rV48RK9453vzApOZDbo99+OFjztmYAsE8CkA7M9BDaeao9a8rRnhzvRrSPYiEKQeEhS1neXl21JmapnHt8nywYAAECHoXPkvZ9r2/a6mtev07hLP6+yA8YXuzoDhplFLXeqVfa2iV2ez9vaMpez7Ahf3upoKdOQVKqhQd7QoFRjg1INDWrduTMaq6ZBHpV3o6IhDEuHLrEwJlFVHVoYZVoZFSgrEOIkqqsLti7KCjvSwURTUyzwaIqVRS07mhpD2BGbPgQgHdOE+7HgJPZ4b60CRkl6pVBBVneFWMBRUaFERYUSw0fIKsd3nIWvqAxn7KNWAOnpss7sp+9Hy8kKR8orlKgol0r77mB3sPOKiiE5aGYmfCopkXHRFAAAAHQT4coQkaxbIkmqmXtKkWsyNFhpqUpHj1bp6NH7vAxPpULQkB4guKFBqYZkGOw3/Tga9yYT1uSUtdfXq3Xr1qz59tTNKU9pWTT2TWUY9DIKR/a5VUdpaQguKio7QovKihBUVFerbNTojhYf6RCksqpjmvR8lZWZ5VhFhR5/+mmdOO+UqKyqo8XIEGp5BQAAAGDo4shliEguW6KS0WNUcdjhxa4KIpZIZFrNaPSYXluut7VlhTKeCWMaYkFOMmpBE5U1NclKS7NCjaxwpLIqauVRGaaJyhKV4XGmrI/CjrYdu1Tx9oP7ZNkAAAAA0NcIV4YAT6WUrFuimnnv4PKN+wErLVVJbS1XlQAAAACAAYIj8SGgee0zat/xlmrm0CUIAAAAAID+RrgyBGTGW5k9t8g1AQAAAABg/0O4MgTsrlusisOPUOmYscWuCgAAAAAA+x3ClUGuPblbjU89QZcgAAAAAACKhHBlkGtY8ajU1qaaOfOKXRUAAAAAAPZLhCuDXLJusayySlUzjy92VQAAAAAA2C8RrgxyyaVLVH3iSUqUlxe7KgAAAAAA7JcIVwaxlpc3q3Xzi6qZTZcgAAAAAACKhXBlEMtcgnkug9kCAAAAAFAshCuDWLJusUrfNlHlU95e7KoAAAAAALDfIlwZpLy1VQ2PLVPNnHkys2JXBwAAAACA/RbhyiDV+PQqpXbvVs0cugQBAAAAAFBMhCuDVHLpYimRUM3Jc4pdFQAAAAAA9muEK4NUctkSVR09QyW1w4tdFQAAAAAA9muEK4NQ+4631LRmNVcJAgAAAABgACBcGYSSy+skd8ZbAQAAAABgACBcGYSSdUuUqB2uyiOPLnZVAAAAAADY7/VKuGJmI83sV2a21syeNTNGWe0j7q5k3WLVnDxHVlpa7OoAAAAAALDf662j8+sk/cndP2xm5ZKqe2m5yNGyaYPaXt+qmjnzil0VAAAAAACgXghXzGy4pL+SdLEkuXuLpJaeLheFJeuWSBLjrQAAAAAAMECYu/dsAWYzJd0k6RlJx0paKemf3D2ZM92nJX1aksaPH3/CHXfc0aPX7W+7d+/WsGHDil0NjbrxepW8+abeuGxBsasyoA2U7YWuYXsNHmyrwYXtNXiwrQYXttfgwvYaPIq1rU499dSV7j6r318YQ0pvhCuzJC2TNM/dl5vZdZJ2uftXO5tn1qxZvmLFih69bn9btGiR5s+fX9Q6pJqbtf6dJ2nk356j8V/6SlHrMtANhO2FrmN7DR5sq8GF7TV4sK0GF7bX4ML2GjyKta3MjHAFPdYbA9q+LOlld18ePf6VpON7YbnI0fjECnlzM12CAAAAAAAYQHocrrj7a5I2m9nh0VPvVugihF6WXLpYVlam6lknFrsqAAAAAAAg0ltXC7pE0m3RlYI2Sfr7XlouYpLLlqjquBOUqOJiTAAAAAAADBS9Eq64+5OS6KPWh1pf36rm9c9p3D99odhVAQAAAAAAMb0x5gr6QXIZl2AGAAAAAGAgIlwZJBrqlqhkzFhVHDat2FUBAAAAAAAxhCuDgKdSSi5bqprZ82QJNhkAAAAAAAMJR+qDQNOza9S+4y3VzKVLEAAAAAAAAw3hyiCQGW9l9twi1wQAAAAAAOQiXBkEkksXq2L6kSodPabYVQEAAAAAADkIVwa49t271bjqSdXMmVfsqgAAAAAAgAIIVwa4hhWPSm1thCsAAAAAAAxQhCsDXLJusayqWtUzjy92VQAAAAAAQAGEKwNcsm6xqk88SVZWXuyqAAAAAACAAghXBrCWzS+pdfNLqplNlyAAAAAAAAYqwpUBLFkXLsE8bO4pRa4JAAAAAADoDOHKAJasW6yyiZNUNnlqsasCAAAAAAA6QbgyQHlrqxoeW6aaOfNkZsWuDgAAAAAA6AThygDVuPoppZJJ1cyhSxAAAAAAAAMZ4coAlaxbLJWUqPqk2cWuCgAAAAAA2APClQEqWbdEVUfPUEnt8GJXBQAAAAAA7AHhygDU9tZbanrmaboEAQAAAAAwCBCuDEANy5dK7qrhEswAAAAAAAx4hCsDUHLZEiWGj1DlkUcXuyoAAAAAAGAvCFcGGHdXculi1Zw8R1ZSUuzqAAAAAACAvSBcGWBaNq5X27bXGW8FAAAAAIBBgnBlgEnWLZEk1cyZV+SaAAAAAACAriBcGWCSdYtV/vZDVDbhbcWuCgAAAAAA6ALClQEk1dSkhsdXcJUgAAAAAAAGEcKVAaTxiRXy5mbVzKZLEAAAAAAAgwXhygCye+liWVmZqk84sdhVAQAAAAAAXUS4MoA0LFuiquNmKVFVVeyqAAAAAACALiJcGSBaX9+q5g3rGW8FAAAAAIBBhnBlgEjWLZYk1cwhXAEAAAAAYDAhXBkgknVLVDJ2nCoOm1bsqgAAAAAAgG4gXBkAvL1dDcuXqmb2XJlZsasDAAAAAAC6gXBlAGha+4zad+xgvBUAAAAAAAYhwpUBIFm3RJJUc/LcItcEAAAAAAB0F+HKAJBculgVRxyp0tFjil0VAAAAAADQTYQrRda+e7caVz+pYVwlCAAAAACAQYlwpcgaHlsutbWpes68YlcFAAAAAADsA8KVIkvWLVaiulrVxx5X7KoAAAAAAIB9QLhSZMm6xaqedbKsrLzYVQEAAAAAAPuAcKWIWja/pNaXN6uGLkEAAAAAAAxahCtFlKxbLEmqYTBbAAAAAAAGLcKVIkouXayySQeqbPKUYlcFAAAAAADsI8KVIvHWVjU8tkw1s+fJzIpdHQAAAAAAsI8IV4qkcdWTSjU0qGYuXYIAAAAAABjMCFeKJFm3WCopUfWJs4tdFQAAAAAA0AOEK0WSrFuiqmOOVUltbbGrAgAAAAAAeoBwpQja3npLTc+u4SpBAAAAAAAMAYQrRdCwbInkzngrAAAAAAAMAYQrRZBctkSJESNUecRRxa4KAAAAAADoIcKVfubuStYtUc3Jc2UlJcWuDgAAAAAA6CHClX7WvOE5tW17nfFWAAAAAAAYIghX+lmybokkqWbOvCLXBAAAAAAA9AbClX6WrFus8oMPVdn4CcWuCgAAAAAA6AWEK/0o1dSkxsdX0GoFAAAAAIAhhHClHzU8/pi8pYXxVgAAAAAAGEIIV/pRculiWXm5qo+fVeyqAAAAAACAXkK40o+Sy5aq6vhZSlRVFbsqAAAAAACglxCu9JPWra+pZeN6xlsBAAAAAGCIKe2NhZjZC5LqJbVLanN3+r3k6LgEM+OtAAAAAAAwlPRKuBI51d3f6MXlDSnJuiUqHTtOFYdOK3ZVAAAAAABAL6JbUD/w9nYlly9R9Zx5MrNiVwcAAAAAAPSi3gpXXNL9ZrbSzD7dS8scMpqeXaPUzp0aRpcgAAAAAACGHHP3ni/EbKK7v2JmB0h6QNIl7v5wzjSflvRpSRo/fvwJd9xxR49ftz/t3r1bw4YN26d5a+6/V8P+9Du9/o1vyYfV9nLNUEhPthf6H9tr8GBbDS5sr8GDbTW4sL0GF7bX4FGsbXXqqaeuZNxQ9FSvhCtZCzRbIGm3u3+ns2lmzZrlK1as6NXX7WuLFi3S/Pnz92neFz9+obypSVNv/3XvVgqd6sn2Qv9jew0ebKvBhe01eLCtBhe21+DC9ho8irWtzIxwBT3W425BZlZjZrXp+5LeI+npni53qGivr1fjqidVM5cuQQAAAAAADEW9cbWg8ZJ+Ew3UWirpdnf/Uy8sd0hoWLFcam9Xzex5xa4KAAAAAADoAz0OV9x9k6Rje6EuQ1Jy6WIlqqtVdezMYlcFAAAAAAD0AS7F3IfcXcm6xao+cbasrLzY1QEAAAAAAH2AcKUPtW5+Sa1bXlbNHLoEAQAAAAAwVBGu9KFk3WJJUs0cBrMFAAAAAGCoIlzpQ8mli1V24EEqnzyl2FUBAAAAAAB9hHClj3hrixpWLOcqQQAAAAAADHGEK32k8aknlWpoUM1cugQBAAAAADCUEa70kWTdYqmkRNUnzi52VQAAAAAAQB8iXOkjybolqpoxUyXDhhW7KgAAAAAAoA8RrvSBtjffVNPaZ7hKEAAAAAAA+wHClT6QXL5Ecme8FQAAAAAA9gOEK30gWbdEiREjVDn9yGJXBQAAAAAA9DHClV7m7mqoW6Kak+fJSkqKXR0AAAAAANDHCFd6WfP659T2xjbVzJ1X7KoAAAAAAIB+QLjSy5LLFkuSamYTrgAAAAAAsD8gXOllyaVLVH7IYSobP6HYVQEAAAAAAP2AcKUXpRob1fjECtXModUKAAAAAAD7C8KVXtTw+Ap5SwvhCgAAAAAA+xHClV6UrFssq6hQ9fEnFrsqAAAAAACgnxCu9KJk3RJVHz9LicrKYlcFAAAAAAD0E8KVXtL62qtq2bRB1VwlCAAAAACA/QrhSi9J1i2RJA2be0qRawIAAAAAAPoT4UovSS5botJxB6j8kMOKXRUAAAAAANCPSotdgaHA29uVXLZUtfPfJTMrdnUAAAAGIZfUHt1Sndzv7uNUn9R0zhxJWtony0bvY3sV0xxJHB9h/0C40guannlaqV07VTOHLkEAAGAo29fQoyvT7ksQUhK7JWL3y2LP9f6B3fbtr2rixDG9vlz0DbYXgP5AuNILknVLJDNVnzy32FUBAACDhmdupaWS1KIQMHjsrxd4rlhl+xJ+mAoHIGWSKpUdiCQ6mbazx6ZinRF/7rlXNXHi4UV5bXQf2wtAfyBc6QXJusWqPOIolY4aVeyqAAD2C3s7AA5/R4yQpDe7PH32367WY1/r3xfzeRf+dmWa7v7t6TKkU06Rer/bgqmj5Ubu39znSvdQFv+bG3LsKQBJiOH9AAD7C8KVHmqvr1fj6qc05u8/VeyqAMAQ4rFboTPrPT3Q7asD587Kuhts9EbwIR13nCSt6vL0HQfWPWkRsC/z9dZrWS/8tQKPe2vZhZYZQosNGzbp0EMPy3qua2HHnsr2L8lkUrt27VJDQ4OSyaSSyaQkaU4YcENPPfWU3nzzzax5ampqdNJJJ0mSVq5cqV27dmWVDx8+XCeccIIk6dFHH9Xu3bslSU8++aRSqZRGjRql48IHTUuXLlVTU1PW/OPGjdMxxxwjSXrkkUfU2tqaVT5hwgQdeeSRkqQHH3xQ7tmf70mTJunwww9XKpXSokWL8t7zlClTdMghh6i1tVWLFy/OKz/44IM1ZcoUNTU1admyZXnlhx56qA488EAlk0mtWLEir/zwww/XhAkTtGvXLj311FN55dOnT9e4ceP01ltvac2aNXnlRx11lEaNGqXt27dr3bp1eeVHH320hg8frm3btmnjxo2Z59NjGB5zzDGqrq7W1q1b9eKLL+aVz5gxQxUVFXr11Ve1ZcuWvPJjjz1WpaWl2rZtmx5//PGsMjPTjBkzlEgk9PLLL+uNN97Iq9/MmTMlSS+99FLevlNSUpLZts8//7x27tyZVV5WVqajjjpKkrRx40bV19dnlVdWVmr69OmSpPXr12f217Tq6mpNmzZNkrR27dq8fWvYsGE69NBDJUnPPPOMWlpasspHjBiht7/97ZKk1atXq729Pat81KhRmjJliqTw2cjd98aOHasDDzxQ7l5w2x9wwAGaOHGi2tra9PTTT+eVT5gwQRMmTMh7HhjS3L3fbyeccIIPNg8++GDB53f93/3+7MzDPbni0f6tEPaos+2FgWngb6+Uu7e5e7O7N7h7vbvvcPft7r7V3V9x983u/qK7vxTd3+zuL0e3LdHtFXd/Nbq9Ft22uvvr0W1bdHsjum139zej21vRbYe774xuu6JbfXTb7e7J6NYQ3RqjW1NU/2Z3b4lurdHf5miahmgZ9dHy34pe+42oXlt9zZoHo/fxcuw9v+Dum9x9o7uvd/d17r7W3Z9x9zXuvtrdV7n7k+7+hLuvdPfH3P1Rd1/m7nXuvsTdF7v7w+6+yN0fHEK3Re7+kLs/Er3HpdF7Xh6tgxXROnkiWkeronW2xsM6XOthna539w0e1vXz3rG/pfex9H6V3pe2+xNPPOgd+8wu79hH0vtEej9o97Cfo1gG/vdgzzU0NPiWLVt8/fr1/uSTT/qSJUv8gQce8Pb2dnd3X7x4sV933XW+cOFC/8pXvuL/8i//4v/v//2/zPzf+ta3fN68eT5z5kyfNm2aT5o0yQ855JBM+Yc+9KF4+uqSfPLkyZny97znPXnlRx11VKZ87ty5eeWzZ8/OlB9zzDF55aeddlqmfOrUqXnlH/rQhzLlY8aMySu/6KKLMuXl5eV55en339LSklcmyb/85S+7u/v27dsLll955ZXu7v7CCy8ULL/uuuvc3X316tUFy2+++WZ3d1+6dGnB8rvuusvd3e+7776C5X/605/c3f3Xv/51wfIlS5a4u/tPf/rTguVPPfWUu7t///vfL1i+adMmd3dfuHBhwfJt27a5u/sFF1xQsLypqcnd3S+55JK8stLS0sy2ufjii/PKR40alSk/++yz2fc62fe6q1jfhZJWeBGOi7kNrRstV3oouXSxEjU1qpoxs9hVAZCRHhixTdkDJube9lYenwaSFE6w5p99DPZ0Bj2h7G4FpXuZZk9l+9qqoLen7eryimfHDkkaUexqYJBIpVJKJpPavXu36uvrVV9fr927d+u4447T8OHDtWbNGj3wwAOZliHpv9/4xjc0YcIE3Xnnnbr++uuzypLJpNauXavx48fr6quv1hVXXJH3urt27VJtba3uvvtuffe735UkJRIJVVdXq6amRtdff70SiYTcXRUVFRo1apRqampUU1OjkSNHZpbzyU9+UqeffnqmrKamRiNGdOz/3/72t3X55ZdnvXZ1dXXm/g033FCw5UrazTffrIaGBknSE088oeOOOy7r9e+44w41NzdnzT9mTMcgqvfcc4/a2tqyysePH5+5/+c//1nunlU+ceJESaGVxEMPPZS37g466CBJUm1tbcGWLVOnTs28zoMPPphXnm75MHXqVP3lL3/JK0+3rDjyyCP15z//Oa883XLjhBNO0AMPPJBXnm7VM2/ePN1333155elWO6eddpr++Mc/SlLWOkjX/4Mf/KAOPvjgvPL0+vvIRz6SqUu8vLa2VpL0nve8R+eee26mLP23NAx2pE9+8pN617velVW3+BVAL7nkEp111llZ5WVlZZn7X/rSl/TRj340q7yqqipz/2tf+5o++9nPZpWn6yZJV199dV7LmFGx4Qa+973v5e2b48aNy9y/8cYbM/tm2tve9rbM/Z///Od5LVvS+44k3XXXXUqlssdUSrd6KSkp0W9+8xvlOuywwySFFjSFyo844oi854ChznK/xPvDrFmzvFDTw4Fs0aJFmj9/ftZz7q5NHzxNFdOm68Brf1CciqGgQtsL/a3giYwCt5RWrFihWbOOz3u+68FH7q07gy7GxwcoVfbYAbm3vZWnxxbw2F/v4nO9OX13lpVeB10LN5Yvf0wnnzy7k2mKHyYgG9+Fg8e+bKu2tjbV19eroqJC1dXV2rlzp1asWJEJRdIByZlnnqnp06dr1apVWrhwYVb57t27dfPNN+uUU07RnXfeqXPPPTfvdZYuXao5c+bolltu0cc//nFJIfxIBxgPPvigpk+frl//+tf60Y9+lAlFampqVF1drQULFmj06NF67LHHtHLlyqyympoazZ49W2VlZdq1a5fa2tpUXV2tioqKrIPbgYbP1uDC9ho8irWtzGylu8/q9xfGkELLlR5ofelFtb6yRaM/9oliVwWIpCS1dnLLHa+icNDR1UCka9N1zaxZkvR4F6cuFHCkL7m5L+HIwP3xPhA1NkrhCh8ACmlublZbW1vWrbKyUiNGjFAqldJzzz2ntrY2tba2qrGxUfX19Zmz8/X19brhhhvywo+PfvSjOuuss7Rx40adfvrpmdAk3Uripptu0qc+9SmtW7dOp512Wl6dDjroIE2fPl3JZFKPP/64amtrVVtbq4kTJ6q2tlbDhg2TFMaX+Na3vpV5Lj1dunXBeeedp7POOks1NTUqLy/PCz/OPvtsnX322Z2umxNPPFEnnnhip+XxViIAAAw2hCs9kKwLA4fVzDmlyDXB0OQKLTMKBSUtnTy/t+4r8cEaEzmPC90KtUzY03T7Ns3TTz+jo48+usB0hVqG9E8Ykm4enz6ISd+OOeYYjR07Vhs2bNBvfvObrLLm5mZ95Stf0fTp07V06VLdeOONkkLT4vRtwYIFmjx5shYtWqRbb701a2A9M9MVV1yhAw44QA888ECmmW18moULF2r48OG69957dd999+XNf80116i8vFz/+7//q0ceeSSrPJFI6JprrpEk3X333VqxYoXcXalUSqlUShUVFbryyislSf/1X/+llStXZsra29s1cuRInXnmmZKka665Rk888USmLJVKadKkSfrBD0Irvn/913/V6tWrs8qnT5+um266SZJ0wQUXaN26dZmyVCqlk046STfffLMkaf78+XrhhRcyZalUSu9973t1yy23SApNybdt25a1zT7ykY/ohz/8oaRwMNkYkqCMiy++WN/5znfU3t6uAw44IG+bX3LJJVqwYIF27tyZaX4ed9lll+kLX/iCtmzZkml+HnfVVVfps5/9rNatW5cZQDOttLRU1157rS688EKtXr1a5513nsrKyrJuCxYs0KmnnqrVq1fr61//el755z73OR199NF69tlndfvtt+eVf/jDH9akSZO0adMmLVu2TGVlZVq3bp2SyaTKyso0Z84c1dbW6vXXX9eWLVsy85WXl6usrEwTJkxQaWmpWlpa1N7entk26b+jRo1SIpHQzp07tWvXrrzyadOmycz08ssva9u2bVnLcHfNnTtXkrRmzRq98sorWdu+tLRU73vf+yRJS5Ys0UsvvZS17Orqap1zzjmSQteKF198Mat89OjRmRYVN954o1544YWscGPKlCn6whe+IEn68pe/rBdffDFT1traqpkzZ2b2/bPPPltbtmzJlLW1tem0007Tddddl9n33njjjazlX3jhhfrJT34iKTSRz+36cckll+j6669XS0tLwabyl19+uU4//XQ1Nzfr8ssvV0lJSSbYqK2t1fbt2yWF8GHevHlZwcewYcM0e/ZsSaEZ/kMPPZRXnu76MmfOHD333HN5r582bdo0ffGLX+y0vKqqKqurAwAA6EC40gO76xar7KDJKj9ocrGrggEv3dqjs1Cks1tnEgqtNdK3qpzHhW4D93KYb7zxjKSxPVqGu6upqUlmpsrKSjU2Nmaax8dvp556qmbOnKnnn39eX/3qV7Vr166s8u985zs644wztGjRIr373e/Oe5177rlHZ5xxhtauXasvfelLkpQ5kKmsrMxcDWDr1q16+OGHswa5kqTPf/7zksKVB+L9y9PlX/7ylyVJ69at069+9au8/uH/8R//oeHDh+uJJ57Qz372s7z5r7zySpWXl2vJkiX60Y9+lFUeD1f+9Kc/6ZZbblEikVAikVBJSYlGjhyZOcBcvny57rnnnkx5IpHQxIkTM+HKpk2btGrVqqz5E4mOfayxsVENDQ2Z8tLS0kzfdimMQzBx4sSsedNXLZBC//0pU6ZkyhKJROaqDZJ05pln5l15IX5G/MMf/nDeVTlmhSZSMjNdcMEFeds2vfyysrKC5SEADGM05Patlzr6l48YMSKr3N3V1taWaZ1QUVGhI444Qq2trVm3dBC2e/duPfvss3nl6XBh7dq1WrhwYV7/+FmzZmnSpEl65JFHdPHFF+fV76mnntKMGTN055136pJLLskr37hxow4++GB997vf1WWXXZZXvm3bNo0dO1bf/OY3dfXVV+eVNzU1qaKiQt/85jd1ww03ZJWVlZVl+vt/+9vfzuy7aaNGjcqMN/Dd735Xd999d1b55MmTM+//Bz/4ge6///6s8qOOOioTrtx666169NFHM/tcaWmpTjrppEy4smrVKm3cuDGrPL1tpBAgjBw5MlNWVlamyZM7/s+/973vVVNTU6astLQ0s29J4TNoZpmyaQA7cQAAIABJREFU0tLSTBhXXl6uX/7ylyotLVVJSYmqq6tVW1urKVOmaP369RozZowaGxs77RIzbtw4/eIXv8h7Pq22tlZ/9Vd/1Wk5AADoO4y50kW5/f+8tUXPvXO2RnzwLE24/GvFqxgK6vv+mnvqfrOnbjmd2VMoUl7guZLefkN9pq2tTS0tLWpublZLS4vKyso0evRoSeFSlk1NTVq+fLmOPPJItbS06MADD9Sxxx6rtrY2/ehHP8oLR973vvfp/PPP11tvvaVTTjklq6y9vV0LFy7UZZddpueff75g64PrrrtOl156qdatW6cPfOADWWeHa2tr9bnPfU7veMc79PLLL+uXv/xlXvmMGTM0ZsyYzHuqqanJChWGOvqtDxzt7e1Z4UttbW1m3IpXX31Vra2tqqur07HHHptpnVFTU6Pnn39eTz31VNa8LS0tOu+881RbW6u6ujo9/PDDWcFXSUmJPvGJT6i6ulqPPfZYJliLl59zzjkqKSnRqlWr9Pzzz2eVl5aWZrqrPPfcc9q2bVtWeVlZmY499lhJ0ssvv6zdu3dnLbusrEyTJk2SJO3YsUNtbW1Z5SUlJYO+RQWfrcGF7TW4sL0GD8ZcwWBGy5V91PDUE/LGBroEDWjxwU27er8703YmPQZImaQKScO05/CkVH3V1aW+vl6vvfaatm3bpsbGRrW0tKi8vDzTIuP3v/+9XnrpJbW0tGTCgnHjxukzn/mMJGnhwoXauHFjJhhpbm7WEUcckWn9cPbZZ2vDhg1Z4cmpp56aObM6adIkvfLKK1l1Ov/883X77bdLkk455RQlk8ms8k9/+tO68cYblUgkdOmll0oKXSrS4Ua6dUBVVZWmT5+eF36k/yG/7W1v0wMPPJBXnh6d//DDD9fGjRs7XXcHHnjgHpvHl5eXq7y8fO8bAegj6VChsjJ7DJzhw4dnxq544403dNJJJ2WVv/3tb89cBaKQOXPm5HVritvbuBkzZszQjBkzOi2fNm2apk2b1mn5gQce2GmZpKyrswAAAAwUhCv7KLl0sVRaquoTTy52VQa5lKRm9W7o0a53vlOSHulmXeJjfCRif0tznksPjNr/3W/a2tr05ptvZsaLePjhh7Vy5Upt3bpVr7/+urZu3Sp317333ispBBl/+MMfspZxyCGHaMOGDZKka6+9Nu/SizNnzsyEK4888oiefvrpTJBQUVGRdem/cePGqb29PVNWXl6eueyiJP3zP/9zpqtAepr4QdWdd94pM9Ozzz6rk/4/e28eJ1V15v9/zt1q6eqF3hegWWRrNhVEQRR04oILo0mMk0SJyUTUTPxmRHES10QdzcxAMi8zo3Em+f3yMjrRuCQSJ4GYKPpVNEmjAaEB2RoaegF6767lLud8/7hL3aquahpoesHn/Xpdzvbcc0/VrSr6fO5znrNgATRNQ3l5OQB7J4qjR48iEolkdJEPBoN45ZVXsr5XwWAwY2BHgiAIgiAIgiCIwYbElZOk94P3EJp9NmQnwj4xUCwAXQA6AHQ6x0CXprnbxKYLIK6HSLL+wIFDmDBhElJFkvTz0kWU4VnaEY1GPWHETb/yla9AVVX87Gc/w89//nO0tLSgpaUFra2tYIxB13XIsoz/+Z//wTPPPANVVVFaWoqysrKUp7533nknbrzxRpSUlCAcDkPTNG9XCAB44YUXvECmrvghy8klR25MkGz8+Mc/7re9P88PALjqqqsA2F4oixf39QIrLj61OCwEQRAEQRAEQRBDAYkrJ4HZ1orEjjoU/8M/DvdQRgF+MaXDybtiSgRAFYAc9C98nPguMfX1hzBhwvAEGnaDTEqShIaGBrz//vt9xJOnnnoKlZWVWLNmTUYBYtmyZaiqqkIsFkMikcDUqVOxePFilJWVobS0FJZlQZZl/PM//zOeeOIJFBQUZAx+eMUVV/Q7Vr8XCkEQBEEQBEEQBHFykLhyEvR+sAkAkLPwwmEeyUjEgu2N4oop3UiKKbkAxgIoAJCPkfDxc3fx0HXdC+qo6zoKCgoQiUS8XTvceveYP38+KioqsGXLFqxdu9YTTVpaWnD06FG89dZbWLx4Md5++23cfPPNAGyxpbi4GGVlZejs7ERlZSUuvvhiPPHEE57XiZu6S2PuuOMO3HHHHVnHX1RUNCTvE0EQBEEQBEEQBJGd4Z/djkJ6338XckEBgtNrhnsoIwATqZ4pJy6mvPnmm16wVfc466yzsHDhQliWhR/84AdevSuAXHzxxVi+fDl6enpw22239RE/zj//fCxduhRNTU247LLLvGCr7vHYY4/hjjvuQF1dnbe9qp+f/vSn+NrXvobt27fjggsu6NP+wgsv4MYbb0RXVxfeeecdbznOvHnzUFpa6okjV111FT7++GOUlpaiqKgoZckNACxYsKBPsEmCIAiCIAiCIAhidEHiygkihEDvB5sQPn8RmDx6tsMdPEz09UwB7CU7uQDGwRZT8uB+vKLRKHbu3Iq6ujrvmDVrFh577DEAwPLlyzPuGLNw4UIwxnDvvfd69aqqQtM0BINBLF++HADw5z//2Qu4qmkaVFX1luYEAgFMnz49pd2tA4CysjI8+uijKe2apuHCC22vpGnTpuH111/3+nXbJ0+eDAC46KKLUF9fn/XdKiws9LYdJgiCIAiCIAiCIM5MSFw5QRK7P4F17ChyFn1atmA2kBRTOtFXTBkP1zOlq6sXO3bsQF3d2zAMAytXrgQAzJs3Dzt37gRgb6k7depUzJw507vCH/7wB8iynCJuuFttSpKE7u5uT9xIjysSiUSwe/fuPqPeuHEjAFvcePnll7O+uuLiYjzwwANZ2wsKCnD11VdnbScIgiAIgiAIgiAIEldOkN733wUA5FxwpsZb8YspHQB6nHoG2xulGm1tAvv2HcX8+ecCAP7pn/4Jzz//PA4fPuz1MnnyZE9c+d73vgdFUTBjxgycddZZUFU15YqZlt34idCOTARBEARBEARBEMQIhsSVE6R307sInDUFamnZcA9lkDCQFFI6ANjLc4QAgHwwVo0//nELfvWrN1BXtwN1dXVoaWmBoiiIRqNQVRUlJSW49NJLUVNT4x0TJ070rvCFL3xh6F8WQRAEQRAEQRAEQQwRJK6cADwWQ+yjWoz5u5uGeyingI5Uz5RetLV1YfPm3aira0Fd3SHU1e1HXd0n+Pjjj1FZWYna2l/i5z9/DjU1Nbj66qs9AcXlnnvuGabXQhAEQRDEmY7FBeK6iXjCQkw3EXNSr6xbiCVMxJ00pluIO2lCt07LmFpb4/jjvr+clr6JwYfu1/Dx3VvmQ5bY8Q0J4gyAxJUTILr5LxCGMcq2YNYBdIDzNhw8uBN1dTtRV3cAO3YcxKpVX8PMmfPx29+ux8032wJJYWEhZs6ciRtuuAGWZf9Bctddd+Hee+/tE++EIAji04wQAoAFCAsQ3D78ZbipAORcQM6h31HijMcwearwkS6E9BFGUtviPhu3nDD4gK8vSwzhgIJgQEZIU6CpEhgG/3vXkxBg3YlB75c4PdD9IghiKCBx5QToff9dsEAAoXPmD/dQsmJZUezbtwV1dR9h+vQSTJtWgtraXViy5B8RjcY9u7KyMnz+89/EzJnVuOyy6/DWW9NQU1ODkpKSPn/8a5o21C+DIIhPMamihXuYyTy4r94nYqS0O2V/W5/zeFofWWz9/fnbvG3nBwhTIJR8QCkAVCdV8gG1AJAjYEwavDeRIBwsi0M3ncOwvLxhWDAsDt3g0E2n3skbTt5ut1LOT/EOySCWmNbAvxeaIiEUUBDUZIQCCkKajGBAQUEkYJcdgSSkJcUSty5bWVWG5nu0ceNGLF36adncYPRD94sgiKGAxJUToPf99xCedx6kYHC4h5KRX/7yGXzlK/8H8bgOAHjssW/i/vtXY+LECVi58jbU1MzEjBkzMGPGDBQVFXnnlZWVoaxsaGLICJ4AzE7A6ATMLjsvLEAOAVIoc8r67hJEEMOFEAIQBsANQOgA152ybn+WGYMdANo5WJb8ibT1Z+tNyDOfN9DvTmZBI03UEBYKQ10Q0b0p9ZZlwDJNWNwEtwxwboFzE4KbENyCSOuDwT04JFhgjEOGBVnikBiHIp2gaDEATM5gcQZLMFhcgiUYOGewhOTVccHAhQRLJPNcqHYKyUndegkCyVRAgnDsADsVTAYgQQIQ0eLI06LIUXsRUY4gJO+HzJJP47mQoCMCg+XCRB4sOQ9CyoNQC8CUfCiKDEWWoMoSZJlBkSRI5GY9ZAghwAXAuQAXzsEFOLfbLK8sIAS8snBSS8DL230AXAiYrmhhWqhrNKHXHrKFDZ/A4QkfpgXDcIQRM7sg4tYbTt+cn9r3iTFbBNEUGaoipQghuWENpQWpwkjIaQ9q6eJHsi2kyQhqMmSZBEWCIAjizIHElQEitbdB378XBdd/friHkpX//u+fobR0DL73vYdRU3MOZsyYCSAXRUXAD3/470MyBiE4YHbbookrnnhHF8DjqSdIAYCpgBUDkG1dtAyRSXTJJshII1P8IoaHvmJIJlEkLXUOy9LBLR2C62DCAIMBGSZGk9bHBSDAIJwUYLDnWgwCDAzCETQG5nY/uxzA0f0pdbJzuNfTTQbDYtAtO00/9JS8BIsrjsghgQvZEylscUKGgAxIzlUk2RZHuH2+yZ3DYjA4YFkSDA4YJmByCboFmI7jiTvBFULA4r7JrjvxdQ7BkcwLO96DbQunzrUFhDfZ5uDc8ibhmWEAIgAiYBAojpiozDdQkWegMt85Co6iMr8RIQj7J9EALA60dCto7FTR1KmisVNFY6eG5m4Vx3o1CChQZAmKzFIEGFWWEI3GsK5uExRFgiI5Nm5eYSm2/j5kyfmcOCKAfW+F8/7B+TwlxQUB+Nrssvteprdx51zP1u3Pfc+RWs/ti6W02WNLTf33JV3ESJZdYcRX71zLFkFE8p6mfQ6GhL9u6VOlOPdHU21xQ1PsvObkA5qM3LCabFNkaKqdV1PyTpuSvS/XRlWTfSnywEXa0439e24BIuH7rU7AtHRwKwHL0iF4AoLbqfe7fhqYXtmL7sO/Pi19E4MP3a/hI1JxLZgkH9+QIM4ASFwZIIFddQCAnEUj06UwHo/hgw+24Bvf+BJuueWO03YdIQTgep/4RRMv341UV3kJUHJt1/dwmZ0qeY5LfD6YFEj2K3TAigM8BlhRJ43Zgoy/bHbYdkLPMkqGheNliMaG7N4waSlj9KM/XNgeE8LxbhCwl1w4XhTcFUNc8SOLONJHOEmmQugDXm2fMCXEDQlRQ0I0wRA1GKK6hJghIaariBqa166bMgRTwSQNTNYgywHIsgowDuHNrjkYbNGRMeF8zgWYPbUEc78r7utmAHPeD8acmaVrx2xbCXY/9lxHOBKJ3c4c+QQQkPztDJ4dYwBjdrvEbDHE5JLnjcEdMUM44oaAYi9XYQqYJKOtvQslxaVgkgJZliHJKiRJgSwrUBTVnswpMlR3wqYlJ29hRUrWO5M+VT4zPTA8rwVHnLE4h2nZngom5zBNAcPisDiHYQqYFodpcXRYAkd1C1I8CkX0IMC6EWDdCKk9mFzeizlVvdDkLu86QgC9RgAdiRDaYyG0xYNo7Q3iWG8AR3tVHNIZZFmCaXLELMu7jmmJjHnDElk9HSQGgDFIDGBgzmfJTiX7Q5a9DYAkOfVeu6+NMTAp9VzJ7QPJvpL1fdskSYIqMchemdmHcx0770+deuazc9oYY5Al24ZlsfHq0vphzI77kSw7fbnjd8coISmayBL++tFmLF50gS1yqElPkTMhEKT922cmf8etBCyuw7Li4JYOzhMQPmEEQgfjOpjQIQkDTOiQYUCGAQl9heD0P2a5kGBAhQEVlpC9X8bBJKACpt456P0Spwe6XwRBDAUkrgwQbWcdlNIyaJPOGu6hZCQYFGhqegXx+LhT7ksIy+d9kiaeGJ19RQ0pZIsmWjkQnuYIJ3l23QDjCDDGABawPVmQP8Bxmo744oguvvyxQ3tRGRljl/VWO033mvH3xTTHGyZse7543jFhJ+/WOWUmAUhOfvvkT6StP9uTPS9jmxNY04s14QoZ/np/u1POasuz9Huc/tLrIbBkIoCDWwd03/1YXIbBZSQsGQlTQsyQEdUZehMM3QkNXTENPfEcRxyxRZGYTzCJmxIY0yArAahqADkhDblh1T5CKnJDGiJOvsitC2uIhFQEVGnEPM09UfxLHCSJndDkzV63vug0ju7MwBaMGGQAKoCkb8+pI6y4LTKbHWBGJyJmByJmJ8YaHfZvnQ/dVKDllKTGd3HivjA5s5ef682RLmoQp5fDeyRUFIWH7HrC+z/CjSnk/61O/93nALfABbdFETMBzhPgluslonvCiS2IuIfhiSKemOzg93hzsYQMAwpMYQsjJlRYCMFCPjjTwJkKIWkQTAOTNMBJmRyAJGmQ5ABkOQBFVqFKDIrEoJ0mceq9d9/DhYtH0wYHn27ofg0j9P8H8SmCxJUBICwLgd07kXPZlSP4D8xORCIhRCKTjmtpe5/E+oombtnqQar3ieyIJXlApML5wzwpoDBpeALeMqbYXjHI7dO2e4uOqtlLU+qE4I4XjE+QyZSa3QA/4ixVGvgOBaMXyfmPT3JEI1/Zi+nhtrG+qdvGWN/zM54jpZxrWAK79h5EXmE5uqMGuqIWOqMmuqImOqIC7b0CHT0cvY44EveJI1zY38eAKiHiCB+5IRWRsIq8kGrXjVFR7gginmgStttyguoZ8VT4RGGMQXaerhOjDyYHAbkcCJT3aUuNa9WB1oadqMiRgHgDYO1ItZWCyd9ztcATYJiaD1kKe//fuUupsgu9OI4QfCrtyGyfVVBOeYVpqXteJpss+ax9ZrPvzy6trzRxY8KYJoj2dyEE9w4Iy1lmZQFC2A8/hIDwAi4LAG6aFEKYTxxhTj0DdwQO7sQ7yuyh1B/OL7gjGCYxhWyLIY4oYkGFxXLBoYIzFZzZgggcQQSSBkkKQJIDYI4oosgaFFmBKjFokoSwz9tnJCIJCwGKGTNqoPtFEMRQQOLKAIhv/xhSNIqchSNzSZBhGLjqqs/hW9+6DtdcswQAbK8OTzzpShVPzE70WYMsh+0/sINVSa8T9zhDtg9lTLJfpzywJ4PJpUp+75io4wHDMfiBSU/yvOMFNfXy6WLH0HheROMmWjpiaGmLoqU9hpb2KJrbY2hpi6GlvQddUQNAHoAoADtwYllhLkryQ8jP0RAZo6K8KimK+L1JXLFEU2lZF0EAsJdaaqX2AeCTj3pROWspAEBwI3VJp2F7vyDRDER3I3Xy7/oZnPgEnDg5xuczWJ3HICA5MkgyFU4gZeHJIuk2DEIoThtLSeHYub/7whO/ZfQVvSUwJjlLAZNlMAmSl2qQlIAnjiiyBlWWoUgMYW9Z1uj/m4EgCIIgThQSVwZA7/vvQTCGnPMXDvdQMvLuu+/iD394H3fceg1E8ys+7xMfTEl6mwTHpnieQMkDk9KfQxGpS5UKhns4I5ZYwnTEkkziSdQRT5LY4kkIZWPCmDYuH2Vjwmht2o9LFs9D+ZgwCiIa/WFOEKcBJqmAVmwfadjLQbtsscXogDB74QZAtv0rWIYy7LJgEAx26mu3+02tc2258EUIEvB8KlwbLgDBHHv4AjM7wZm5l8IREZizaw+cILaOT4gQ9s5QXrBbJ++7tvPu2OXUd+yEym7cFTeWjMwkLy/BFvhllowBY8dyscULiUk4fPgQqsePd851+0v2m61OS6lD6jUwcj0/CIIgCOJMg8SVAdD7/rswxo2HXDBmuIeSkXXrfoVAQMVl540H9KNAeHLq0h01H/C5eBPEiRBLmJ5o0tIeQ3NbMt/SHkNnb2oMHlWRUDYmhPIxYUwdm+8JKeVjQigvzCyebNzYgBnjR+b3iyCGA1cMsIQTENcNjisELJ7M2zb27keW/xxnJ5ye/HLUNnfZNk5f7jmZ+rNEDrjIGe6XD8DxvWPwBALJK7sChi8ALtKEB8kVGRgUT+zwBZ7tU+eWU4WKbMJGpr5OlY4dRzCruOaU+yEIgiAIYnggceU4WN1diG3bCv3SK4Z7KBkRQuC1117D3/zNuYgoPUBoMljx5cM9LGIUEdNNz8vkRMWTKVWp4klZYQgFOYFRt/uLEOmTVaRMWv2T0ZSJKU+1FXBiErhPr32TQPcpsjsZY145c5vktCUnle4kzp5QjuRYBKcLIZILVezdeYXnoeCWhVcWPo+HZNlvx/vUZ7Fz2zL0724VnNIHktsIu2Ps87kSya1/vXrf5+lUF+Mw2DF1rGAeWqI6ZJ8gIDuBPmVHTHB3spEzCAnJHXmSn2f3s+qJH77PcrrY0a84gmTA3PQ28rggCIIgCGK0QeLKcYj++QPAspCYPjKfJtXV1WH//oP4p7v/1t4iOTRhuIdEjDAsi+NwaxTNrVE0+0STlvYomtuyiCcFtlByVlU+ysaEUFYYRllBEKWFIeSHbfFEOIEhU0I1CkC3t6HxyumhHIVv4ujamEoAnQnTKQsvRCX3TUIzTk77PMXP3p7+tN7vFTBYUSWY73UOFX6xJTWfFHj8W9emij+wG9LuibtUwhUJvHoAncUT8ObBNu/e+dv89869964cktKPv/90W+GrT7Ed+WQSIVzBQJb84oV9T1QluUzEFTpcjwu/0OFu6+sXR+Q0McQ+N9XzAnB3d1o6nG8LQRAEQRDEpwISV45D7/vvQsrJgVE9cbiHkpF4PI4rrliIay6dC6AXCI4f7iERw0hP3MAnjV042BbFsV4dMYtDUmVEIhpkWQLL1RDO0zB5QgGmMAYmJSeBcJ4+Z5rEtgFo003saO4G0D34Ay+djDcOtJ306emu+v4Jqz0ZBVQm9a33TVYz1rv2/bU7k2H3SXu6R4PrHZGMA+F4WzhtXl4A3POUSPWsSG/zx5MQKW1JrwfPzhtDcjwW516bDfN2SmTOP3Z0DebLO4fgUCUpgy28z1Cf+rT+k+0sxdbpwq3N0E+qJ0Wql0S610NfDwkM0C5Zn91zI5MdQRAEQRAE8emFxJV+EEKgZ9O7CC9YCMgjczeSefPmYv36xyGaDgCs3N6ikzijEUKg17DQ1BF3RJQEYpaApEoIhVV7kpcXQEFeAOGECWYJhFUJkYCKcFBBUJUdL4a0SSyQOsFGcsKYud0nzGS0YVn69Lfa5brt2zFz5sw+E/EUMUTyixqp4sdImti6k24wQMbIGddgsXHvFlw0+/hbvhMEQRAEQRDEp4lBE1cYYzKAWgCHhRDXDFa/w4lxsB5mUyNybrl1uIeSka6uLsRiTSgtNgC9A8ifPtxDIgaRhMXRo1voTJho6owlPVEUCZLsbL0sAVZAgdmrg8UMaCZHSSSACcU5GDcmBE0ZmaJgOnvj3RibS8IgQRAEQRAEQRCjk8H0XPkWgB0A8gaxz2GlZ9O7AICcRYuBPXuHeTR9+eUvf4mVK1di54dPYsoYULyVUYjFBXoMC926iW7dQmfcQGvUQMzi9voFB845unoS6OpKACZHjiqhJDeAicURTBlbgEhYG8ZXQRAEQRAEQRAE8elmUMQVxthYAFcD+GcAqwajz5FA7/vvQh1XDW3suBEprrz22msYP74cZ1UWAIkooJUO95CIDNjLeDh6DFtA6dFtMaUzYSLBUyOc9Pbq6OiMo7MzjnjUQESTUZKjYUJJBOeNG4NxpREortcKQRAEQRAEQRAEMSJgyYCGp9AJYy8DeAJALoB7Mi0LYoytBLASAMrKyua98MILp3zd04ppoPT+uxE7byG6P/9F9PT0IBKJDPeoPGKxGK677jqsvPVq/PvqS3GkOw+7jlEwW5ehvl8CgJBkWIoGSw7Yqe8ASwoihmGhszOG9o4EOh0hxYrHEYKB4hygLE9CWZ6EvCAbUbFETicj7ftFZIfu1eiC7tfoge7V6ILu1+iC7tfoYbju1SWXXLJZCDF/yC9MnFGcsucKY+waAEeEEJsZY0uz2Qkh/gvAfwHA/PnzxUjfGrL3Lx+gQdcx9fM3Infp0hG3neVrr70GXdfxt1fPgwQL5RPPR8WsacM9rBHDYN0v4WzXa3J7G1+T20fUtBwvFBPdhu2NYvi9UISAkbDQ2RZH89EOtLbH0NkRR09PAuX5IUyuzMP0yjxMnl6KSRV5iITUUx7raGakfb+I7NC9Gl3Q/Ro90L0aXdD9Gl3Q/Ro90L0iRjODsSzoQgDLGWNXAQgCyGOMPSeEuGkQ+h42AhMno+yfHkD4vAXDPZSMrFu3Dvn5ebh4fjUQbftUb8HsblVrOuKHxQUMNYgjUb2PKHK8vMWF14/JAes4nl2yAIyEic6uOJpaenCgsQsdjogSCaqYVJmHyZV5uPDsKkyuzMO4kghUhZb1EARBEARBEARBnEmcsrgihPgOgO8AgOO5cs9oF1YAQCkuwZi/G7kv4+GHH8YXvrAAqhkHtDIwOTTcQxowXAjoloBuceicw7BsQcNyhI7+8p4A4i9n0j9KJuGdQx2ZB+AKJkIAHBBcgHPhpByWJcBNDsviMC0O0xQwTQuGwWEYFnTdwqGWHhxq7oZpcgBAeaHtjXLJ9DJMdgSVkoLgp2ZZD0EQBEEQBEGcSWzevLlUUZSfAJgFgJ6OEhzANtM0vz5v3rwjmQwGc7cgYggZP34cxlVNAw5tAfJnD8sYPJGE86RYYnHo3M0nBZRk3hZEBoJpWjBN7h2GYQscumHBNDgMk8M0LDs1OQwzc72bNwwO07RgZVRjAEVmUGQJqixBkSUoCkvmZQmqwrz81PJcLDvX9kahZT0EQRAEQRAEcWahKMpPysvLZ5SUlLRLknTqgUqJUQ3nnB09erSmubn5JwCWZ7IZVHFFCLERwMbB7JPoy/PPPw8h4vjydYV2Raj6lPrjQsDIIogkLNuzROc8LX98kUSTGDRZgiYzSELAiBlo64ij6WgvjrbHkEiYgBAYk6NBAgODgATZM9ONAAAgAElEQVSAMQaFMSiyT9xQJKgyQ8AVOoKq3aakCiKqIkGRGXZs34ZzzzkbilP22v3nKD4hRf70BI8lCIIgCIIgCOK4zCJhhXCRJEmUlJR0Njc3z8pmQ54ro5DHH38cFRWF+PKVXwekIKCVeW26ZYsgGb1G0r1MnLxxAiJJQJGQK8lOWUppc8uqxNDaEcfH+9uwdV8btu5rRUt7DACQG1Ixa2IhFk8uwpxJRZhcmQdZGnxRQz+6E+dMKR70fgmCIAiCIAiC+FQgkbBC+HE+D1mXiJG4MsrYs2cP6urqsHLld4BYDxCa7Hlc7O2I4aMj3VnPdYUQ1wMkV8sikkhJsUSVju/RIYTA4WO9+NARUrbua8OxzjgAID9Hw+yJhfjsRRMxZ1IRJpbnQjoNYgpBEARBEARBEARBDBckrowy1q1bBwC49ooagLcCoQleW0N3HBFVxoyiHE8kCZyASDJQhBBoONLjeKXYgkpbdwIAUBDRMGdSEeZMKsTsSUWoLo2QmEIQBEEQBEEQBHGCvPzyy3n33HPPeM45brrppmOPP/54MwA8+eSTRcuXL++aMGGCAQBVVVWza2trd1RUVJjZ+nr99ddzv/jFL04eO3asnkgk2PXXX9+2du3apqF6LS7Hjh2Tf/KTnxR++9vfPgoA9fX16u233z5u/fr1+15//fXctWvXlr311lt7hnpcgwGJK6OMdevWYfbsWZhYrgCdAIJ2vBXd4miNGZhWGEZ1XnBQr8m5wIGWbk9I+Xh/Gzp6dABAUV4AcycXYfakQsyZVIRxJTkUu4QgCIIgCIIgCOIUME0Td9111/gNGzZ8MmnSJGPu3LkzPve5z3XMmzcv/txzzxWfffbZMVdcGSjz58/veeutt/Z0dXVJs2fPrrnuuus6L7roouhAxqIogyMdtLa2yj/96U9LXXFlwoQJxvr16/cNSufDDIkrowjDMNDd3Y3lyy8DYt2AVuxtwdzcq0MAqMgJnPJ1OBfY39yVFFP2taEran9vSwqCmDe1BHMmFmLO5CJUFoVJTCEIgiAIgiAIghhENm7cmFNdXZ2oqanRAeCzn/1s28svv1ywdevWxLZt28IrVqyYFAwGeW1t7Q4A+Nd//dfSDRs25JumyV588cV955xzTjxb33l5eXz27NnRXbt2BRYuXBj9h3/4h7Hvvfderq7r7NZbbz2yevXqY6+//nruo48+WlFaWmrU1dWF9+7du/0//uM/ip588skyxhhmzJgR+/Wvf72/sbFR+epXv1p9+PBhDQB+8IMfHLz88st7V61aVdnQ0KAdOHAg0NjYqN1+++0tDzzwwJG77757bENDQ2D69Ok1S5Ys6Vq1atWRa665Zsru3bu3+8fY1dUl/f3f//34HTt2hCzLYvfff3/jTTfd1HE63/NThcSVUYSqqti8eTNM/WOg6U0gPxmouLk3AU1mKAye+C21LI69jUkxZVt9G3pitkdZeWEIF9SUect8yseESEwhCIIgCGLQEEIAwgJMHbASgKWnHqZbZzipXRZeu+6rT7WBdUIPdQfMefE4+Ibfnpa+icGH7tfwwS7/PhjLGv9z1PDdR98ct3dfW3gw+5w8qTD63QcvbcjW3tDQoFVVVelueezYsfqf/vSnyBNPPNH89NNPl65Zs6bh4osv9rxOiouLzbq6uh3f//73S77//e+Xvfjiiwey9d3c3Cx/9NFHOd/97ncb//3f/704Pz/f2rZt245YLMbOO++86ddee20XAGzdujXno48+2j59+nS9trY2uGbNmor3339/Z0VFhdnS0iIDwG233TZu1apVLVdccUXP7t27tSuuuGLKvn37tgPAnj17gps2bdrV0dEhz5gxY9bq1auPrl279tA111wT2rlzZx0A7Nq1S8s0xvvuu6/ikksu6XrppZfqjx07Js+fP3/G8uXLu/Ly8viJvtdDBYkrowjLsiDLMmTjkF0RmgjA/qOkuVdHRSQwIOHDtDh2H+7Ex/vasGVvK7bXtyOasMWUyqIwFs+qwJzJ9jKf0oLQaXs9BEEQBEGMfAS3ADMGGNEMAoiRLDsih7Cy2Jh6X+HErcdJbMghKYCsAbIKyAEn7xyBfEDRAEkd9PcDALpaWhAqKju+ITEioPtFjEaE6Pu7yBjL+mP5pS99qR0AFixYEF23bt2YTDa1tbWRGTNm1EiSJL71rW81z58/P/7AAw9U7ty5M+ye093dLdfV1QU1TRNz5szpnT59ug4AGzZsyLv22mvb3bguZWVlFgC89957ebt37/YmjT09PXJ7e7sEAJdffnlHKBQSoVDILCwsNA4dOjRg/WHjxo15GzZsKHjyySfLASCRSLA9e/Zo5557blaPnOGGxJVRQiKRwMSJE/HQQw/gts9HAEnztmBujRvQuUB5TkbRD4bJ8cmhDs8zZXt9O+K6BQAYV5qDS86uxBwnZkpR/uDGayEIgiAIYngRggNGHDB6bYEk5YhBuHm9FzBifW3ME/w7lsm2sCFrjuihJvOBvKQAoiTFEOYXRlyhRNFSBZO0g0ly2usUEACEALivfDqo//BDFJ5z7mnqnRhs6H4NHxrODI/3/jxMThfjx4/X3aU2AHDo0CGtsrIyqzteMBgUAKAoijBNM+Mb78Zc8dcJIdjatWsPfu5zn+vy17/++uu54XCY++wyijtCCNTW1u6IRCJ92gKBgFcnyzKyjSsTQgi8/PLLe+bOnZsY6DnDDYkro4S3334bTU1NGDu2EIi1AqGxnpdKU48OBqAsbH/3dMPCzoakmLLjQDsShv29qC6L4PL5YzFnUhFmTyzEmNxTj9FCEARBEMTpQwhuL43xxJEYoKcKIKKPaOI/4ujfM4QBaghQw8kjp9TLMy1stythQHGFD7+niN9zRAWT+v/z0hU9uAAEhE8MAbhTFqYJnohCJOIQsThEvAPQ4xCJOKDb9UjEAD1uH4kYmB53jhhYwk5h6P2O5WSpARBff1q6xoC8eAakGh3fiGV4Mn4mMhNAglYFDQvqA/8fmExTzpNhyZIlvfX19cGdO3dqEyZMMF599dXC559/fh8ARCIRq7OzUz5eHwPhsssu63z66adLrrnmmu5AICC2bt0ayBQo98orr+z6/Oc/f9Z9993XUl5ebrW0tMhlZWXW4sWLu/7lX/6l9NFHH20BgE2bNoUWLVoUy3a9/Px8q7e397hrxS655JKutWvXlv3sZz87KEkS3nvvvdCFF16Ytd+RAH3SRwmvvfYawuEwLl1cDXS2AMGzvLbm3gSKQyoONnfjmd/Uoe5gBwyTgzFgYnkeli0Y78VMyc/i3UIQBEEQnzbsWB/cPuDmfSl437oU25Oo89ebCU8AmRT9BHzzvoyeJTCiOO5EWXHFEScNFQF54wDNEUj8wol7OG1QglljIgghwGELIdzzDBGOMAJwy4LQY+C9cUBvh4jHIIw4EI9B6DFHAElAJKJgCVsI8QQQVxQxEmCeOGKnkmVioFEahCQDgRCgBVNSVlAEqAHgNDw57+zsQH5+waD36zFY8e0G1M9xbM4Ax4OOjg4UFJzG+0X0wxnwARomVFXF2rVrD1555ZVTLcvCl770pWPz58+PA8CKFSuO3XnnndWrV6/2AtqeLHfdddex+vr6wOzZs2cIIVhhYaHx29/+dm+63fz58+N3331300UXXTRdkiQxa9as6CuvvFL/X//1Xw1f//rXx0+dOrXGsix2/vnndy9atOhgtuuVl5db8+bN65kyZcrMSy+9tHPVqlVHMtl9//vfb1y5cuX46dOn1wgh2NixYxMjfYtmlmkt1+lm/vz5ora2dsiveyps3LgRS5cuHZZrCyEwfvx4zJ8/H6/+/7cAnfXA2JVgcghRw8Jv97diTnEE69/ei9//5RCuXViNOZOKMHPiGOSFP51iynDeL+LEofs1eqB7Nbo4HfdLCA5wC+CmnQozmU9JTTtIKU9v97cl60QfG2sA56fZnqgQMoKwoEAO5fYVQBzBhKk5fUURn7dJf+KIAGAJWwjhegI80QsRj4PHe23PkETUFkUS9oFE1BZFHM8QW/iI2WkiDmbEk2KIOXDPEMEkIBC0xQ8tZAshgSCYK4YEQmCaXSe55UAQLBACNLts2ztpwO6DKacnrkp/0G/h6ILu1+hhuO4VY2yzEGK+v27Lli31c+fOPTbkgyFGNFu2bCmeO3fuhExt5LkyCvjrX/+KQ4cO4ZFHvgfEjgJavrcFc1OvvQStPKJh96FOzKgeg9uurRnO4RIEMcIRQgDcsINMCivDZDT96X0yHzFbIdr3Z5m8ptqmPv3PYJvxfJ6l3ZfvA0tJkpm0p2UsS31KW3qf2eqzXCvrGPrzgLDzItN7l34/jvf+pvU7s/so+KYP+7Zn6sv/PgueKmgIN++IGKcFZgcolRRAkp1DAZi/zsnLKiAFfW0KwCTnYH3zYH3bwGxBoo+N366ftoHW9XN9KAFPJHnvnXf7TCiEZULEo+DxGHg8ai+T6YyBJ45BxKOeGCISMSDuLpWJAo7HCHMOTyAx4t4yEAagP39yoahAIGwLIUFH3AjlAAUljuARBAuEwRyxhAVCkAJhR/QI+sSQkCeeQNVox0GCIAjijIXElVFAUVER7r//fly9bCGQ+D2QP9Nra+rVkaPKCDKGfY3duG7xhOEbKDFo2JNf09l+MmEHE/S2o0zYqS8vLH9Z72tj9bcTw8n8odvPOVmbsjUwzI9Gwd94I63aP9FyJ1Nu2cnLqWUm+9rcen9d1j7UlOsM1ZaBgluOyKEDlunLG0nxw9J9ecOzESk2BsD1NJtM57p9myc95nMBiI3/O3hvApFG+iTcnbT3JxSw1HafnSbidpBSpE3sJblvX+n9SmmiBrPzLL3ezbO+dYL1byP89s4ikPRfKpGWE2lG/fnfZmwTxz8v5Vr+WsvZLtg07Fge/rzufL+MuF1n6hCGW+ezNXXAMADTsEURPQbEY5jd04nuTc95HiNMj4GZ2bcRdu6YPS7GAC0I4YghwhE5kF9sCx2BsO0FErQ9Q1gwDCkYghQMg2lBsFCO7Q0S9AkiFCOBIAiCIE4I+p9zFDB+/Hg89thjEL3vAwkAoSkAAJMLHInqmJQfQn1LDwyLY9o4Wk86lAhXAPGLHhlT3RFA4qniR7bUTOB4f/qnwpxdFYKpwQaVABDMswMNZn1amOU6WS9/wlOZ4/bVkziCcH5pWpO79MARA4x4Ms9dIcKX5+ag7QohvIllZhEnq1DDWEYhpI/owR0x5VQ9AGRnm1HZOSQtKRbJGqDlOPWuTdKeuXXuuJE+UU+fvNv5j7dtx+zZs/v3DDje5D+lPdP5UpZ2N++/We5dF1nqkdqecSlstrb0WbgYWH2mMRznfQWzvSjcpbrCPbxLOUE+3at4eZFmh+SOKQDq6w+guro6pd4dmv98rz8hIExnmY7rPQQBJhxLAYBzbxDC81ZybeAG50h6H3mdGwAM23PCd15y8Ol1AswbXPKanj3n3nkMwv69MA0wQwezbBGDGfZ3jpk6mCN0MMNpS8vD0MFMw5e3v6fMyxtg7jUHSKZfXSErtleIrEJoQYhACEILgYUisEI5zlKZUHKZjOMdwoKuQBKGFLCFESkYhuQsjyGPEIIgCIIYXkhcGeEcOXIEH374IS655BJosYP2REgba7dFdXABVOQE8Jd9TQCAKWPzh3O4x0UYMXu3o2grEG2DiB6zg/WBp/0h7k95xj+6M9sAEBxzutvB/++fMpzHPZuM/WToK6MNd55CnujkWNYAJejbacERQLSIr2zbMDfv2qSn/rykjuo/rHdu3IjyBUtPqQ97ImglPTM8AcZfNjO0pwo04KbjFdK/jf00OubVC9OA4NwRKxyPGaY6T+qDjughQzAFYM4TfCb7DgmAI3S4dZAgvAm5BEC22wWDAHM+i86yHs7t18+5cwjAsuwxcXeZBweEDvB4sg4AJAlC8l1HkmyByfFwEJIrAMgIdhnoPXDEEaAkLwVL9iG88yQIBoDJSXvJeU1Sur2d2nWyk2fJOviv1fezzpIfhJSKFEuf2MGy5VJOYMl/RbazvM5tnSTzhxOwTAgzYaeWCZim57EkTOdza5newUwD4BaYZTrigFPP3XbX1nBsLFsUsEynbIJZBqotuw/m2Zl9U9P0rs/46VryM0JQNEDVAEV18k6qqHZ9KAymaql1Xl4FU5LnspR+kvbMn3ptyX4kKSkQMmb76zDGKCYEQRAEQYxySFwZ4bzyyiv4xje+gbq67ZgeOQYEi8GYvUq6uTcBhTEUh1TsPtSJ3LCK8jGhYRurEAJIdNnCiSOgiGirr9xmbyPph8n203XvqS6QfMLtOj0zX9k3sUp58puaMlcg6ccm2YbUJ+Mp1/M9KfePUbZFD+aKH5kEj/S6IVxu8mmEMQYv/sJxEJw7W3ra7vfCiUkgTF85EYNIWBBxE0KPg8djdtDHRPK85PafTkyDUbalpWDshMdc5aSjV8o7g5CV1ENR7aUciv09YIqCrt4Y8goLAS0HTPHbq8myYouBzNcPJNn5Trm/g7BTyf976NSn/Jam/Yb67Jj3O4u0tuP0Jfnt4Hn5eGNy7WTZfg98goiXV22vrtEsQhMEQRAEMbIhcWWEs27dOkyZMgXTJuYALSYQGgfAFjKaenWU5miQJYZPDnVi6tj80/qHo+AmEGt3vE5swcQTT1wBJT2WgxICwkVAqBAoPAssXGyX3bpg/mkRHLZs3IilFy8d9H6JoUdYJuAKGnoMIh5NLXtCSNwnlGSut7cFtbcCHfD1JQlCCzmu+0E7rwWBvCInUGNyNwumBTzPjz6pG+OCsdSyJNmTRyY7ed/SEUlO6yPVuyTjddx4GpLvWil9+67l/l5wDubtpsLtpQ9C2HXcAnPbOcfWv36EuXNm2+c43i/MW8LlllM9agS3kp4znieN5bT5vGp8fbh2wvXGcb1zBuJZ0e/v4HF+I/s797g/r/0YKAqYrPYVMxRniZmsOGKHmhQJHBEkea7snTtQoeBP5A1BEARBEAQxJJC4MoLp7u7Gm2++iTvvvBMs7mzp7cRb6dRNxEyOmhwNCcPC/uZu3Lh00ildL7lkp83xOjkGxNqS4km8A31iCgTybaGkYBxQcQ6YK5yEC4FQMZgWPqUxEZnxB1UUXpBEww6e6ARXFE6dZ+dOXNNT4Uxw3QmwZaVNbl1bK21ybNcLf33KJDnDkhTftYXvGrN7exDd+JOUZS3CMm0RpJ+Ajn1QVC9OAbQQhLOLhQjngTvCCA+EYKlBrywCwaRo4tvhQg46h2ILmLLEoDAGmTHIDGfYE/D+9gxJpVfdBa1s3GkcC0EQBEEQBAEAN9xww4Q//vGP+UVFRebu3bu3u/UtLS3y9ddfP+nw4cOBqqqqxGuvvbavpKTE2rRpU6ihoUG78cYbOwFg1apVlZFIxHrkkUda+rtOVVXV7JycHIsxhuLiYuMXv/jF/vHjx5/8DggnyZNPPlm0fPnyrgkTJhgAcOONN1bfe++9LfPmzYtXVVXNrq2t3VFRUTHk4xooJK6MYDZs2ABd17F8+XIgvh/QwmByMQCgqUcHAFTkaNh3uAucC0wdmz2YbeqSnTYgesy3ZMcRUDIt2QkXAqEioLQGCBeBhYpSPE+YrJ621z8Ssd/HGKAnfKKGnhQ1/GKHX+Dw8q4g4u4eYaTWG3qqIJJi52s7waCKJ4y3W4jPw0K2Uyb5vSZkr96tYz7bFM8LVQFzy5Js9+Oc13vsGCLlFaneHLLi7HJhe4fYAR4dgUQLwtKC4GoQlmrnLTUIU5JhCQGeZaWLzOAJJIpkiySyV7bz0hklmhAEQRAEQRCjla997WvHvvWtbx356le/OtFf//DDD1csXbq0+/HHH9993333lT/00EPlTz/99OHa2tpwbW1tjiuunAhvv/32JxUVFeY3v/nNqoceeqjiZz/7WcNAzjNNE4oyOLLCc889V3z22WfHXHHlxRdfPDAoHQ8RJK6MYP74xz+isLAQC88/F2j+CMivhut23tSbwJiAgqAi45ND9ndnalUuxLFdQO+x1CU7rjcKT/MAUIKOSFIEFE5Oep24AsppWrIznAjOgUQUItYLEesBoj0QsR6IWC/gpCLW00++NxkE9GRxlwUo/uCIakpwRBaKeHXMaXeDInpBElPO6acv9/w0wYP1WXKSLDNpaO/7vo0bMW7JElgCMIWAxYWdCvjydjkTkiOaKIwh4HiZyIxBccUTiXlBIwmCIAiCIAhiNLBs2bKeXbt2aen169evL3j77bd3AcBtt93WumTJkmnxeLzxiSeeqIzH49L06dMjd999dxMA7NixI7RgwYJpjY2N2u23397ywAMPHOnvmkuXLu3+0Y9+VAoAr776at4jjzxSqes6q66uTrzwwgv1+fn5vKqqavYXv/jFY2+99VbebbfddmTRokXRlStXVre2tiqyLIuXXnpp38yZMxMPPvhg2a9+9atCXdfZ1Vdf3fHDH/6wcdeuXdqyZcumLFiwoKe2tjZSVlamb9iwYc9LL71UsG3btvCKFSsmBYNBXltbu+PSSy+dumbNmoaLL7446h/jU089Vfj000+XGYbBzj333N5nn332wGAJPKfC8I9gBNPY2OjlDcNIKQ8F999/P26++Wb0HP0YBQB6eTG6GhthCKAtLmOsKtDY2Ii/ftKEMZEAihp+A7H398kOAnm2SJI3Dig/u694ooZH3WRTcAtwhA5bEHHzqSLIxP17Ed/9pieIeDbxaMqOIRkJhMHCOUAoAhaKgOUXg5VPAAvn2OVgDqAF+4oYvl0nWMpOE2qqIDLEwsVIgQsBk9siiSnsrcRdIWXc7HNxsFfvcw4DPK8SVZL6eJmcmUt0CIIgCIIgiJHE2l9uGVff3D2o8Q4mlOdG7/7C3AF5h6TT2tqqVFdXGwBQXV1ttLW1KcFgUHznO99prK2tzXn22WcPAsCqVatCe/bsCW7atGlXR0eHPGPGjFmrV68+GggEsk6I1q1bV1BTUxNrampSHn/88Yp33nnnk7y8PH7//feXP/roo2Vr1qxpAoBgMMg3b968CwDmzJkz/Z577mlesWJFRzQaZZZlsVdffTVvz549wa1bt+4QQuAzn/nMWb/73e8ikyZN0g8ePBh87rnn9i1atOjAVVddNenZZ58d841vfKPt6aefLs0kpvj58MMPgy+//HJhbW3tzkAgIG666abxP/7xj4u++c1vtp7MezmYkLgygpEkCRMmTEBIbAIkGXGrDADQbto7IxQqdmDH+iNRLBjPgP1vAmPPB5v+t/YSnhG+ZEcYOnjTfojWFoi46zniHFFf2W2L9gKJrN8zG8aAYBi5TIGwioFQDlhhGaTQZDsfioCFfMJJKOLU220I5oDJA48/QdgIx6vE73ViCynw8pl+wV3Pklh3F6oi5VCcuCa0RIcgCIIgCIIgTp3LL7+8IxQKiVAoZBYWFhqHDh1SJk+e3Ceo4ZIlS6ZKkoQZM2ZEf/CDHxx+4403Inv37g0uWLBgOgAYhsHmzZvX49qvWLGiHQDa29ullpYWbcWKFR0AEA6HBQCxfv36vHfeeSevpqamBgCi0ai0c+fO4KRJk/SqqqrEokWLYgBwzjnnROvr6wMDfT3r16/P3bZtW3ju3LkzACAej0ulpaUjIg4LiSsjlKeeegpHjx7Fww89BNU6AoRyoRv2NsvtFoPKBHIkIK5baGyL476aXQAH2KwbwEKFwzz6vghDB2/cB37wE/CG3eANn4A31ffd+YNJqWJHKAKpuCpNEHHzjk3YVx8Ig0kS/kI7ZAwq/XmdmFmW60iAFwQ2qLrLdNxYJ6keJzvr92DWhLFD+6IIgiAIgiAIYgCcrIfJ6aKoqMg8cOCAWl1dbRw4cEAtLCzMKi74vVRkWYZpmhmfXroxV9yyEAKLFy/u+s1vfrM/k31ubi537TIhhMA//uM/Nq1evfqYv37Xrl2apmn+MYlYLDZg134hBLvhhhta//M///PwQM8ZKkhcGYEIIfD8889j4sSJUNABSRgw1ULAkMAF0GEyFCkCjAEHjsYwPtiFSeZ24KzLRoSwclwhJZwLadxUqJfeAGncVEilYz2BBIEQLfEYYjJ6nQgBiw/M6yQoS16AWPI6IQiCIAiCIIjTyxVXXNHxzDPPFD3++OPNzzzzTNGVV17ZAQB5eXlWT0/PoMQgWLp0ae/dd989ftu2bYFZs2Yluru7pf3796tz5sxJ+O0KCwt5eXm5/vOf/7zg5ptv7ojFYsw0TbZs2bKu7373u5UrV65sy8/P5/v371f9okomIpGI1dnZ2e8ygiuvvLLrs5/97Fn33XdfS1VVldnS0iJ3dnbKU6dO7RtjYIghcWUEsnfvXtTX12PlypUI8iYAQEIqBwB0WwwWGMYodlDV+pYoVozfDsgBsKlXD/lYhZ6whZQGV0jZnSqk5ORBHjcFas0XII2bAmncVLDCMhJQhhAhBAxPOEHSA2WQvE4IgiAIgiAIghh8rr322okffPBBbnt7u1JWVjbn29/+duNdd9117Hvf+17T9ddfP7m6urq4srJS//Wvf70XAJYtW9a9Zs2aiunTp9e4AW1PlsrKSvOZZ56p/7u/+7tJuq4zAHj44YcPp4srAPDcc8/tv/XWW6sfffTRSlVVxUsvvbT3s5/9bNf27duD55133nQACIfD/Pnnn9+vKEpWgWXFihXH7rzzzurVq1fz2traHZls5s2bF3/ggQcO/83f/M1UzjlUVRVPPvnkQRJXiIxs2LABAHDZZZchiDpACyFh5AOwlwQxCBTI9mdSP1aPCwsbwaZeBxbIPa3jEnoC/PDepDdKw27w5vrktsA5+baQMvP8pJAyppQm4UOEcDxOdC5gcAHDctIMrnrkdUIQBEEQBEEQI5tsS3LKy8ut999//5P0+rKyMmvbtm1+UaLd37579+7tmfo7fPjwx5nqly9f3r18+fI+Ike6/ezZs4Got7kAACAASURBVBMffPBBn/E8+OCDRx588ME+uxP5x/HII4+0uPlbbrml45Zbbulwy3/+8593Zbrmrbfe2n7rrbemvLaRAIkrI5Df//73mD17NqoqiqGY7UCoFEbcibdiMuTJAjIDIAQuVP6EHh5E7uTLBnUM6UKK1fAJRPOBvkLKrAvspT3jppCQMkS4IorBfUKKc/hRGIMqMYQkCapk58nrhCAIgiAIgiAIYvAhcWWEwTnH1KlTMW3aNARECxgAUy0Ej8qIcyAmGMpkW+Dgxz5BTU4LNuEiLFZDJ31NocfBDyeX9vQRUiIFkMdNgTRroSekoKAEYAwC9s7GFgQEF+AQEAIQXuocQoA7tm7ZPRfMFgIUxiBLcFIGCZ9uEUA4wWMNzj3xRM8ootjbFIfUpIiiSuR9QhAEQRAEQRAEMVSQuDLCkCQJ//Zv/wYACJh/hpBk6KIEgLsFM1CoCEAIRBreQEsijNj487zzuU+0cAUO7i8n4hCH90Ic2gMc+gTs0B6g5SCYsIUUESkArzoL1vQLYI2dDLNyCnh+sU8ksftDtM/uXQOGwd4x2RVPBBeIZlh5xwBnyQq8mB92HBB4S1nOBAHBDSir+0QU9/C/LTKJKARBEARBEARBECMSEldGGIcOHUJVVRUYgIBoBgvlQjfCAIA2iyHEBIISEGjdjjyjGf/dMA9/e14eAKDbsNCW8O3CpcehNO2DcniPd8hHG8AEBwPAIwUwqs6COeMCmFVngY+dAuQVgUmSLYDAFkEUsBQxxK23bfxtyXJSQEmzzyIECCHA3R1rvG1/kzvYxDnPGHiVAU6QVfjEF4Zgbj4MzkdU/BBXRLGFE56ypKeviMIQUWWoEoNGIgpBEARBEARBEMSIhsSVEUQsFsOSJUvw9a9/HQ9++3bISAChUui9QVgC6LIYKlQBCAu5h/6AI2YBtiTOwpdD9m2MRnsR/vMGBBv3gh3eDdbSADgeKcgdAzZ2CtjZiyGNmwp53FSwgiJIjI2IpTfMiQUiI/tYMm0ZbPl2v4lyDu5oSxXTatDoeNf4d76RGbwdb7x0kGOQpIso/iU9fhFFYoDmE1H8cVEIgiAIgiAIgiCI0QOJKyOId999F/F4HIsWLUKANwMAuFYAq0tFh8UgwDBG5ggd/SuU+DH8T+NiVJdFANgTeuW1ZxCs3QCWV2jv1nP2xclde/KLRoSIciowRwhRwIAsu5+7cUo2f/gRZs2d28cLJmHZsV/SkVzPF090SfWEyRYE1kqJhZIUUvzXkGB7ouSoErS04LIEQRAEQRAEQRDE6IfElRHEG2+8gUgkggsuuABBsQlCDUO38gAwtJsMMgRymY7I4T8iHqrC+sOl+MJie8lQvKsdgb++CVywDOEv3T28L2QYYYxBZUC8pwsRNbMCw72lR7BTnyeMKQTiBkeGFUi2Z40T+8WCI6L4DF0RJaxIUB0RRZMYJNqdhyAIgiAIgiCIE2DPnj3ql7/85YlHjx5VJUnCV77ylaPutsYtLS3y9ddfP+nw4cOBqqqqxGuvvbavpKTE2rRpU6ihoUG78cYbOwFg1apVlZFIxPJvd5yJqqqq2Tk5ORZjDMXFxcYvfvGL/ePHjzf7O+d08OSTTxYtX768a8KECQYA3HjjjdX33ntvy7x58+JVVVWza2trd1RUVAz5uAaKNNwDIGw453jjjTewdOlSBDUGVbSChSLQ9RCEANothgJFIHLkz5D1LmwPLAbAMLHMFleM914HMw1ol3xueF/IKEBizA4Mq0iIqDIKNAVFQRVlIQ2VYQ3jIwGMy9FQEVJRGlRQGFCQr8oIyhIkBnt5jwDCsoQxmozSoIqqsIaxORrKwxqKgiryNBkhRYIsjYxlVwRBEARBEARBjB5UVcXatWsP7du3b/tf/vKXHT/96U9LN2/eHASAhx9+uGLp0qXdBw4c2LZ06dLuhx56qBwAamtrw//7v/+bfzLXe/vttz/ZtWtX3TnnnBN96KGHKgZ6nmkOntbx3HPPFR88eFB1yy+++OKBefPmxQftAqcZ8lwZIWzZsgVHjhzB5Zdf7mzBLIBQLvTuEHo5YAiGIkQRaXwbibzJ2NxZAqAJ1aVhwDLB3vsNzKnzkFMxYbhfyhmBxBg0mUQRon+4EIgmLPQkTPToJuKGldIuMrhAiUw5kc0mWRAZ/KmESDHJcu0MV0w7jwtnZzFvtzHbK0uI5Jbqrs3+aAjx7c3edurJc+0xppzn9uOzSz9vIDYptimv2z7RfR3+1yycF+judAaRfA9T3re0euHvIUPf3n1Ia+uvb1liqMgPobowjPGFYVQXhlEQUkl4JQiCIAgiK9XV1UZ1dbUBAGPGjOGTJ0+OHTx4UJs3b158/fr1BW+//fYuALjttttalyxZMi0ejzc+8cQTlfF4XJo+fXrk7rvvbgKAHTt2hBYsWDCtsbFRu/3221seeOCBI/1dd+nSpd0/+tGPSgHg1VdfzXvkkUcqdV1n1dXViRdeeKE+Pz+fV1VVzf7iF7947K233sq77bbbjixatCi6cuXK6tbWVkWWZfHSSy/tmzlzZuLBBx8s+9WvflWo6zq7+uqrO374wx827tq1S1u2bNmUBQsW9NTW1kbKysr0DRs27HnppZcKtm3bFl6xYsWkYDDIa2trd1x66aVT16xZ03DxxRdH/WN86qmnCp9++ukywzDYueee2/vss88eUJThlzaGfwQEAGDatGn4yU9+goULFyLAd0MwBVAjMIwA2i0GQGDc0XchmVF0j7sM9W9FUT4mgHBAhrLtPUjd7bBuvH64XwZBjGq4EIjqFnoTpi2YOIddttCrp9bHdCujsHFmE8KeXUfs3cAYS6ZwdhPzld125iyNk5wdxdylcim7kGWwUSTJ22lM8tm4O5AByR3K7Lz7j5v0bWNeC9LamBdO2983vJ3R4OX9/SJLG/O1GVzgUHsMH+xvxf/dcwwAEAkoKWLL2DEhBJQswaQIgiAIghhWfrm5YVxzVzw8mH2W5wWjX5g3rmEgtrt27dLq6urCS5Ys6QGA1tZWxRVeqqurjba2NiUYDIrvfOc7jbW1tTnPPvvsQQBYtWpVaM+ePcFNmzbt6ujokGfMmDFr9erVRwOBQNY/YdetW1dQU1MTa2pqUh5//PGKd95555O8vDx+//33lz/66KNla9asaQKAYDDIN2/evAsA5syZM/2ee+5pXrFiRUc0GmWWZbFXX301b8+ePcGtW7fuEELgM5/5zFm/+93vIpMmTdIPHjwYfO65/8fe3UdFdeV5o/+eU+9FUUCBUIBaptSiqgSVLqUzaCtRo2C6zROftnUyGdq+a2xnMsmaxNa+N5OgrXElvXq8men0NQmTdZO5Sq+M3T52JyYjkeQh0GnNC9oTLORFlNcSi9eCKur11Nn3jwIs5EWiqJj8PmuxOGfX3vucwymU86u9f7vkSm5ubsvGjRuNR44cSXjyySd7X3/99eTxginRzp8/rzx+/LiuqqqqTqFQsCeeeGLuG2+8kfjUU0/1TP2nf2dQcGWGUKvVKCgoABiDQrgGptQiFFIjkm+FR4LoQey1P8OfsAiCZjaanXaY0jWR+l9+CGHWHMgty+/1ZRAyo4iMwReMDoqEo4Il1797hl73BiYOlqjlEmgUUmgUUqTEKjE/SYoYxfWyGIUUSik/ZjQCN87O9QfvG5/Qb6g//NI4hdwNDSZrx43zanRg4Xqg43owZCSYcUMwpOKTCjz0UN44RyM3ExYZOvp9aO3zobXXi9beQdR0DACI3Ad9nBJzE9QjQZdZsQpagp0QQgj5luvv7+c3b948/5e//GWbTqcbb22OSa1fv96lUqmYSqUSdDpdqL29XTp//vzQjfVWr15t4nkeFovF+8orrzjKyso0ly9fVubk5JgBIBQKcTabzTNcv7CwsA8A+vr6eKfTKS8sLHQBgFqtZgBYaWmptrKyUmu1Wq0A4PV6+bq6OqXRaAymp6cHcnNzfQCQnZ3tbW5uVkz1ekpLS2Ptdrt6yZIlFgDw+/18cnLyjMjDQsGVGcDhcOD48eN4/PHHkZokgwR+QD0LwaAKQRHwiBxWdJeDE0Nwz1kL12AIvZ4QHkhRQ9LeAKmzGZ5Hn0KslFLokG82xhh8oeEASXj06JLg9REmw2XeoDAq6XA0lUwCzVBwZJZGgQcSYxAjl0KjlEIjHw6YRF5Xy6WQ8PSQC4wf6CFTI+E5zE5QY3aCGrnGRADAYEBAW58Xrb1etPR6Ue3ox+fNvQAApYzH3IRIoGWuTo25CWrEKOi/bUIIIeRum+oIk+kWCAS4Rx55ZP6WLVt6f/zjH7uGyxMTE4WWlhaZwWAItbS0yHQ63YTBhehRKhKJBIIgjPvXXEVFRUN0sljGGFauXDlw8uTJpvHqx8bGisP1xsMYwzPPPNOxZ8+e7ujy+vp6uVwujz4n5vP5pvwgyxjjtmzZ0nP48GHHVNvcLfRX2gxw6tQp/OpXv8Kjjz4Khc4XKVTFIuhSoS/MQRV0Ibn7c/hmZSOsSkbzlX4AwAMpaig+fweiKhbMtoY+4STTSmQs8jW0qpIospHvIpu8TGQMYfF6H+GhMpFhZDs81EZkDI0+JYQ651B/kTIhLI6aijM8ymSiYIlSxkMjj4wgSYyRw6CLPIhGRpZIItvy66NMKFhCZoIYhRRmvRZmvRZA5L3f7Qmgpfd6wOXjus6REVVJGnlkKtFQ0CU1TkXvZUIIIeQbSBRFbNu2zWAymfy/+MUvRq32s2HDBldxcXHiSy+9dK24uDgxPz/fBQBarTbs8Xim5RP3vLy8wZ/97Gdz7Xa7IjMzM+B2u/mmpibZ4sWLA9H1dDqdqNfrg0ePHo3/27/9W5fP5+MEQeAKCgoGfvGLX6T99Kc/7Y2LixObmppk0UGV8Wg0mnB/f/+k86Tz8/MHNm/evOCf//mfnenp6YLT6ZT09/dLTCZTcDqu+3ZQcGUGOH36NEwmE+bNmweFUI6wRAOJRIZQSIk+gcOiro8AAJ70NQCAJqcXHAc8IHND2nAevtU/hFI9rVMAyV3CGIMgMghhBkEUIYgMobA4tB8pC4UjgYhQWByqO1xvqE3U95AYVRYWERKvt40OXIwERaKCHdFlojhe+tQ7SY36i5H/M/ihKSlSnkPMUCAkQS3HnHjVSGAk+rtGIUWMXAKphEZukfsfz3FIjlUiOVaJ5QYdACAghNE+NJWopdeLS04PzrdGPryS8hzmJKiGRrfEwKBTI04lm+wQhNyXRMYQCInwhcLXv4Jh+KP2I9ti1HYYgdDXHkE/JT5/HM6W1t2Rvsn0o/t17/yfGzLoA+BbVFZWpvnjH/+YuHDhQp/ZbLYCwP79+x1bt27t379/f8djjz0232AwJKWlpQX/+Mc/XgaAgoIC96FDh1LNZrN1OKHtrUpLSxOKi4ubt23bZgwGgxwA7Nu3z3FjcAUASkpKmnbs2GF48cUX02QyGfv9739/efPmzQM1NTXK5cuXmwFArVaLv/3tb5ukUumEjxmFhYXdTz/9tGHPnj1iVVVV7Xh1bDab/4UXXnCsXbvWJIoiZDIZe/XVV1tnQnCFm2gYz520bNkyVlVVddeP+3VdvXp1ZLumpgaLFi2a9mO4XC4sXrwY//AP/4B//r92I0V4F2JMKkTtbHR2GXCxtwdrG/8NXv1fwW3YCAD413cvo3sgiP877Tzk5z5C3563MEufCiU9XI745JNPkJeXNy19hUUGT0DAgD+EAV8IA34BASE8FNyYOJgRHTQZHQgZXfd2cQCkEg5Snods6Htkn4NUwkPGc5BEffFc5CuyjahtDjwPSLjhbS6yzY+uI+EAnudGt+MQ9To39DpGtsfv53rZnz/9E/JWrx7J7UFmrun83SK3hjEGly80Emxp7fWi3eUb+fckTikbmUrU21KP7z+UCzlNG53xvum/WzcGR8YERYJjAyM3Bklu9j+mUsZDJZNAKZNANfQll/J3ZDqj85oTKfqU6e+Y3BF0v+6drbY5Xyu4cq/+LeQ47hxjbFl02VdffdW8ZMmS7onakG+nr776KmnJkiXzxnuNRq7cY+Xl5QiHw3j44YdHlmCWxKjhD6owEOZg6SyDyMvgSVsNIPJHdZPTC9tsOeRfVSBo/SuI2kQoaFj418aGVobp94cw4IsET/p9oUgQxS8MBVJCcPuFCf+gGw5syCT8SDBDynOQDW9LOKil0kjZqMBHJBAi4cdpO0GAJLpMJuFH2n4TAhKSoeAMIeTmOI5DglqOBLUcS2bHAwCEsIir/f5Ioty+SNDlwtV+AFp8ftKOtDgV5uiuJ8tNipHf9/9ukLuDRY1yFEQRAUGEd7wRI9MRHJHykcCIPBIYSVDLR4IkKhkPlXx04CR6WyHj7+qn4598cgV5y+beteOR20P3ixByN1Bw5R5zOBxIS0tDdnY2FOJfIEIKXqlGsE+FoNuB9AE7BtIeApPFAAB6PSEMeAWsDjaAC/rhW/EouHAIHKe8x1cyczDGEGJAp9uPAZ8wFDy5HjSJDqCMN3JELZcgTiWDVilDapwSWqUMWpUMWqV0pFwp4yHleQoIEEJmBKmEHxmtMszjF/BB5efQps9Ha68X51v7cPZKZJVCtVwyJlmuSk5LQU8nxiLTKxm7HqBgYEP7ke3w0AjGMGPwhHl09PuGghiR6ZqCGFUnqu6NZcP1R7bFqLY31p9qvajyqZo4OMKPDYrIo/cjr9PUAUIIIfczCq7cY0899RT+/u//HhKeh0K4hrBMBwnHIRBQIc3xvxCUqOFLXTFSv9npBc9EmNv/DCF9IQSDFbx/8B5ewd0VCotD03MmHmnS7xMQDOtwuqxhVFullB8KksjwQGLMyHacShoJoChliFVKIaPpVYSQbwCNUooUeQh5i/QAItMyOgcCaOkdjEwp6vOivtY9MpogOVYxMrIlRRsJ2A8HBUTGRgUJRvYxFDSYrN4U+hmuF70/3O+Y/ZvUGwlo3BDIGN6OPqfo4MdIGQPEqO1R1zlOn9d/FlFtbumOxaPi40u3cccjOXhGpoFyo6eE3limkEZGSw7nuJqs7vCXlOegkA4FRSg4QgghhIxCwZV7SBRF8DwPqVQKKXNBAh9EZRoEQQaxrwUpg41oT98IqfT6qJQmpxc5rAkKTzc8658AAPDCmGXK7zthkcE9HCQZCZoIY0ac+ELhMW2lPAetSoY4pRRpcSqY9TJ0OVrxncyMUUETpYw+lSWEfHvxHAd9nBL6OCW++0BkKWh/KDxqKeiLHQP4sqXvrp4XN3RuHBdZ6ns4L9TwdvTrwzmeuKHpkBPV4ziAw9BrPMCBHyqLrhNpE91+dPlwn0PbUX2Ot83f0OeY9og+78iVD0+JlPAc6uvqkJW5aKhsKPDBRwU+xguWDL1+/edCwQ1CCCHkXqHgyj30i1/8ArW1tfjd734HhXgNACDRqBAIKKFtexdeWRzC+uWjblKz04tC7r8hahMRWJQLMBEQxwYcZjKRMXT0+9HgdKOh04NrA34MBsbmNeE5IFYZmY6TGCOHMSlmaIpOZKRJ3NC2SiYZ8wflJ70NyJ6TcPcuihBC7kNKmQQLk2OxMDkWQGTkRc9gED2DwdGBh6igBo/oQMf4QZHhIMao4Mc434eDGATwNAWxOD3uXp8GIYQQQm4RBVfuEcYYPvzwQ1gsFnAcBwW7BoHTQiaXINzcjhhvOy6k/0/MkspGtRGvNmFhoBW+3G1gCiU4IYT74c/Sfl8IlzojwZSGTjcGA5GAkF6rhFUfG8llMjJNJxJQiVFIaYgxIYTcRRzHIUmjQJJGca9PhRBCCCHkvkLBlXuktrYW7e3t+Kd/+idwLAQ560ZAMQ9SJkJx5c9wy2fBm7R0VJuugSDWes9BkMgRXPoQwEvABXz36AomFxREXOkeREOnGw2dbjgHIsuhaxRSZCTHwpQSi4WzNNCqZDfpiRBCCCGEEEK+XbxeL/fd737XHAwGuXA4zP3gBz/o+9d//derAOB0OiWPPfaY0eFwKNLT0wPvvvvulVmzZoXPnDmjamtrk2/durUfAHbt2pWm0WjCBw4ccE52rPT09KyYmJgwx3FISkoKvfPOO01z584V7sZ1Rnv11VcTN23aNDBv3rwQAGzdutXw85//3Gmz2fzp6elZVVVVtampqXf9vKaKMnfeI6dPnwYArFu3bmQJZk4ZC7G5GVJfN2qS1yNBNnrUxtWWa/ieWA+XKReiJrL8Jh+eGflWRMbgcPlQXt+J4j9dwd73a/D/nmnC2Ss90CpleCRTj2fXLETRRgv+evlc2OYmUGCFEEIIIYQQQsahVCrZp59+Wl9fX3+xpqbm4scff6z9+OOPYwBg3759qXl5ee6WlhZ7Xl6ee+/evXoAqKqqUn/wwQe3NMe0oqKiob6+/mJ2drZ37969qVNtJwjTF+soKSlJam1tHXlIPHbsWIvNZvNP2wHuMAqu3CNlZWXIzs5GcnIyFOI1iJBCquSAuv+GW5WOTu0ixN5wdzQXyiFDGJIV+RClMkAUI1/3SL8vhC9bevHbL1px4L8u4t/+9yX8V801eAICVsxPxN+teAAHfrAIP11pRJ4pGWnxKprmQwghhBBCCCE3wfM84uLiRAAIBoOcIAjccJ6y0tLS+J07d/YAwM6dO3tOnTqV4Pf7uZdffjnt5MmTCWaz2frmm28mAEBtba0qJycnY/bs2VkHDx5Mvtlx8/Ly3E1NTQoAOHHihHbp0qVmq9VqKSgoMPb39/NAZKTL7t27U202W8Zbb72VYLfbFbm5uaaMjAyr1Wq11NTUKACgqKgoJTMz02IymazPPvtsGgDU19fLjUbjom3bthkWLFiwaMWKFQs9Hg/39ttvJ9jtdnVhYaHRbDZbPR4Pl5OTk1FZWam+8Rxfe+01XVZWlsVsNlsff/xxw3QGeG4HTQu6Bxhj+NGPfoT4+HiAMSjYNQT5ZCjba8H8Htjn/QjxskiCwBFCEBlXP0ONagHSk9LAJLK7nm8lMtXHM5I3hab6EEIIIYQQQr7pqq4NzOkPCGMe8m9HnELqXabXtk1WRxAEZGZmWltbWxU//vGPO9esWTMIAD09PVKDwRACAIPBEOrt7ZUqlUr23HPPXa2qqoo5cuRIKwDs2rVL1djYqDxz5ky9y+WSWCyWzD179nQpFIob1xIZ8d5778VbrVZfR0eH9KWXXkqtrKxs0Gq14vPPP69/8cUXUw4dOtQBAEqlUjx37lw9ACxevNi8e/fua4WFhS6v18uFw2HuxIkT2sbGRmV1dXUtYwzr1q1bcOrUKY3RaAy2trYqS0pKruTm5rZs3LjReOTIkYQnn3yy9/XXX08+dOhQ26pVq7wTnd/58+eVx48f11VVVdUpFAr2xBNPzH3jjTcSn3rqqZ6vfxemFwVX7gGO4/DjH/8YACBl/ZDABz8/F6y+HP64eehQL8RCyegRKdKas4gJe9EwdxXSeQnA83d8StCNq/o09QwiLDJIeQ4PJMVg2VwdTCkapGqVtNoDIYQQQgghhEwjqVSKurq6i93d3ZJHHnlk/pdffqlcvnz515oms379epdKpWIqlUrQ6XSh9vZ26fz588c8SK5evdrE8zwsFov3lVdecZSVlWkuX76szMnJMQNAKBTibDabZ7h+YWFhHwD09fXxTqdTXlhY6AIAtVrNALDS0lJtZWWl1mq1WgHA6/XydXV1SqPRGExPTw/k5ub6ACA7O9vb3Nw85Uz6paWlsXa7Xb1kyRILAPj9fj45OXlGDF2h4Mo9UFFRgUWLFiEpKQkKsQMAIOu6AgT9uGLIBzggXhoVTGQMks9L0cwlQbowMzIlCAAnTH9wpd8XiiShdXpwqev6qj6pcUqsnJ8IU3IsHkiKgUxCM8oIIYQQQggh33w3G2FypyUlJYVXrlzpPnnyZNzy5cv9iYmJQktLi8xgMIRaWlpkOp1uwuBC9CgViUQCQRDG/VS8oqKiITpZLGMMK1euHDh58mTTePVjY2PF4XrjYYzhmWee6dizZ093dHl9fb1cLpdHnxPz+XxTfrhkjHFbtmzpOXz4sGOqbe4WekK+ywYHB/GTn/wEv/nNbwAACnYNIUENadtXEFPmoU1pgJYHonPZSlpqoex14H1JNh7Qx4BJZEA4DI7dfr6VoCCi7toA3qu+ikNl9Th4qha/O9eOxi4PMlJisW3ZHBQVWLBrrQnfz0qDKSWWAiuEEEIIIYQQcgddvXpV2t3dLQEAj8fDffLJJ1qLxeIHgA0bNriKi4sTAaC4uDgxPz/fBQBarTbs8Xim5WEtLy9vsKqqSmO32xUA4Ha7+erq6jEjTHQ6najX64NHjx6NBwCfz8e53W6+oKBg4OjRo0nDeVqamppkDodj0sEdGo0m3N/fL5msTn5+/sD777+fMNyX0+mUNDQ0yG/1OqcTjVy5yyorKxEIBLB+/fqRJZhDTi84QYBn3vcw6OFgkIdHtVFUfQifNAafKSz4a50STCoFHwre0vFFxnDV5RvJm9Lc4x091cdAU30IIYQQQggh5F5qa2uTbd++/YFwOAzGGPfoo4/2/vVf/3U/AOzfv7/jsccem28wGJLS0tKCf/zjHy8DQEFBgfvQoUOpZrPZ+rOf/azjdo6flpYmFBcXN2/bts0YDAY5ANi3b59j8eLFgRvrlpSUNO3YscPw4osvpslkMvb73//+8ubNmwdqamqUy5cvNwOAWq0Wf/vb3zZJpdIJ870UFhZ2P/3004Y9e/aIVVVVtePVsdls/hdeeMGxdu1akyiKkMlk7NVXX201mUy39oA8jSi4cpedPn0acXFxyMnJgZx1AsEApJ2XgblGdErmAAASJNffb3zvNUgb/xsV8SuRmqAFL5MhzPFfa0qQyxvEpc5IItpLnW4MBmmqDyGEEEIIIYTMVN/97nd9tbW1F8d7Ta/Xh8+ePdtwY3lKSkrYbrdHByX6ol+/dOlSzXj9ORyOC+OVb9q0yb1p06YxQY4byhgJgQAAIABJREFU62dlZQU+++yzMedTVFTUWVRU1HljefR5HDhwwDm8vX37dtf27dtdw/tffPFF/XjH3LFjR9+OHTtGXdtMQMGVuygcDuOjjz7C2rVrIZPJoBQ6wDq6ADAgYwkcnSooOAZVVIxDXnUa4Hn8LrgIS1PUkSlBALhJktmOWtXH6YbTHbWqjz4WpuRYLEzWQKukVX0IIYQQQgghhJDbRcGVu6impga9vb14+OGHI0sw+5qAnh6I8xaByRPRK0iRLGPXl2D2D0J+4U/on78cXW0qzEtRg0llQFgAN07iIOeAH3/4yjFqqo8xKQbL5+lgStZAT1N9CCGEEEIIIYSQaXfbwRWO45QAKgEohvo7zhjbd7v9fhMtXrwYn3/+OXQ6HaQYAH+1GYyXQGK2oi+ggggOCVFLMMu/qgAXCqA6dQXQJuIBvRpMIgUfHH/1rdKL1+Do82Hl/CSYkjU01YcQQgghhBBCCLkLpmPkSgDAGsaYh+M4GYBPOY47xRj7bBr6/saZPXs2AEA1cAZw9cM/+0HEqJTo6lSDB0PccL4VMQzFuTIIc8yoDuiglPUiJVEDkePGnRLkDQqo7XAjd34ivp+VejcviRBCCCGEEEII+Va77WENLMIztCsb+powA/C31ZUrV/B3f/d3uHTpEgBA5fgcTCKFYFwGAGjzqBEnYeCHZu1IG86BH+hBYPkGNDm9MCSrAZkMYAycMHYZ8/9u70eYMdjmJty1ayKEEEIIIYQQQsg05VzhOE4C4ByABQAOM8Y+H6fOTwH8FABSUlLwySefTMeh76hQ6PoIEb/fj5qacZMrT8nvf/97nDp1Co8//jhifS3Q+3rQl7AAguCCzMejX5BD1dOGGk8vACDz0z/Ar47Heb8MLZ1eZM/hMRgUgKAbbTX2Mf1/4dNBI+HQ8JfPcYnSqsDj8dwX7zESQffr/kH36v5C9+v+Qffq/kL36/5C9+v+QfeK3M+mJbjCGAsDWMpxXDyAP3Acl8kYs99Q598B/DsALFu2jOXl5U3Hoe+oq1evjmzX1NRg0aJFt9xXUVERrFYr1jz0EJJq/h9AJgMzPoykJD/6fDEAAOucVCj4VEiuXoamzwHf2r9BnH4BwmI9cjINUGliwQd9Y87D5Q/D9d992LhIj4cykm/5HL9JPvnkE9wP7zESQffr/kH36v5C9+v+Qffq/kL36/5C9+v+QfdqLEEQkJWVZdXr9cHy8vJGAHA6nZLHHnvM6HA4FOnp6YF33333yqxZs8JnzpxRtbW1ybdu3doPALt27UrTaDTh6OWOx5Oenp4VExMT5jgOSUlJoXfeeadp7ty5Y6dL3GGvvvpq4qZNmwbmzZsXAoCtW7cafv7znzttNps/PT09q6qqqjY1NfWun9dUTWu2U8aYC8AnAPKns9/7XW9vL7788kts2LABir46SAedYKmpCMsTIZGE4fSqEcMzKIbuhrzqNJhcieDiVWhyegEAC+fEAxwHThibb6W2yw8OQPac+Lt4VYQQQgghhBBC7qSDBw+mLFiwwBddtm/fvtS8vDx3S0uLPS8vz7137149AFRVVak/+OCDuFs5TkVFRUN9ff3F7Oxs7969e6ecxFMYJ2XFrSopKUlqbW2VDe8fO3asxWazjb+aywx028EVjuNmDY1YAcdxKgDrANTdbr/fJB9//DFEUcT6h9dB014GplAimGSBXBEAALR71UgYSmTLuXshq/sCwcWrAYUKzU4v1AoJYuPUkXwr4dFvXsYYarsDmD9Lg3i1/K5fGyGEEEIIIYSQ6Xf58mXZhx9+GLdjx47u6PLS0tL4nTt39gDAzp07e06dOpXg9/u5l19+Oe3kyZMJZrPZ+uabbyYAQG1trSonJydj9uzZWQcPHrzpNIe8vDx3U1OTAgBOnDihXbp0qdlqtVoKCgqM/f39PBAZ6bJ79+5Um82W8dZbbyXY7XZFbm6uKSMjw2q1Wi01NTUKACgqKkrJzMy0mEwm67PPPpsGAPX19XKj0bho27ZthgULFixasWLFQo/Hw7399tsJdrtdXVhYaDSbzVaPx8Pl5ORkVFZWqm88x9dee02XlZVlMZvN1scff9wwnQGe2zEd04JSAfx/Q3lXeAC/Y4y9Pw39fmPI5XKsWrUKy1NFyJo6gQcM8EvSIZf7IIR5uIMKzFOFI3XPfwwwEYFl6wEATZ1ePJCiBpPKwIVDuDGdylWPgP6AiPy5NGqFEEIIIYQQQqZbtz80JySyMQ/5t0PGc94kpaxtsjr/+I//OOdXv/pVe39/vyS6vKenR2owGEIAYDAYQr29vVKlUsmee+65q1VVVTFHjhxpBYBdu3apGhsblWfOnKl3uVwSi8WSuWfPni6FQjHhAjTvvfdevNVq9XV0dEhfeuml1MrKygatVis+//zz+hdffDHl0KFDHQCgVCrFc+fO1QPA4sWLzbt3775WWFjo8nq9XDgc5k6cOKFtbGxUVldX1zLGsG7dugWnTp3SGI3GYGtrq7KkpORKbm5uy8aNG41HjhxJePLJJ3tff/315EOHDrWtWrXKO9H5nT9/Xnn8+HFdVVVVnUKhYE888cTcN954I/Gpp57qmfpP/8647eAKY6waQPY0nMs31qOPPopHf/AIYqv/DWG1DpL4OAQ4PWIVTrj8akg5QMMDCAUg/8v/hrDwO2DxsxAURLR3+7HpwVRAIgXnH/seq+0KQMoDmWm3NPqLEEIIIYQQQsgM884778QlJSUJ3/ve97zvv/9+7K32s379epdKpWIqlUrQ6XSh9vZ26fz588fkmli9erWJ53lYLBbvK6+84igrK9NcvnxZmZOTYwaAUCjE2Wy24VWCUVhY2AcAfX19vNPplBcWFroAQK1WMwCstLRUW1lZqbVarVYA8Hq9fF1dndJoNAbT09MDubm5PgDIzs72Njc3K6Z6PaWlpbF2u129ZMkSCwD4/X4+OTl5RgxdmZaEtmRivb29iImJQULfXyANuBBakA3GaQCJHFJpCNf6EpAgYeA4QFZzBrx/EN5lGwAA7d0+hEUGq1EHAODCo38HBJGhoSeABToFlDLJmGMTQgghhBBCCLk9Nxthcid8+umnmrKysvj09PS4QCDADw4O8o8++ugD7777blNiYqLQ0tIiMxgMoZaWFplOp5swuBA9SkUikUAQhHHXlq2oqGiIThbLGMPKlSsHTp482TRe/djYWHG43ngYY3jmmWc69uzZM2pKU319vVwul0efE/P5fFNOV8IY47Zs2dJz+PBhx1Tb3C3TmtCWjPUv//IvePC734Wy9WMEYw2QxTIEeD3k8khOoi6fGglSBjAGxZcfIpwyD+E5GQAwksw2LTkWYOKYfCtNfUEEwgyWpCkH+gghhBBCCCGEzHCHDx92OJ3OaofDceE//uM/rjz44IPud999twkANmzY4CouLk4EgOLi4sT8/HwXAGi12rDH45mWZ/y8vLzBqqoqjd1uVwCA2+3mq6urxzx46nQ6Ua/XB48ePRoPAD6fj3O73XxBQcHA0aNHk4bztDQ1NckcDsekgzs0Gk34xilQN8rPzx94//33E4b7cjqdkoaGhhmRfJSCK3cQYwynT5/GdzPnQc588M+2geMYAlwq5HI/RJGDK6BAvIRB2nQBkp6rCCzfAHCRYGKz04tYlRRylRKcIIzJt1LbHYBaxmFunGzswQkhhBBCCCGEfOPs37+/o7y8XGswGDLLy8u1+/fv7wCAgoICd0NDgyo6oe2tSktLE4qLi5u3bdtmNJlMVpvNZr5w4YJyvLolJSVNhw8fTjaZTNZly5aZ29rapJs3bx7YsmVL7/Lly80mk8n62GOPzXe5XJMGTgoLC7uffvppw3BC2/Hq2Gw2/wsvvOBYu3atyWQyWdesWWNqa2ubEQ/ENC3oDrpw4QKuXbuG/7HVAn+8GdIYBlGUIsglQStvhyughIbnIOUY5FWnIcbEIWTOGWnf1OnFYmM8IJGAC41egcoXEtHkCiJbrwLPjfu+I4QQQgghhBByn/v+97/v/v73v+8e3tfr9eGzZ8823FgvJSUlbLfba6OK+qJfv3TpUs14/TscjgvjlW/atMm9adOm2pvVz8rKCnz22WdjzqeoqKizqKio88by6PM4cOCAc3h7+/btru3bt7uG97/44ov68Y65Y8eOvh07doy6tpmARq7cQadPnwbPc3gkOxWe2eugEK8hyCWD4wGZzI/OoSWY+W4HZFeqEfzOWkAaCboFQiIcPX4sNSUBAHhhdL6V+p4ARAaaEkQIIYQQQgghhNxjFFy5g8o+LEWuOQUa43cBtRpSeBHg9JDJ/OA4oNsfybcirzoNJpEhmL1mpG1rlxeMAfPS4wBRBMTwqL5ruwNIUkswK4YGHxFCCCGEEEIIIfcSPZnfQa/+0/fBddfCk74GSvEaAMDPp0It94ExYNCvghpuyO1/RmhRLphaO9J2OJmtNk4NLhwalW+lzxfGNY+A782d1qXWCSGEEEIIIYQQcgsouHKHSPzdWDWrF97MH8Ct1EEhXEAIWoicGjJ5LwaCCmh4HvLzn4ATgggsWz+qfZPTi4VztOAlEvBB36jXarv94ACYaUoQIYQQQgghhBByz9G0oDvkyL/tw5/qujCYngeOCZCzbgR4PQAGudyHbp8aCQhBfv4jhOYtgpg8Z1T7ZqcXDy5KAQBwUflWGGOo7Q5gTpwMGvmkyZYJIYQQQgghhBByF1Bw5Q7wXmvA86+/hz/UhCDKNJCzTnAQEeD0kEoDkPAMPT4VEhu/AO/uQ3DZhlHtfYEwrvUFYDIkRHKtMHHkNYdbwEBApES2hBBCCCGEEELIDEHBlTvgsz/+O0KCiIce+zEAQMGuQYQEQS4Jcnlkik8ooISy6kOEdXoI8xePat/c6QU4YFZiDDhhdL6V2m4/ZDywQEfBFUIIIYQQQgj5pkpPT88ymUxWs9lszczMtAyXO51OSW5u7kKDwZCZm5u7sKurSwIAZ86cUR07dixuuN6uXbvS9u7dmzLV42RkZFhXrFixsLW19Z6kD3n11VcTm5ubZcP7W7duNZw7d045fI4dHR0zOq0JBVemmWygCacqPkdifCxsObkAY1CIHQhyyQAngUTugzckhe5qE6QdVxBcth7gRt+G5k4v5uhjIZFKRi3BLIgMl3qCWKBTQC7hbjw0IYQQQgghhJBvkIqKioa6urqLdru9drhs3759qXl5ee6WlhZ7Xl6ee+/evXoAqKqqUn/wwQdxE/c2+XHq6+svZmdne/fu3Zs61XaCINzK4cZVUlKS1NraOhJcOXbsWIvNZvNP2wHuMAquTCfGoGwqxX+dc2DtwxsgkUgggXtoCeZUAAwKuR/dPjWS//IhmEKNYObKMd00Ob2wZcwCAHDh68GVK31BBMKMpgQRQgghhBBCyLdUaWlp/M6dO3sAYOfOnT2nTp1K8Pv93Msvv5x28uTJBLPZbH3zzTcTAKC2tlaVk5OTMXv27KyDBw8m36zvvLw8d1NTkwIATpw4oV26dKnZarVaCgoKjP39/TwQGUWye/fuVJvNlvHWW28l2O12RW5urikjI8NqtVotNTU1CgAoKipKyczMtJhMJuuzzz6bBgD19fVyo9G4aNu2bYYFCxYsWrFixUKPx8O9/fbbCXa7XV1YWGg0m81Wj8fD5eTkZFRWVo5ZIve1117TZWVlWcxms/Xxxx83TGeA53bM6GE19xuFqx6OKxchUyixfkM+AIwswRzg9ZBIBMilArzXfNA1fIlgTgEgV47pp9npRf6qhUBYAMfYSHltdwAxMh5z4mRj2hBCCCGEEEIIuRPq5gCDYx7yb0+MFzC33azW2rVrF3Ich5/85Cddu3fv7gaAnp4eqcFgCAGAwWAI9fb2SpVKJXvuueeuVlVVxRw5cqQVAHbt2qVqbGxUnjlzpt7lckksFkvmnj17uhQKBZvoeO+991681Wr1dXR0SF966aXUysrKBq1WKz7//PP6F198MeXQoUMdAKBUKsVz587VA8DixYvNu3fvvlZYWOjyer1cOBzmTpw4oW1sbFRWV1fXMsawbt26BadOndIYjcZga2ursqSk5Epubm7Lxo0bjUeOHEl48skne19//fXkQ4cOta1atco70fmdP39eefz4cV1VVVWdQqFgTzzxxNw33ngj8amnnur5ej//6UfBlenCRGjayhD7gBHn//IKxKFMKQp2DQJiEeZiIJcNAABiv/gzAA6B76wb082gX0CPO4TUlFjw4cBIuTckotkVRLZeBZ6jKUGEEEIIIYQQ8k325z//uW7evHkhh8MhXbNmjWnRokX+goICz9fpY/369S6VSsVUKpWg0+lC7e3t0vnz54durLd69WoTz/OwWCzeV155xVFWVqa5fPmyMicnxwwAoVCIs9lsI8cuLCzsA4C+vj7e6XTKCwsLXQCgVqsZAFZaWqqtrKzUWq1WKwB4vV6+rq5OaTQag+np6YHc3FwfAGRnZ3ubm5unPDWjtLQ01m63q5csWWIBAL/fzycnJ8+IoSsUXJkmyp5qSL3X4FrwI/BSGXhgaAnmLgzy8yOVZD4EvAK0X32KUMYysLikMf00Ob0wzo6DVMKDC1x/j9T3BCAywDqLpgQRQgghhBBCyN1z8xEmd8K8efNCAJCeni488sgjrrNnz8YUFBR4EhMThZaWFpnBYAi1tLTIdDrdhMGF6FEqEokEgiCM+0l9RUVFQ2pq6kg/jDGsXLly4OTJk03j1Y+NjRWH642HMYZnnnmmY8+ePd3R5fX19XK5XB59Tszn8005XQljjNuyZUvP4cOHHVNtc7dQzpXpIArQtH+M6i4ZlmzcgS+//BIAopZgjuQDUil8GDxzEXzAi+DyDeN21ez0wvyADowxcFHJbGu7ApilliBJTfEwQgghhBBCCPkmGxgY4Pv6+vjh7fLycu3ixYt9ALBhwwZXcXFxIgAUFxcn5ufnuwBAq9WGPR7PtDzj5+XlDVZVVWnsdrsCANxuN19dXT3mk36dTifq9frg0aNH4wHA5/NxbrebLygoGDh69GjScJ6WpqYmmcPhmPRhVqPRhPv7+yWT1cnPzx94//33E4b7cjqdkoaGBvmtXud0ouDKNFB1nYM00If/VcfgcDgwZ84cAKOXYAYXhloagOTTsxBSjQinLRi3r6ZOLxYvSAQvhsEhEtDr9QlwDgqUyJYQQgghhBBCvgXa29ulDz74oDkjI8P6ne98x7J+/XrXD3/4wwEA2L9/f0d5ebnWYDBklpeXa/fv398BAAUFBe6GhgZVdELbW5WWliYUFxc3b9u2zWgymaw2m8184cKFsQlDAZSUlDQdPnw42WQyWZctW2Zua2uTbt68eWDLli29y5cvN5tMJutjjz023+VyTRo4KSws7H766acNwwltx6tjs9n8L7zwgmPt2rUmk8lkXbNmjamtrW1GJCWlYRC3iQsHoXGUIxhrwKnK97B06VLo9fqhJZivjSzBHJYOInyxEdLeLng3bQEmyJvi6PFjjj4WnHA930ptdwAcgIykcd/LhBBCCCGEEEK+QaxWa7C+vv7ieK/p9frw2bNnG24sT0lJCUcv2QygL/r1S5cu1YzXn8PhuDBe+aZNm9ybNm2qvVn9rKyswGeffTbmfIqKijqLioo6byyPPo8DBw44h7e3b9/u2r59u2t4/4svvqgf75g7duzo27Fjx6hrmwlo5MptUjvPQhLyoFFpw1/+8hc8/PDDAAAJPJBiEAFODwDgZT6EPvkCoiYBoYxl4/Y14A0hURcDiYQfmRLEGENtVwBz42TQyOl2EUIIIYQQQgghMw09rd8GTvAh5uqf4I/PQOlndWCMYf369QAAxcgSzJF8K+reJogNTQja1gGS8QcMNUXnWwlHgisOtwB3UISFEtkSQgghhBBCCCEzEgVXbkPM1T+BCwfgmfMwTCYTduzYAYvFAgBQsI6RJZj9ogjV2UowmQzBpQ9N2F+z0wvzPB0ghDA8aai2yw8Zz2FBAgVXCCGEEEIIIYSQmYhyrtwiPuhGjPMs/ImLIaj1WLZMj2XLhqb7MAGKqCWYBX8XwufsCC3JBVNpJuzzqiuA/NRYSAK+SDuRoaE3iIU6OWSS8XO0EEIIIYQQQggh5N6ikSu3SOMoB1gYntlr0NjYiIsXL46s8a1gXUNLMEfyrcRWlwNCGMHv5E/ap0yhAM9xI1OCLvcGEQwzmhJECCGEEEIIIYTMYBRcuQUSfw9UXVXwzVqGsDIRb7zxBjZv3oxQKBIUub4E8yyEQyFoqiqBjAUIJ86ZsM8+TwhzUuMQDovgwgIAoLbbD42cx2ztjFhZihBCCCGEEEIIIeOg4Mot0LR/DHASeNIfgiiKKCsrw5o1ayCXywEACrFjZAlm4eLn4D0ehHLzJu2zyTkIywM6BH2RZZe9IRHNrhDMSZHRLIQQQgghhBBCvj26u7sl+fn5xgceeGCR0Whc9NFHH8UAgNPplOTm5i40GAyZubm5C7u6uiQAcObMGdWxY8fihtvv2rUrbe/evSk3O056enqWyWSyZmRkWFesWLGwtbX1nqQPefXVVxObm5tHRhZs3brVcO7cOeXwOXZ0dMzotCYUXPmapN5rUPZcwGDKX0GUx+L8+fPo7u4eWSVIwtzXl2BmDNpzpeBSkiDOXTJpv1ddQaTOioGCCwMA6roDYAAsSTQliBBCCCGEEEK+bX7605/OWb9+/UBTU1PNxYsXLy5dutQPAPv27UvNy8tzt7S02PPy8tx79+7VA0BVVZX6gw8+iJu81/FVVFQ01NfXX8zOzvbu3bs3dartBEG4lcONq6SkJKm1tXUkuHLs2LEWm83mn7YD3GEUXPmaNG1lYBIFBtO+BwAoKyuDVCrFQw9FVgG6vgSzHnxbPZSdrZDl5SAkqCfvWBp5D8nZ8JSgAJLVEiSpZ3RwjhBCCCGEEELINOvt7eU///zz2GeeeaYbAJRKJUtKSgoDQGlpafzOnTt7AGDnzp09p06dSvD7/dzLL7+cdvLkyQSz2Wx98803EwCgtrZWlZOTkzF79uysgwcPJt/suHl5ee6mpiYFAJw4cUK7dOlSs9VqtRQUFBj7+/t5IDKKZPfu3ak2my3jrbfeSrDb7Yrc3FxTRkaG1Wq1WmpqahQAUFRUlJKZmWkxmUzWZ599Ng0A6uvr5UajcdG2bdsMCxYsWLRixYqFHo+He/vttxPsdru6sLDQaDabrR6Ph8vJycmorKwc8yD92muv6bKysixms9n6+OOPG6YzwHM76Mn9a5C5W6B01cM952EwqQoAUF5ejgcffBBxcZEAoYJdgwANwpwG8i8+hKhWg2VnI+ya+EfNGEN8fAwCQQFSMYwen4DOQQGrDTF35boIIYQQQgghhIyPdZfNQajnJp+Wf02yRC+X9HDbRC/X1dUpdDqdsGXLlnkXL15UL168ePDNN99s02q1Yk9Pj9RgMIQAwGAwhHp7e6VKpZI999xzV6uqqmKOHDnSCgC7du1SNTY2Ks+cOVPvcrkkFoslc8+ePV0KhYJNdNz33nsv3mq1+jo6OqQvvfRSamVlZYNWqxWff/55/Ysvvphy6NChDgBQKpXiuXPn6gFg8eLF5t27d18rLCx0eb1eLhwOcydOnNA2NjYqq6uraxljWLdu3YJTp05pjEZjsLW1VVlSUnIlNze3ZePGjcYjR44kPPnkk72vv/568qFDh9pWrVrlnej8zp8/rzx+/LiuqqqqTqFQsCeeeGLuG2+8kfjUU0/13OqtmC4UXJkqxhDbdhphmQaDKX81UvyHP/wB3d3dQ3XCULBOePn54FydUDaeB7d2JUKIBTBx3pQedwgL5sTDPeCDRg7UdkXyrmQk0pQgQgghhBBCCPm2EQSBq62tVf/6179uXbNmzeBPfvKTOUVFRfpf//rXV79OP+vXr3epVCqmUqkEnU4Xam9vl86fPz90Y73Vq1ebeJ6HxWLxvvLKK46ysjLN5cuXlTk5OWYACIVCnM1m8wzXLyws7AOAvr4+3ul0ygsLC10AoFarGQBWWlqqrays1FqtVisAeL1evq6uTmk0GoPp6emB3NxcHwBkZ2d7m5ubp/zgW1paGmu329VLliyxAIDf7+eTk5NnxNAVCq5MUWK4A/LBFvTP+wEgkY+Ux8TEICYmMsJEwTrBQYSf00NRVQbG81CvzoY7pJq0b0dfANbZKvR19oExhrruAAzxMsTIadYWIYQQQgghhNxLk40wuVPmzZsXTElJCa5Zs2YQALZu3dr3y1/+Ug8AiYmJQktLi8xgMIRaWlpkOp1uwuBC9CgViUQCQRDG/dS/oqKiITU1daQfxhhWrlw5cPLkyabx6sfGxorD9cbDGMMzzzzTsWfPnu7o8vr6erlcLo8+J+bz+ab84MsY47Zs2dJz+PBhx1Tb3C309D4VTMT84FcQFAnwzbKNFL/wwgs4duzYyL6CXQODBMGgBrLqCgxYbODjtQgEJg+uBIZiXAlyhvaBENxBEZYk5Z25FkIIIYQQQgghM9rcuXMFvV4f/OqrrxQAcPr0aW1GRoYfADZs2OAqLi5OBIDi4uLE/Px8FwBotdqwx+OZlmf8vLy8waqqKo3dblcAgNvt5qurq8eMMNHpdKJerw8ePXo0HgB8Ph/ndrv5goKCgaNHjyYN52lpamqSORyOSQd3aDSacH9/v2SyOvn5+QPvv/9+wnBfTqdT0tDQIJ+szd1CwZUpUPbaESu64Jm9DuAj74e+vj4cOXIEzc3NI/UU4jUEuFmQX/gUfNAPYWUuwiIPQZh8lJNao4J7MAApz1DbHYBcwmF+wox4fxBCCCGEEEIIuQd+85vftP7N3/yN0WQyWaurq1UHDx7sAID9+/d3lJeXaw0GQ2Z5ebl2//79HQBQUFDgbmhoUEUntL1VaWlpQnFxcfO2bduMJpPJarPZzBcuXBh3BEBJSUnT4cOHk00mk3XZsmXmtrY26ebNmwe2bNlLAdfbAAAgAElEQVTSu3z5crPJZLI+9thj810u16SBk8LCwu6nn37aMJzQdrw6NpvN/8ILLzjWrl1rMplM1jVr1pja2tpk49W922ha0M2IYWjaPoKbj4c/MWukuLy8HOFwOGoJZg+k8GCQGaGo+ne4U02IX5CIUFCCyfKtiIwhLVmL7h4PYmMZLvUGsVAnh0wycRtCCCGEEEIIId9subm5PrvdXntjuV6vD589e7bhxvKUlJTwDfX7ol+/dOlSzXjHcTgcF8Yr37Rpk3vTpk1jjn9j/aysrMBnn3025nyKioo6i4qKOm8sjz6PAwcOOIe3t2/f7tq+fbtreP+LL76oH++YO3bs6NuxY8eoa5sJaOTKTai6zkEa6MVl+WKAu/7jOn36NJKTk7FkyRIAgELsAAAIV7rA93ehOXsDtPIAgsHJpwT1ekXExsghBAK43BdEMMxgSaJEtoQQQgghhBBCyP2CgiuTCQehcZQjqJmLHknaSHEgEEB5eTkefvhh8HzkRzi8BLOsqgKCNgmC1QKOw02DKwPByAgVrZyhttuPWDmP2doZMaqJEEIIIYQQQgghU0DBlUnEOD+HJOSGe856gLs+Tae3txfLly9HQUFBpGBoCeZAFwdpWz2cS9cjKSYAxoBQaPLEtBKlHJ29XmhVUrS4QjAnKcBxNCWIEEIIIYQQQgi5X1DOlQmwoBcxVysRiDMhpJ0H4Pr0tNTUVJSUlIzsK1gXOIgQz9WBlylw2ZyHB9VdCIWUYGzi+BUDkJgQg4uN3ZBKBDAAllk0JYgQQgghhBBCCLmf0MiVifRdAVgY7jkPjypmjKGrq2tUmYJdg+gJgq/9Ct6sVfAp1IhT+G86JUjkJFDIpfAO+lHb5UdyjBSJKop3EUIIIYQQQggh9xMKrkyAS8lEV/bPIcSkjiqvqalBdnY2Pvzww5EyhdgB/1edgCiiY8l6xCv84HmGYHDyKUFuYWj6jyig0xumRLaEEEIIIYQQQsh9iIIrk2DSscGRsrIyAIDNZgMQWYJZIvSDfVUPYcFSOLWpSFV7Adw8ma3Ay9B2zQ0fz4MDYKbgCiGEEEIIIYR863311VcKs9lsHf7SaDTZBw4cSAYAp9Mpyc3NXWgwGDJzc3MXdnV1SQDgzJkzqmPHjsUN97Fr1660vXv3ptzsWOnp6Vkmk8makZFhXbFixcLW1tZ7Mp3i1VdfTWxubh5Z3WXr1q2Gc+fOKYfPsaOjY0ZP86Dgytd0+vRp2Gw2JCUlAQAU4jWEax3gfF54l23AQJhDisoLQZBBFCe+9wyARqPEpdY+tHvCmBcvg1pGt4MQQgghhBBCvu2WLFkSqKuru1hXV3fRbrdfVCqV4rZt21wAsG/fvtS8vDx3S0uLPS8vz7137149AFRVVak/+OCDuMl7Hl9FRUVDfX39xezsbO/evXtTb94iQhCEWzncuEpKSpJaW1tHgivHjh1rsdls/mk7wB1GT/Nfw9WrV1FdXY3169ePlMnFDoTONyM8aw6606wAAK3Si0Bg8lErTCKFRMLDNeiHJyTCkjT5FCJCCCGEEEIIId8+7733nnbu3LkBk8kUBIDS0tL4nTt39gDAzp07e06dOpXg9/u5l19+Oe3kyZMJZrPZ+uabbyYAQG1trSonJydj9uzZWQcPHky+2bHy8vLcTU1NCgA4ceKEdunSpWar1WopKCgw9vf380BkFMnu3btTbTZbxltvvZVgt9sVubm5poyMDKvVarXU1NQoAKCoqCglMzPTYjKZrM8++2waANTX18uNRuOibdu2GRYsWLBoxYoVCz0eD/f2228n2O12dWFhodFsNls9Hg+Xk5OTUVlZqb7xHF977TVdVlaWxWw2Wx9//HHDdAZ4bseMHlYz0wxPCRoJrrAwZC0XEezuR2DjFvSJPOLlAUglItw3mRIUlsgQFkW4BRFyCY/5OvmdPn1CCCGEEEIIIV+TeO6tOXA7xjzk35bYdC9v+z/aplL1nXfe0f3whz/sGd7v6emRGgyGEAAYDIZQb2+vVKlUsueee+5qVVVVzJEjR1oBYNeuXarGxkblmTNn6l0ul8RisWTu2bOnS6FQsImO9d5778VbrVZfR0eH9KWXXkqtrKxs0Gq14vPPP69/8cUXUw4dOtQBAEqlUjx37lw9ACxevNi8e/fua4WFhS6v18uFw2HuxIkT2sbGRmV1dXUtYwzr1q1bcOrUKY3RaAy2trYqS0pKruTm5rZs3LjReOTIkYQnn3yy9/XXX08+dOhQ26pVq7wTnd/58+eVx48f11VVVdUpFAr2xBNPzH3jjTcSn3rqqZ6J2twtFFz5GjZs2AClUokFCxYAAOSsC8L5RjC1BkHLg+gLcLAkTC3fShAStDkGMMg4WHVySHnujp8/IYQQQgghhJD7h9/v5z766KO4V155pf1W2q9fv96lUqmYSqUSdDpdqL29XTp//vzQjfVWr15t4nkeFovF+8orrzjKyso0ly9fVubk5JgBIBQKcTabzTNcv7CwsA8A+vr6eKfTKS8sLHQBgFqtZgBYaWmptrKyUmu1Wq0A4PV6+bq6OqXRaAymp6cHcnNzfQCQnZ3tbW5unnLy0dLS0li73a5esmSJZejnwycnJ8+IoSsUXPka9Ho9tm7dOrKv6KmFeMWJwIpN8PByCOAwS+VFOCxBOCybsB8GDjKFHE3OTogALLNoShAhhBBCCCGEzERTHWFyJxw/fjzOarV658yZMxJASExMFFpaWmQGgyHU0tIi0+l0EwYXokepSCQSCIIw7qf6FRUVDampqSP9MMawcuXKgZMnTzaNVz82NlYcrjcexhieeeaZjj179nRHl9fX18vlcnn0OTGfzzfldCWMMW7Lli09hw8fdky1zd1COVemqKamBseOHUMgEBgpk577FJDwCGavQ5/AA2DQKn1Do1YmHonCpFJwHIcuTwCxch7psRTjIoQQQgghhBAy2n/+53/qfvSjH/VGl23YsMFVXFycCADFxcWJ+fn5LgDQarVhj8czLc/4eXl5g1VVVRq73a4AALfbzVdXV48ZYaLT6US9Xh88evRoPAD4fD7O7XbzBQUFA0ePHk0aztPS1NQkczgckz74ajSacH9/v2SyOvn5+QPvv/9+wnBfTqdT0tDQMCNybFBwZYo++OADHDhwABJJ5F5LfJ0Q7VcgmjPB/n/27jw8qvLQH/j3LLNk33ckIcCQBQgQiG1ASdEqqKVKL1dbLbWbWi9apeBVq1iwxfor195L64K21ot4lWppq/VKq1cgWNyGfQmEJQmBJENC9sxkZs457++PmUkmKwEDSeD7eZ48M/Oe97znnTmJcr7zvu8Jj0a9LiHB5IWqes86JUgoJng1Aw1eHdkJFkgSpwQRERERERFRp5aWFvmjjz6KvOOOOxqDy1esWFG9efPmyPT09ImbN2+OXLFiRTUAzJs3r6W0tDQkeEHb85WamqqtXbu2/Lbbbsu02Ww5+fn5Wfv27et1ysX69evLnn322USbzZYzffr0rMrKSnXBggXNCxcurJ8xY0aWzWbLueWWW8Y2Njb2G5wsWrSo7r777ksPLGjbW538/Pz2xx577NQ111xjs9lsOXPmzLFVVlb2PW3kIpL6GsZzIU2fPl3Y7faLftxzVVVVBcB3e6mJEyfiuuuuw5o1awAA4R+vg7L1AzjvfBitiTnY4VQxJboB4xKrUVs7Gl5v31N9vKFROOpow6YDNfhOXjRiQ774yJXU1NQv3MalZMuWLSgqKhrqbtAA8XyNHDxXIwvP18jBc9U7YRjQWp3wtrTB29wKb0sbNP+jt7kV3uZWaEHbur/W2lwXpF9OpxOhoYO7tiVdODxfQ+eGfe9AVvq9nu5iqP5bKEnSDiHE9OCyPXv2lOfl5dX1tQ9dnvbs2ROfl5eX0ds2zkcZALvdjpaWls67BBk6lJ0fQ7oiEd6kbDT4p63Fh7hgGBK83r7X4xGSBKgqqhpdCFcwKMEKERER0XAhDANam7Nb2NE28EAkuLy1zxtGdCGbTDBFhkGNDIcpIgymyHBYEmIRlhFyQUYIe07XIjoxYdDbpQuD52vocIQ+XU54ZT8A//jHP2AymTpSVPXw50BLG4xr5gCShAZNgkUSCLW4/CNW+llvRfGNWHK0upEVP+BFkYmIiIguOGEY8Da1wNPQDHd9IzwNzfA0NPkfm88ajHQEIgMYGS2pKkyR4TBFhnUGInHRCB8zCqaIrkFJj9cdZWEwRYRDsVzc6fZbtmzBLI40GjF4vojoYmC4MgAVFRXIy8tDeHg4AMD6+buQokPRPq4QugCadAkpZg0mkxutrbH9tiVUEzxeHY4mF74+tv+6REREROdKGAa8za2+UKS+qVtA0hmUeBqa4O623dvU0m8wIqlqR8ChRoTBFBkGc0wkwtJTg8rCu9Xp/bVsMfNbbSIiumQwXBmA3//+99i1axcAQKk6BqWqAupXJsKtJKFZl2BAQkqoC5KEsy5maygmnKxzQrRrCDMPfP4hERERXT6EYcDb0naWgMT/WN/UdXRJUwuEYfTZtmw2wRwTBXNMJMwxUQhJjkdUdibMsdH+ssgu280xkTDHRsEcHQklxMpAhIiIqBcMV85CCAFJkmA2+4abmu1/B8wm6JOmAZKKBl2CDIFYqxNC9B+uCEkGFAUnG5xIGBY3i6JLid7uhqexGZ7GZngbW/zPW+Bt9H8TCUBSFEiq4ntUZEiKArnb687tvjI5+LUaVK+PfeVe2+rjWDJvWEZEnYQQgBCdj4YBCPgfRdCj6PFaGAZgGB3Pha4DgeeGAaEbvdYRhvCX9VJH1/37++v4659LHUM3Otv314f/WN5WZ0cocuZYGTbhN50BSWNzvwGJpKqwxPqCD1NMFCyJcYiYMKYjDLH0E5QooRdmHRIiIqLLGcOVs7j99tuRm5uLm2++GVJzPUyHPoM6NQMuy2gIAdRrEqIVAYvFBa/XAiH6vlgUqm+9lRO1bZiY0PfdhOjy1F840vnYW5mvruH2DPVbOHeSBElRICRgg8nUNXxRVcgmFbLZ1O3RDNmkQuqxzdSzrr++ZFKhmE3d9jH3UreznZ77dO9HUF2GRPQFCcOA4fHC8HihezwQXs3/3NtRbni8MLzdXneUa93KPNA9XjQfOYbdm+zn3o5X8wUAQnQ89hZonNvr3oKSbq8vM5KidIwKMRQJlvRRiBif0TUUiY0KCkc6AxI1LJQBCRER0TDCcKUfdXV1KC4uxvTpvrtymXd+AAgBdeoYuOUUOA3AIyTEqDpMpnY4nVH9tqfJKlweDcfKG3DzNbx18qXmQocjHcO4oyNgio6EOToCYRlpMEdHwBwd2VEWePSV+R8jfesFCV2H0A0Ymub7htb/WnR7fU7bNR1C12F0ex3YbnR73dv2E2VlGJU2qstxDE33XWB6e170GR4vdFc7vE0tMLwahFeD7vH6L0g9PeoKXb+g516SZV/IovpH48gyJFmGJEtBr/t/fm71et9HUuQex+/reaBex0WtIWAEvlHv65t/Q+BMbS02R796jqMDgr+5D67T/+iBvur4PnTJF85Jkm8N8Y7n/nJZ6lnW8dh9/6ByWe5ln17a95d3tCnLXdsJrgf4fhf7CTQu5O/oIYsZstnkDwv9IaT/deB5IDBUw0L8v8tq5+9N0Ps799ey73MKet39c+6tTs/XAzt2YERcx++7ovT8O+qnTuDvqMvfiqL0+BvsrU6Xv01/m/3WkeUua47wVsxERNTdihUrEl999dUESZKQlZXl3LBhQ3loaKhwOBzKLbfcknnq1ClLWlqa+69//evxhIQEffv27SGVlZXmW2+9tQkAlixZkhoeHq6vXLnS0d9x0tLSJoWFhemSJCE+Pt77+uuvl40ePVq7OO+y05o1a+Lmz5/fnJGR4QWAW2+9Nf2hhx5y5Ofnt6elpU2y2+0lKSkpF71fA8VwpR//93//ByEErrvuOsiaF+bdmyGNS4cRFQ8d4WjQff8gSrK6IMui/ylBAHTFhJO1bfC0tCM6zHSR3gUNlraKU3Bs+Qyniz+H65TjooYj5uhIKNZL9+5SjVu2YNoFvKgQhtFxcds1iPH2Ht70EeiI4PLe9vdqXcKKHgFBt+f9bxNdphKg2z6G5u05zaCXqRFdQo7ux9CNc7rwhCzDaGuFB93ryJBVU2c7Si/hUkeZ/+Iy6DiBi1H0d/EaqBP4ol50TiEJnkbie46uIyaE8P1HuEe9wPNubQVGVPTadj9tGX20D3SOrOol0Oj8MfdaHghBJFO3QKRHO+YeZVu3bcNXvvKVC/a3RURERBdGWVmZ6cUXX0w6fPjw/vDwcHHDDTdk/u53v4u9//77zzzxxBMpRUVFLatWrTry6KOPJi9fvjz5+eefP2W320PtdntYIFw5F1u3bi1NSUnRFi9enLZ8+fKUV155pXIg+2maBlUdnFhh/fr18VOmTHEFwpUNGzZUDErDFwnDlX784x//QEpKCnJzc3Hmf/8HcnsbzNOmwi2n+G/BLCNMFgiztgM4y2K2sgJVVXCithUpESYO5R0BOsKULZ/BseVTtJWfAgCYY6MRMT6d4cgIIskyFIv5ot+q81LEb9dHFv6/hoiIaOTSdV1qa2uTLRaL7nK55FGjRnkBYNOmTdFbt249DAB33333mdmzZ09ob2+veuqpp1Lb29vlrKys8J/85CfVAFBSUhJSUFAwoaqqynzPPfc4HnvssdP9HbOoqKjlN7/5TSIAbNy4MXLlypWpHo9HSk9Pd7/xxhvlUVFRRlpa2qRvfvObdZs3b468++67TxcWFjrvuuuu9DNnzqiKoog333zzeG5urvvxxx9P+vOf/xzr8XikG2+8sfHXv/511eHDh83z5s0bX1BQ0Gq328OTkpI8f//734+++eab0fv37w9dtGhRptVqNex2e8mcOXNsq1evrrz66qudwX187rnnYp9//vkkr9crTZs2rW3dunUVgxXwfBFfuAeSJF0BYB2AZAAGgBeFEP/1Rdsdai6XC1u3bsW//uu/QoJAStnnMJJGQUmLhltKhlcALQYwyiRgNrugaSYYRt8fpwsKTAD2Hq7FhKTQi/dGaMD6ClMscdFInF2ArCXfRVJRAaJyx3ONDSIiIiKiy4T7tV9dYVSXD+pFnJyS4bTcvqzP0SFjxozx/tu//VvNmDFjJlssFuOqq65qXrBgQTMAnDlzRk1PT/cCQHp6ure+vl61Wq3ikUceqbLb7WHr1q07AQBLliwJOXr0qHX79u2HGxsblezs7InLli2rtVgsoq/jvv3229E5OTmu6upqddWqVSnFxcWlkZGRxk9/+tPkJ598Mmn16tXVAGC1Wo0dO3YcBoDJkydnLV26tGbRokWNTqdT0nVd2rhxY+TRo0ete/fuLRFC4Nprrx333nvvhWdmZnpOnDhhXb9+/fHCwsKKG264IXPdunUx9957b/3zzz+f2FuYEmznzp3Wt956K9Zutx+yWCzijjvuGP3CCy/ELV68+Mz5nYnBMxjxjgbgJ0KInZIkRQDYIUnS+0KIg4PQ9pBpb2/HXXfdha985StQy/YjtLUextVXApICj5SIRk0CICFG1WA2u+B2h/XbXptQILu8OFbWgOuvH31x3gT1q7X8JE5v/ZxhChERERERDSu1tbXKu+++G3306NF9cXFx+o033pj53HPPxd57773159LOdddd1xgSEiJCQkK02NhY78mTJ9WxY8d6u9ebPXu2TZZlZGdnO5955plT77//fvixY8esBQUFWQDg9Xql/Pz81kD9RYsWNQBAQ0OD7HA4zIsWLWoEgNDQUAFAbNq0KbK4uDgyJycnBwCcTqd86NAha2ZmpictLc1dWFjoAoCpU6c6y8vLBzzEf9OmTRH79+8PzcvLywaA9vZ2OTExcVisw/KFwxUhRDWAav/zFkmSSgCkARjR4UpMTAweeughAIB5w6/gsYQj1BYFjxQG4b8Fs0kSiDZ7oSg6PJ6+7/4jAIRYLSg/3QJPu4YxiRy5MhRay0/6gxTf6JS2CoYpRERERETUv/5GmFwo77zzTuTo0aPdqampGgDcfPPNjdu3bw+/99576+Pi4rSKigpTenq6t6KiwhQbG9tnuBA8SkVRFGia1uuc4cCaK4HXQgjMmjWr+Z133inrrX5ERIQRqNcbIQQeeOCB6mXLltUFlx8+fNhsNpuD+yRcLteAL76EENLChQvPPPvss6cGus/FMqgTkyRJygAwFcCnvWy7C8BdAJCUlIQtW7YM5qEvCK/Xi5CWOkwt24cK25XIVtpQ6ghHReMBNI/KhcnVjDrPSSQlqTh48BTa2no/v7o1CtlT43C8og4RVuBkeSlODnJfS0tLB7nFka21tRUfvPEWPLtL4d5dCs/uUugO30gxOTIM5jwbIufPgmXKBKgZKdBlGdUAqs9UA8XVQ9v5y1Bra+uI+G8C8VyNNDxfIwfP1cjC8zWy8HyNHDxXnTIyMjw7d+4Mb2lpkcPCwowPP/wwIj8/3wkA119/fePatWvjVq1aVbN27dq4uXPnNgJAZGSk3traOijfEhcVFbX95Cc/Gb1//37LxIkT3S0tLXJZWZlp8uTJ7uB6sbGxRnJysufVV1+N/va3v93ocrkkTdOkefPmNf/sZz9Lveuuu+qjoqKMsrIyU3Co0pvw8HC9qalJ6a/O3LlzmxcsWDDu0UcfdaSlpWkOh0NpampSbDZb/3cXuQgGLVyRJCkcwJ8APCCEaO6+XQjxIoAXAWD69OliJCyIWFVVBeumP0CoJsiTbQAaEZM6BSI5EvtdKjLjozAm3gldb0VGRg46b2PR1dE23+/33sNnYEuLQm5u5qD3NTWVt3YOHpni2FSMZn+YYomLRmrRlUgsKvCNTMkZx5EpwwwXSR05eK5GFp6vkYPnamTh+RpZeL5GDp6rTnPmzGn72te+1jB58uRsVVWRm5vrXLJkSS0ArFixovqWW24Zm56eHp+amur5y1/+cgwA5s2b17J69eqUrKysnMCCtucrNTVVW7t2bfltt92W6fF4JAB44oknTnUPVwBg/fr1ZT/84Q/Tn3zyyVSTySTefPPNYwsWLGg+cOCAdcaMGVkAEBoaarz22mtlqqr2GbAsWrSo7r777ktftmyZYbfbS3qrk5+f3/7YY4+duuaaa2yGYcBkMok1a9acGA7hitTXMJ5zakSSTAD+BuDvQohnzlZ/+vTpwm63f+HjXmjVxw4j4tkH4M0thOdLaYgN11Gr3oByj4Jqr4QZYTpSk8rg9ZrR0JDWaxuGEKjQQhAVYsKS1cX4RmEKvlaQPOh9vRzDlf6m+Ui5mchdeCPDlBGC/yMdOXiuRhaer5GD52pk4fkaWXi+Ro6hOleSJO0QQkwPLtuzZ095Xl5eXV/70OVpz5498Xl5eRm9bRuMuwVJAH4PoGQgwcpIYt69BZLmhTv/OsSFfga3nOG7BbMuIVIRMCsaVNWLtraoPts40eRFUlosautaAABjeKeg89ZnmBIf41szZen3OsKUrcXFmMD/iRIREREREdFFMBjTgmYC+DaAfZIk7faXPSqE+N9BaHvICM0L844P4M2YCDXeAlU30CyloN0AXIaEJLMBs9kFAPB4Qvpsp9oFpCkyamp8M6UyGK4MiBACbeUng26N/BmcJ6oA9B6mcGQKERERERERDZXBuFvQR+hrsZERTD/wCeTWBrjmfQ8hohqGIcGjJqLB63urMaqA2eyCEBK83t7vHOXRDcBkghACe47UISHKjHDroK4hfMk4a5hSVICch36AxKICRGWPZZhCREREREREwwav9PugTJqJ1tv+HXp6Niza+2hwhUJYfLdgtkoCITJgNrv8t2Du/UL/SL0HKbEx0LwaSk+2IPMyHLWiezzwNrdCa26Dt7m1509TC5oOHmOYQkRERERERCMWw5U+SLIMPSMXsnDChGaccSYhNApo0iUkmwQkyYDJ5EZra2yfbZSe8WDemBAYzjbUNXswZ3L8RXwH508IAb3d3RGAaEFhiKepZ1nnT88AxXCffdHmHmFKzjj4lvIhIiIiIiIiGv4YrpyFRdQAAM60hcOrSxCQEKsYMJnaIUl9r7fS4tZhKCoUWcKp060ALs5itlqbE56mFv+okN4CkEAw0sdIEn+50LSzHks2mWCKCocpsvMnJC0JUTlju5SpkcF1wrpsM0WGQwmxMkwhIiIiIiKiEYvhyllYjWpoCEWbxwxdk6BAIEIJrLcC/7Sgng6dcWNUbBiEEDhUVg8AyEi8cOGKoWmwL16Jo2s3nLWuEmLtEXaEjxkFNTIc5qiILuVqtyCkSyhiMV+w90NERERERHQ5e/LJJxPXrVuXIITAokWLapcvX34aABwOh3LLLbdknjp1ypKWlub+61//ejwhIUHfvn17SGVlpfnWW29tAoAlS5akhoeH6ytXrnT0d5y0tLRJYWFhuiRJiI+P977++utlo0ePPvu37YNszZo1cfPnz2/OyMjwAsCtt96a/tBDDzny8/Pb09LSJtnt9pKUlJSL3q+BYrjSH2HALE7DJY+GgO8WzNGKgCz51lvRNDOEUHruJgRKat2YOzURsq7haHUbkmMsCLH0rDsYdFc7tn3jPpx6+0OMu/tWxE7LDQpFuo0UiQiDbDJdkH4QERERERHRF/f5559b161bl7Bz584Sq9VqzJ4923bLLbc0TZo0yf3EE0+kFBUVtaxaterIo48+mrx8+fLk559//pTdbg+12+1hgXDlXGzdurU0JSVFW7x4cdry5ctTXnnllcqB7KdpGlR1cGKF9evXx0+ZMsUVCFc2bNhQMSgNXyRcJbQfZlEHGRrcUjIMUwg8QkKMKgAI/2K2vU8JqnXqaPUKRIeZIWlelJ92XrApQd6GZuy5bSlOvbMZ059djoIXVmLcXbci47YbkXbDbCTOmo6YyVkIzxgFS2w0gxUiIiIiIqJhbt++fSHTpk1rjYiIMEwmE2bOnCO2rhUAACAASURBVNmyYcOGaADYtGlT9N13330GAO6+++4z7733Xkx7e7v01FNPpb7zzjsxWVlZOS+99FIMAJSUlIQUFBRMGDVq1KSf//zniWc7blFRUUtZWZkFADZu3Bg5ZcqUrJycnOx58+ZlNjU1yYBvpMvSpUtT8vPzJ7z88ssx+/fvtxQWFtomTJiQk5OTk33gwAELADz++ONJEydOzLbZbDkPPvhgKgAcPnzYnJmZmXvbbbeljxs3LnfmzJnjW1tbpT/84Q8x+/fvD120aFFmVlZWTmtrq1RQUDChuLi4x4X0c889Fztp0qTsrKysnG9961vp2gCWtLgYOHKlHxZRAwEJHikR3tBGAALRioDJ5IYsiz7DlZLadlwRFwpJktDW6kJDq/eCTAlqP+XA3tv/Ha4TVZj15n9h9DeuH/RjEBERERERXc6qf/boFe6jRwb1gs4ybrwz5Wer+hwdMmXKFNfKlSvTampqlLCwMPH+++9H5eXltQHAmTNn1PT0dC8ApKene+vr61Wr1SoeeeSRKrvdHrZu3boTALBkyZKQo0ePWrdv3364sbFRyc7Onrhs2bJai8Ui+jru22+/HZ2Tk+Oqrq5WV61alVJcXFwaGRlp/PSnP01+8sknk1avXl0NAFar1dixY8dhAJg8eXLW0qVLaxYtWtTodDolXdeljRs3Rh49etS6d+/eEiEErr322nHvvfdeeGZmpufEiRPW9evXHy8sLKy44YYbMtetWxdz77331j///POJq1evrrz66qudffVv586d1rfeeivWbrcfslgs4o477hj9wgsvxC1evPjM+Z2JwcNwpR8WoxoeKQFCMkELiUS4DJj9t2AGALe7Z7hiCIFDZ9y4JicGEAJlp3wjsgZ75EpryXHsvePfoTtdyHvt/zFYISIiIiIiukRMmzat/cc//nHNnDlzbKGhoUZOTo7zfKbfXHfddY0hISEiJCREi42N9Z48eVIdO3ast3u92bNn22RZRnZ2tvOZZ5459f7774cfO3bMWlBQkAUAXq9Xys/Pbw3UX7RoUQMANDQ0yA6Hw7xo0aJGAAgNDRUAxKZNmyKLi4sjc3JycgDA6XTKhw4dsmZmZnrS0tLchYWFLgCYOnWqs7y83DLQ97Np06aI/fv3h+bl5WUDQHt7u5yYmDgshq4wXOmD0FpgQjOapQx4DEA3hyJGNQAE1ltRYRg9p9hUNHrh9AqkxoRA0r04XuOEJAHpib2PcjkfjZ/swb7v/hRKaAimblyD8OzMQWubiIiIiIiIOvU3wuRCevDBB+sefPDBOgBYvHhx2qhRozwAEBcXp1VUVJjS09O9FRUVptjY2D7DheBRKoqiQNO0Xm/TGlhzJfBaCIFZs2Y1v/POO2W91Y+IiDAC9XojhMADDzxQvWzZsrrg8sOHD5vNZnNwn4TL5RrwciVCCGnhwoVnnn322VMD3edi4ZorffE2woAJbjkZjboESBJilLOvt1JS50ZMqAkmswmS5kWZw4m0WCsspsFZzLb23a3Y861lsCTGYdrbv2WwQkREREREdAk6deqUCgBHjhwxv/vuu9Hf//736wHg+uuvb1y7dm0cAKxduzZu7ty5jQAQGRmpt7a2Dso1flFRUZvdbg/fv3+/BQBaWlrkvXv39hhhEhsbayQnJ3teffXVaABwuVxSS0uLPG/evOZXX301PrBOS1lZmSnwfvoSHh6uNzU19XvhPHfu3Oa//e1vMYG2HA6HUlpaOixuY8twpQ9SyBVwqF+Hhkg0aBIkzYswGVAULxRF7zVccWsGjjW4kX9FpK8Nrwflp53IGKQpQade+QsO3L0CERNtmPrnNbCmJQ1Ku0RERERERDS8zJ8/f+zYsWNzb7rppnH/+Z//eSIhIUEHgBUrVlRv3rw5Mj09feLmzZsjV6xYUQ0A8+bNayktLQ0JXtD2fKWmpmpr164tv+222zJtNltOfn5+1r59+6y91V2/fn3Zs88+m2iz2XKmT5+eVVlZqS5YsKB54cKF9TNmzMiy2Ww5t9xyy9jGxsZ+g5NFixbV3XfffemBBW17q5Ofn9/+2GOPnbrmmmtsNpstZ86cObbKysphcdcWTgvqjyTBEECjLkF1NUOKjoLZ3A4AvYYrR+s90AwgIz4UEAYamtvR7NS+cLgihEDZ/3sZJ9asR9xXC5Hz/ONQQnr9vSYiIiIiIqJLQGDB2O6Sk5P1jz/+uLR7eVJSkr5///6SoKKG4O1Hjhw50Ft7p06d2tdb+fz581vmz59fcrb6kyZNcn/yySc9+vP444+ffvzxx093Lw/ux8qVKx2B53feeWfjnXfe2Rh4/dlnn3W8/+Bj/vCHP2z44Q9/2OW9DQcMV86iRZegQ4LF1QwgCmazC4YhQ9N6jjwqqXMj2irDGmLx3YLZ4VvkeMwXuFOQoeko/ff/QM0b7yHlWzdi/FMPQlYHZ4oREREREREREX1xDFfOol6XIEFAbfctjNy53krXUUotbh2VzV4UjYkEZAWS24UyhxOKDFyRcH6L2equdhy8ZyXOfPAx0h9chIyf3AlJ6nV0FBERERERERENEYYrZ9GgSYhSBIQwIMs6TCYPXK7IHvVK6twAgPFJYQAAWfctZjsqLgRm9dyXtvHUN2H/dx5F864SjH/qQaQtmv/F3ggRERERERERXRBc0LYfLgNoF4G7BAEmkwsA4PF0Xe9ECIGSOjdSI1RYQyyAYUDoOsod57eYbfvJGuy6+T60HDiC3Bd/xmCFiIiIiIiIaBhjuNKPBv8twGNUX7hisbgghNQjXDndpqPepSM73gKh+G7BXNfsQZtbx5hzDFdaDx7DzvmL4a1rQN7rq5Fww9WD82aIiIiIiIiI6IJguNKPBl1CiCxg9X9KvvVWLOj+sZXUtUORAFtiKCDLkPXOxWzPZeRKw/bd2LXgx4AkYcrGNYi+cvJgvRUiIiIiIiIiukAYrvTBqxto1junBMkyYDK197gFs24IHD7jxpgYM0wWCwBA0rw47nBCVSSMihvYLZNPv7MFe29/CJbkeEx7+1mEZ40Z3DdEREREREREI8bChQszYmNj88aPH58bXO5wOJTCwsLx6enpEwsLC8fX1tZ23E72kUceSR49evTEjIyMiX/60586Fgt9+OGHkwPPDx8+bO7eZm+WLFmSmpiYODkrKytn/Pjxua+99lrUYL23c7F9+/aQDRs2dBz7tddei3r00UeTA31cvnx50lD0qzuGK32odXkhICFGNQAAkZESJAk9wpWKJi+cXoEc/5Qg6DokYaDc4cTo+BCoytk/4pN/+DMO/mglIvImYOqf18CalnhB3hMRERERERGNDN/73vfq3n777SPdy5944omUoqKiloqKiv1FRUUty5cvTwaAHTt2WDdu3Bh7+PDhA5s2bSp94IEHRmuaBgBYs2ZNyvn04Z577nEcOnTo4IYNG44tXrw4Q9f1Ae3n9XrP53C9stvtoe+++25HuHL77bc3rVq1qmbQDjBIGK70ISXMjMkhGiL9n1B0tG/9le7hSkldO6yqhPRoM4SqQta9MIRA+emzL2YrhMDxX/4ORx9bg7ivfhl5r6+GKabnnYiIiIiIiIjo8jJv3rzWhIQErXv5pk2bou++++4zAHD33Xefee+992IA4K233opesGBBfUhIiMjKyvKkp6e7t2zZEnbvvfemud1uOSsrK2f+/PljAEDXddx2223p48aNy505c+b41tZWqb++TJs2rV1RFNTU1KhVVVXq9ddfP3bixInZEydOzP7HP/4RBvhGkXzzm99Mnzlz5vgFCxaM0TQNd9111yibzZZjs9lyfvGLXyQCwLZt20JnzJgxITc3N3vWrFnjKyoqTABQUFAw4Uc/+lHapEmTsjMyMiZu2rQpvL29XXrqqadS33nnnZisrKycl156KWbNmjVxixYtGt29jwcOHLBcddVV43Nzc7Pz8/Mn7Nq1a2DTSAYJb8XcB0mSEK50vo6JkeD1miFEZ6FbM3Cs3oOJiVbIJhN0SYakeeFocKPdY/S7mK3h1VD60H+g5o+bkHL7TRi/6gHIqtJnfSIiIiIiIrr4Pvneo1c07i8999vA9iN6os35pZdXVZ7PvmfOnFHT09O9AJCenu6tr69XAeDUqVPmL33pS62BeqmpqZ7Kykrzc889d+qVV15JPHTo0EHANy3oxIkT1vXr1x8vLCysuOGGGzLXrVsXc++999b3dcwPP/wwTJZlkZKSon39618fs2TJEsf111/feuTIEfP1118//vjx4wcAYO/evaGffvrpofDwcPH0008nVFRUWA4cOHDQZDLB4XAobrdbuv/++0e/++67R1NTU7WXXnopZunSpWlvvvlmOQBomibt27evZMOGDVErV65MnTt3bukjjzxSZbfbw9atW3cCANasWRPXWx9/8IMfpL/44osVkyZNcn/44YdhP/rRj0Z/8sknpefzGZ8PhisDIhAVJfUYtXKk3gNdoOMuQQAg6V6Une5/MVvd6cKBu1eg/sNPkfGTO5H+4CJIUr9BIREREREREVGfhBA9yiRJ6lkIIC0tzV1YWOgCgKlTpzrLy8stvdV74YUXkv74xz/GhYWF6evWrTsuyzL++c9/Rh45cqTj4ri1tVVpaGiQAWDu3LmN4eHhAgA+/PDDyHvuuafWZPJdKyclJemff/659ciRIyFz5syxAYBhGEhISOiYQ7Rw4cIGACgsLGxbtmyZeaDvvampSd61a1f4woULxwbKPB7PRb3IZrgyAKrqgckkobW125Sg2nZEW2Ukh6vQVROga5CEQFmNE2ZVRmpsz1FInvom7Fv0MFr2lML29BKk3vG1i/U2iIiIiIiI6Byd7wiTCyUuLk6rqKgwpaeneysqKkyxsbEaAIwaNcpTWVnZEUhUVVWZR40a1eviJ2azuSN0URRFuFyuXpcMueeeexwrV650BJcJIWC320sCIUqwsLAwI7he93BHCCGNGzfOtXv37kO9Hc9qtQoAUFUVuq4POBzRdR0RERFaYHTOUOCaKwNgNrsAdF1vpdmt42SLhpx4KyBJEIoKWfP93pafdiI9MQSK3PV3wXWiGru+fh/aSo4j96UVDFaIiIiIiIjonFx//fWNa9eujQOAtWvXxs2dO7cRAL7xjW80bty4MdblckmHDh0yl5eXW4uKitoAQFVV4Xa7B2Ukx6xZs5qffvrpjruwbN++PaS3etdee23zCy+8kBBY3NbhcCiTJ09ur6+vVz/44IMwAHC73ZLdbu93bZTIyEi9tbW13+wiNjbWGDVqlOfll1+OAXwjYj7++ONe+3WhMFwZALPZhfZ2AV3vHOhzqM4NAMiKt0AoKiBJkHQvdEOg4rQLGYldpwS17D+KXV9fDO+ZBkx+fTUS5s66qO+BiIiIiIiIRo6vfe1rY2bNmpVVVlZmSUpKmvzrX/86HgBWrFhRvXnz5sj09PSJmzdvjlyxYkU1AEyfPr395ptvrrfZbLlz5861PfPMMxWq6ruGvf3222uzs7M7FrT9Il588cXKnTt3htlstpyxY8fm/va3v03ord6DDz5YO2rUKE9WVlbuhAkTcn7/+9/HWq1W8cYbbxx7+OGHR02YMCEnNzc3Z+vWreH9HW/evHktpaWlIYEFbfuq9/rrrx//wx/+ED9hwoSc8ePH5/7pT3+K/qLv9VxIvc3LutCmT58u7Hb7RT/uuaqqqgIAJCYeR12dB4aRBcA3vOm/9zQi1CThX3OjoVtCYJhDoLY04FSdE4+tP4S7rk9HYXYsAKDho53Y//3HoUaEYfJrTyNswhf+fe4hNTV10NscybZs2YKioqKh7gYNEM/XyMFzNbLwfI0cPFcjC8/XyMLzNXIM1bmSJGmHEGJ6cNmePXvK8/Ly6i56Z2hY27NnT3xeXl5Gb9s4cuUsFMULVdXQ2NgZQjnaNDS068iO941eEooJkq5BgkCZo+titqff3oy9334YlrRETH372QsSrBARERERERHR0GG4chaB9VYaGjrW5UFJnRuKBIyPM0PAt96KpPvmkZU5nLCaZSTHWHDy93/CwXufROSULEzduAbW1F5HSxERERERERHRCMa7BZ2F2eyCYcho9d8tXDcEDte5kRljhlWVYaj+9VYCi9k6nMhICEHZUy+h8tnXET/vKmT/5qdQQnq9sxURERERERERjXAMV87CbHbB47EC8C1gW97kgUsTyE7whSVCMQFCQNI1aLqBSkcrFnz6F1QWf4TUb8/H+F/cD0lRhvAdEBEREREREdGFxHClH5KkQ1U9cLkiADQBAEpq3QhRJWRE+W4fbqgmSLoXEoDKygbMfut3CCk7hIyl30X6A9+GJA3K3a6IiIiIiIiIaJhiuNIPs9kFSQI8Ht/tsds1A8cbPJiUZIUiSxCSBCgqpPY2eM40ouK7/47U8uNIWfFjZPzg5iHuPRERERERERFdDFzQth9mczuEALxe312BjtR7oAsgOz5oShCA9uMnsGv+YhhlJ7B94fdh+/7Xh6zPRERERERENPIpipKflZWVM378+Nx58+ZltrS0nNP1+8qVKxOD95k9e/a4urq6ftesSEtLm1RdXd1jEEZaWtokm82WY7PZcsaOHZt7//33p7pcriGbplFQUDChuLg4dKiO3xuGK/0wm13weq0QwvcxldS2I8aqICnM97tmqCa07j6I3TfdA29jM3b98MewXHUlpwIRERERERHRF2KxWIxDhw4dPHLkyAGTyST+4z/+Y8C3n9U0DWvXrk1qbW3tuObfunXr0fj4eP18+7N169bS0tLSgzt37iwpKyuz3H777enn29aliOFKnwyYze0dU4JchoxTLRpyEiwd4UnDth3YP+/7kE0mTHzrv3AwIhVjkoZVeEZEREREREQj3KxZs1qPHj1qAYBrr712bG5ubva4ceNyV69eHR+oExoaOvWBBx5InTx5ctbDDz+ccvr0adPs2bNtV155pQ3oOiqlrzYGIioqyvjv//7vivfffz/a4XAoAPD4448nTZw4Mdtms+U8+OCDqQBw+PBh85gxY3IXLFiQYbPZcubOndsx+mbbtm2hM2bMmJCbm5s9a9as8RUVFSbANyLlRz/6UdqkSZOyMzIyJm7atCkcAFpbW6Wbbrop02az5dx4442Z7e3tHSMaNm7cGDllypSsnJyc7Hnz5mU2NTXJgff74IMPpubk5GTbbLacXbt2WQGgqalJ/pd/+ZeMwEicV155Jbq/dgaK4UqfWiBJoiNcqfb6HrP8U4Icf/kQBxfeB8sVSZj29m9RH5MI3QAyGK4QERERERFdUgoKCiZ0//nlL3+ZAAAtLS1yb9vXrFkTBwDV1dVq923ncmyv14u///3vkZMmTXIBwGuvvVZ+4MCBkt27dx9cu3ZtUk1NjQIALpdLnjhxomvv3r2HVq9eXZ2YmOjdunVr6aefflravc2+2hio2NhYIy0tzXPgwAHrxo0bI48ePWrdu3dvSUlJycHdu3eHvvfee+EAUF5ebr3nnntqS0tLD0ZERBi/+tWvEtxut3T//feP/utf/3rswIEDJd/5znfqli5dmhZoW9M0ad++fSVPP/105cqVK1MBYPXq1YkhISFGaWnpweXLl1cfPHgwLPDZrlq1KqW4uLj04MGDJdOmTXM++eSTSYG24uPjtYMHD5Z873vfq/3lL3+ZBAAPP/xwSmRkpF5aWnqwtLT04I033thytnYGggva9smMlpZYeDwhEEKgymvFqAgVkRYFlS++iWMrnkPkzHxM+v1KmCJCUbanFgAwJpHhChEREREREX0xbrdbzsrKygGAK6+8suXHP/5xHQA8/fTTSe+++240ANTU1JgOHDhgTU5OblMUBXfeeWfDQNruq41z6Z8QAgCwadOmyOLi4sicnJwcAHA6nfKhQ4esmZmZnuTkZM91113XBgDf/va3z6xZsyZx7969TUeOHAmZM2eODQAMw0BCQoI30O7ChQsbAKCwsLBt2bJlZgD46KOPwu+///7T/s/CZbPZnACwZcuWsGPHjlkLCgqyAMDr9Ur5+fmtgba+9a1vNQBAQUGB8+23344BgOLi4sg33njjeKBOQkKC/vrrr0f1185AMFzpUwhaWnyjo2pavXAKFYVxZhz7+QuofH4D4m76Cmy//yVUzQkAKHM4ERmqIjbCNJSdJiIiIiIiokH22WefHe5rW0REhNHf9pSUFK2/7X0JrLkSXPa3v/0tYuvWrRF2u/1QRESEUVBQMMHlcskAYDabDVU9+yV+f20MVENDg1xVVWWeNGlS++uvv44HHnigetmyZXXBdQ4fPmzuvh6pJEkQQkjjxo1z7d69+1BvbVutVgEAqqpC13UpeN/uhBCYNWtW8zvvvFN2lraEpmlSYJ/ubZ2tnYHgtKABKKlzQ/F6If3816h8fgNSv/N1TFi3GopJRuCUlDucyEgM5WK2REREREREdEE0NjYqUVFRekREhLFr1y7rnj17wvqqGxYWpve2bsi5tNGbpqYm+bvf/W76V7/61caEhAR93rx5za+++mp84FhlZWWmU6dOqQBQXV1t/uCDD8IA4H/+539iCwsLWydPntxeX1+vBsrdbrdkt9ut/R1z1qxZrevXr48FgM8//9xaWloaCgBFRUVtdrs9fP/+/RbAN0Vr7969lv7aKioqan7mmWcSA69ra2uV82mnO4YrZ6EbAkcqGzHhl0+h7s8fYMxD38e4p5ZAMpkga76RS26vjlP17VzMloiIiIiIiC6Yb3zjG02apkk2my3n0UcfTc3Ly+tzKs93vvOdunnz5o0PLGh7Pm0Emz17tm38+PG506ZNy77iiis869evrwCABQsWNC9cuLB+xowZWTabLeeWW24Z29jYqABAZmZm+8svvxxns9lyGhoa1KVLl9ZarVbxxhtvHHv44YdHTZgwISc3Nzdn69at4f0de+nSpafb2toUm82Ws2rVquRJkya1AUBqaqq2du3a8ttuuy3TZrPl5OfnZ+3bt6/foOapp56qbmxsVMaPH587YcKEnP/93/+NOJ92upMC86QupunTpwu73X7Rj3uuqqqqUHrEgaPffxShZeWY8KufIOW2G6CbrDBCwqC2NEASBo5UteIXfzyCH8/PxNTMqCHpa2pq6pAcd7jasmULioqKhrobNEA8XyMHz9XIwvM1cvBcjSw8XyMLz9fIMVTnSpKkHUKI6cFle/bsKc/Ly6vrax86u8OHD5tvuumm8UeOHDkw1H0ZLHv27InPy8vL6G0b11zph6v8FE5+aymsdfWIeOKHSLntBgCAUFXA0AFhAPCttwKAI1eIiIiIiIiILkMMV/pQv+sgdn59MYx2DepvfgHrGN+tmAUAoZogeT0d662UOZyICTchOoyL2RIRERERERFNmDDBcymNWjkbrrnSB1NEGIykRJT+4ufILprSuUFWAEnuWG8F8IUrGbwFMxERERER0aXCMAyDdyuhDv7fB6Ov7QxX+hAxLh1Vz/wSYeNHIzFM6Sg3VN/oFEn3hSsut46aBjenBBEREREREV069tfW1kYxYCHAF6zU1tZGAdjfVx1OC+rDmTY3qlp1zLyi6+2VhWoCdA2SfyHg8tO+9VYyGK4QERHRJUIIAcMQ0DQDui6g6wY03YCh+8p1w4BhAIbhK9MNAWH4Ho2OH9++QgjoHfsF1dMNGKKzDUOIjraMoPa7txH46WxD9NmHC3XjhsrKGuzc888L0jYNPp6vofPAfYWQ5ZGZTWia9oOamprf1dTUTAQHJZBvxMp+TdN+0FcFhit9aHVrSAxTkB3feWtrAUAoJsje9o6yQLjCkStERESXLiEENN3whQ2aP2zQDH/oIDqedy/XNV8ooftDis5tRpfgoqSkHjW1+/ztB9oKOqbeWdd3jK7HDGzzdq+rBY4lutQN7kdHeBLYV/MddySSZQmyJEFWJMiyBElCly/JBouu6fh8R8ugt0sXBs/X0Pnx4i8DGJnhSn5+/mkA84e6HzRyMFzpQ3psGG6fFNOlTCgqIEmQgtdbqXEiPtKMiBB+lDR8GIaA16vD6zXg1XRomgFVkWEyKTCZfI8j9VsEogsl8E29ED2fC+H7uxLwfTNuBMr9dQwhgKA6hhHYz/ccwv+tvBHUliEggI5v14O/ae+o49/f6DiW/9iG6Cgz/PUDz31t+/Y5eLARrc5D/hEAoo/36D+28Pcz6HngS38hfH3tGAUg0NGG/2VHvzu3+/ZB8LYuZd33CRyj5z6dxwg6pvCVBup3DR76Dhs6QgVNQNP1HkFJIHjQurVlGBdmBERXNb2WqooMRZX8jzIURYai+F6rQa99j74yVZGgqDLMFhUhiuQv61o3sK+qdt23Y3vgON2OIUkSFH94EfhRZBmSDCiyDFmRoMgSJNn32Fmvv22BtgFFkf1tBtVTZMgSICuyrzy4D4o/UPGXXwy8te/IwvNFRBcDE4FzIFQTIAQkTesoKzvt5JSgc6TrBvYfcKB4WzmKP6pAVXUzVFWBSfX/g7DPH18wEPjHZG8/JpMCVZVRVeXAwUOf9t1G93Klc7uvnb77oKoyhD+80DTfP9w7ggyvDq9mQAsKNjrKvQY0rVu9oH01f1mXUCSobl/tBPdB8++n62e/CAi8T7NJ8YUuZsX/vDOEMfvLTaau28xm3/nq3MdfT5V92wL7mxWY1K5tm82+z9ActG9bmwan09vxuV+ofxyL7heLHdeJvgtjX3nXi7eOS0HRy0Vft30No3NYe/Cw9c7h7EaXIe09h7cH7S/8w92D6/Uz9L2vIfRdhtIL0W3ovdERFJz1wtsfFlRVVWNz8f91tCe6XbR3lHVc5AeHAN2O0xEG+D7J4OP02ma3ss4wA12Dh6DjdQQg/vMD0dm3wPMuF/iXpKohOWpgxEDgz1mCBEjoMpJAkjrLu+zT0UZgn+D6QSMRgurLctcQoPO5LzwIBBMWi9oRIHQPJ7rsE3itdg0duu7TNYwwIWCfLQAAIABJREFUBcrVbuFFj/74AoJA+6oi49PPPsFVV83sCEAC7V7MwICIiIjOH8OVcyAUEyRDh+S/kmpt11Db5EHRxPgh7tnw53R68fGnJ1C8rQIfba9AQ4MLqiJj6tQUfOnKKzq+Hez+EwgPAsOi29u1ntuCf/z1PB4Nm7eeGREXTKoiQw0EGv7Aw2RSfGVqUNihyggLM/teB4VEgSBD7Va3o9ykQFUk37B1rw6PR4fH2zX08Xh0/3P/No8v0PF4dLS3eHzlHt0XFnn8+wTqe/TB+ZxXlnY8DbyPLt9QB4UZvYUcCApCen67Tb0J/uY5cBEsS75vigND6yVZgizB/yjB43Gj8pTu34Yu3xbLch9lkgRZ7tq2osiQTZ1D9uVux+mrTUi+b8aDL9x9o7B8x/CVdZ0OEKgjAR3HDzyXJN/xEFRH9n9bHngOyd+34M9D6lqn81jd+wF/36TOz0zueszOz9nfZvB56KW9js+rj/PW8X4lCZ999hm+/OUrux6j++cc/J6CPjv4g4+OHEPqLPe9q65TLi7U9IvLRWSEipjokKHuBhEREZ0nhisDJMkyhKJC9gStt+Lgeiv9cThaUfxRObZuK8fn9pPweg1ERFgwq3A0rp6VgcIvj0ZEhOXsDZ2HwPDPvkIbTe8jnAkOdrS+t0uy1CXA6Ag7ur0OBB2qqWfwERgNcylMzwl8Xl6PDk8gtAkKcTxePSjY8Y3S8QQFOwdLDiEjPbNH6BP4lhqAb0pe94s8+Lf3cnHX89vtoH3Rsx30sa/vYjK4vLd9pY5tvqHrgQChc+h6b8PoA8Pkuw5977zo7RwqH9i/65D57j+9DqGX5V7aOf9vwjm0emQpO27GqLSooe4GERER0SWP4coAhURG9VhvJRCupCfymybAN1Kg5FAttm4rx7aPynHocB0A4IpRUbh14SRcPSsDeXnJMKnKWVoaPIEh2JYLk+GQXyAoCrGazmv/LVtqUVQ0dZB7RUREREREdHEwXBmg0Mho33oretBitg4nkqItCLNevh9je7uGz+0nfYHKPytQW9sGWZYweVIy7l/8Zcy+KgMZ6dEcKk5ERERERESXrMs3FThHoVHRkHSty43Eyk47YUsNH7I+DZUzZ5zY9s9yFG+rwCefVaK9XUNoqAmFXxqNq69Kx8zCdM4bJyIiIiIiossGw5UBEJBgCQuH5HZ1lDW1eVHf4r0s7hQkhMDRY/XYuq0MxdsqcOCgA0IAycnhmH9TFmZflYH8aWkwmy/edB8iIiIiIiKi4YLhygAI1eRbvDJoSlD5af9itomXZrji9erYsbOqY0Ha6uoWAMDE3ET86K4CXH1VBsaPi+N0HyIiIiIiIrrsMVwZAKGaYOg6VF3rKCt3OCEBGH0JLWbb2NSOf26vQPG2cmz/+ATanF5YLSoKCkbhB9/Nx6yZ6UiIDxvqbhIRERERERENK4MSrkiS9DKAmwCcFkJMHIw2hxNDUeFqboIlaNbLcYcTKbFWhIzwqTDlFQ0o3uYbnbJnbw0MQyA+PhTXfXU8Zl+dgRnT0877DjBEREREREREl4PBGrnyCoDfAlg3SO0NG0KSAUWFs6kR0bFRvjIhUO5wYmJ65BD37txpmoE9+2pQXFyG4o8qUHGiEQAwwRaP79+Zj6uvSkd2ViJkmdN9iIiIiIiIiAZiUMIVIUSxJEkZg9HWcCNU30fkbGoA/OFKY5sXTU5txCxm29LqxsefVGLrtjL8c/sJNDe7YTLJmJ6fhm/eOhlXzUpHSnLEUHeTiIiIiIiIaESShBCD05AvXPlbX9OCJEm6C8BdAJCUlJT/xhtvDMpxLySv14uksTaEx8ThwEebYbVaAQBHThv4yx4N35qhIi1aHuJe+phMXafunKn34EBJCw4ebMXR420wDCAsTEFOVjhysiMwwRYGq2VkT2nqT2trK8LDL7/bZI9UPF8jB8/VyMLzNXLwXI0sPF8jC8/XyDFU5+orX/nKDiHE9It+YLqkXLQFbYUQLwJ4EQCmT58uioqKLtahz9upqipo4dGQdA1WqxW5ubkAgENNVZAlB2YX5MJiGh7hSmpqKlpa3fjvV3eheFs5jh6rBwCMyYjBojtsuHpWBiZNTIKiDI/+XmhbtmzBSPgdIx+er5GD52pk4fkaOXiuRhaer5GF52vk4LmikYx3C+qPJAOyAsnt6lJc5nAiLS5k2AQrAWtf+hxv/HEfpk1NxZIHZuLqWRkYfUXUUHeLiIiIiIiI6JLGcKUfhuqbaiPr3o6ywGK208ZGD1W3+rTtowoUfukKrPn1TUPdFSIiIiIiIqLLxqAMvZAk6XUAHwOYIEnSSUmSvj8Y7Q41oZoAw/D9+NU1e9Darg+7xWxPnGhE5ckmzJqZMdRdISIiIiIiIrqsDNbdgr45GO0MJ0IICMUESfMi+KbE5aedAIAxwyxc2fbPCgDAzMLRQ9wTIiIiIiIiosvL8Fo0ZBjxGgKQ5S5TggDfeiuKLGFUnHWIeta7f26vwJiMGKSlRg51V4iIiIiIiIguKwxX+iF5PZC0nuHK6IQQmNTh89G5XBp27KrCrJnpQ90VIiIiIiIiosvO8EkIhhmzIkN1tUASneutGEKg3OFCRuLwmhK0Z28tvF4DswoZrhARERERERFdbAxXzsHpRjdcnuG3mK19pwNhoSZMmZI81F0hIiIiIiIiuuwwXDkH5Y7AYrYhQ9yTTkII2Hc48KUrr4BJVYa6O0RERERERESXHYYr56DstBMmRUJa3PAJV8ormlF3xoWZnBJERERERERENCQYrpyDMocT6YmhUGTp7JUvEvsOBwDegpmIiIiIiIhoqDBcGSBDCFScdg3L9VbGZkYhIT5sqLtCREREREREdFliuDJA9W2A22tgTOLwmRLU2upByaF6TM9PGuquEBEREREREV22GK4MUE2z75bMw2nkys7dp2EYAjPyeZcgIiIiIiIioqHCcGWAHM0CVpOMlBjrUHelw+c7HIiMMGP8uJih7goRERERERHRZYvhygBVNwukJ4ZCHiaL2RqGwI6dDkybmghFGR59IiIiIiIiIrocMVwZAE0XqG0RyEgaPuutHDnaiOZmD2ZM55QgIiIiIiIioqHEcGUAqupd0AxgTOLwWW/FvqMGsgxMzUsc6q4QERERERERXdYYrgxAmcMFYHgtZmvf6cAEWywiI81D3RUiIiIiIiKiyxrDlQEodzhhUYGkaMtQdwUA0NDYjiNHGzGDt2AmIiIiIiIiGnIMVwagzNGGpEgJkjQ8Fo7dsdMBAJjOcIWIiIiIiIhoyDFcOQuvZqCyrh3JkcMjWAEA+w4HYmOtGJMRNdRdISIiIiIiIrrsMVw5i5Nn2qEbAsmRw+Oj0jQDu3afxvRpScNmJA0RERERERHR5Wx4JAbDWJnDCQDDZuRKyaF6tDk1TgkiIiIiIiIiGiYYrpxFucOJiBAVkdah7omPfacDqiphSl7CUHeFiIiIiIiIiMBw5azKHG3ISAwZNlNw7DscyM2JR2iIaai7QkRERERERERguNIvt9fAqTPtyEgKHequAABO1zpRcaIZ06dxShARERERERHRcMFwpR+VtS4YAhgzTMIV+w7egpmIiIiIiIhouGG40o+y077FbIdNuLLTgeSkUIxKCx/qrhARERERERGRH8OVfpQ7nIgOUxETbh7qrsDj0bFnby2m5/MWzERERERERETDCcOVfpQ5nMNmvZV9B+rgduuYkZ881F0hIiIiIiIioiAMV/rgbNdQXd+OMYnDI1yx73DAYlYwMTd+qLtCREREREREREEYrvThaFUTBDAsRq4IIfC5vQaTJ8XDYlGGujtEREREREREFIThSh+SY0PxzavTMDY5bKi7gqqqNtQ4nJgxnVOCiIiIiIiIiIYbdag7MFwlRofg+mmJQ90NAMDnO2oAAPnDpD9ERERERERE1IkjV0YA+04HRl8RgaTEoR9FQ0RERERERERdMVwZ5lwuDfsP1GF6ftJQd4WIiIiIiIiIesFwZZjbvfc0NE0wXCEiIiIiIiIaphiuDHP2HQ6EhqrIyYob6q4QERERERERUS8YrgxjQgjYdzowNe//t3fvsXWe933Av49Eybak6GJLlkKncdxIkRP5SlFGnA6F3Bazu2XJUiBbGnQoDAT5p1vTbUXQrX8UDVD0n2FYBnQDkixZgc0xuq5Ziq2d29UWbKhFbJK+yLr4Eiu1ZVkUbTHWhaJFUs/+4CFDs5Yo6xzxnCN+PoBwzvvyfZ/nd87v8KIv3suN6enRKgAAAOhE/sfewQ7/6GTeemvcKUEAAADQwYQrHWxgaDhJ0t8nXAEAAIBOJVzpYAODw9n60fXZsOHadpcCAAAAXIBwpUOdOnUuh154y1ErAAAA0OGEKx1q6JnjOX8+rrcCAAAAHU640qEGhoazdu3KbNu6od2lAAAAABchXOlAU1M1g0PD2Xn3jVm+vLS7HAAAAOAihCsd6OUfjubkyXPp37ml3aUAAAAACxCudKCnBoazbFnSd9eN7S4FAAAAWIBwpQMNDA3n1o9dnw98YGW7SwEAAAAWIFzpMKOj43n5hz92lyAAAADoEsKVDjMwNJwkrrcCAAAAXUK40mEGBodzww3X5paPrG13KQAAAMAlEK50kMnJ83n62ePp79ucUtyCGQAAALqBcKWDHDj0VsbGJl1vBQAAALqIcKWDDAwOp6en5M47NrW7FAAAAOASCVc6yMDgcG7bsTGrrlvR7lIAAACASyRc6RDHj4/l1ddOpb/PKUEAAADQTYQrHeInt2AWrgAAAEA3Ea50iKcGj+WDW1bnpt417S4FAAAAeB+EKx3gnXem8txzb6Z/p1swAwAAQLcRrnSA5/e/mXfOTbneCgAAAHShloQrpZQHSikvlFJeLqX8VivGXEoGhoZzzcrluf22je0uBQAAAHifmg5XSinLk/xBkl9M8okkv1xK+USz4y4VtdY8NXAsd9yxMStXLm93OQAAAMD71IojV+5J8nKt9ZVa67kkDyf5bAvGXRJeP3o6x4bHsmvnlnaXAgAAAFyGVoQrNyV5bc7ykcY6LsFTA41bMLveCgAAAHSlUmttboBSPp/k/lrrlxrL/yzJPbXWfzFvuy8n+XKSbN68eefDDz/c1LyLYWJiYvb5+Ph4rr322pbP8c1vH8mp01P5V79+c1PjrFixokUVXR1Onz6dNWvc1rpb6Ff30Kvuol/dQ6+6i351F/3qHu3q1X333TdYa+1f9Im5qvS0YIwjSX5qzvKHkhydv1Gt9RtJvpEk/f39dffu3S2Y+so6evQnL2P//v3ZsWNHS8cfOzuRH736cj7z6Y82PXZvb2+Lqro67NmzJ93wGWOafnUPveou+tU99Kq76Fd30a/uoVd0s1acFvRUkm2llFtKKSuTfCHJn7Zg3KveM8+OZHKyut4KAAAAdLGmj1yptU6WUv55kkeSLE/y7Vrr/qYrWwIGBoezalVPPn7r9e0uBQAAALhMrTgtKLXWP0vyZ60Ya6motWZgaDh333ljenpacQARAAAA0A7+V98mh3/0dk6cGM+ufncJAgAAgG4mXGmTgcHpWzDvvFu4AgAAAN1MuNImA4PD2frR9dmwofW3dwYAAAAWj3ClDU6ePJdDL57Irp2OWgEAAIBuJ1xpg6efPZ7z55N+4QoAAAB0PeFKGwwMHsu6tSuzbeuGdpcCAAAANEm4ssimpmoGh46nr29zli0r7S4HAAAAaJJwZZG99PJoTp46l/4+pwQBAADA1UC4ssieGjyWZcuSnXff2O5SAAAAgBYQriyygcHh3Lr9hqxZs7LdpQAAAAAtIFxZRCdOjOeHr7ztLkEAAABwFRGuLKKBoeEkyS7hCgAAAFw1hCuLaGBoODfccG0+cvPadpcCAAAAtIhwZZFMTp7P088cT3/f5pTiFswAAABwtRCuLJIDB9/K2bOT2bVzS7tLAQAAAFpIuLJIBgaH09NTcucdm9pdCgAAANBCwpVFMjA0nNt2bMx11/W0uxQAAACghYQri2D4+Jm8+topdwkCAACAq5BwZREMDE7fgrm/z/VWAAAA4GojXFkEA4PD+eCW1entXd3uUgAAAIAWE65cYe+8M5Xn9r2Z/p1uwQwAAABXI+HKFbbv+Tfzzrmp9LveCgAAAFyVhCtX2MDQsVxzzfLcvmNju0sBAAAArgDhyhVUa81Tg8O5845NWblyebvLAQAAAK4A4coVdOT10xkeHkt/n1OCAAAA4GolXLmCnho8liSutwIAAABXMeHKFTQwOJybP7w2N25a1e5SAAAAgCtEuHKFjI1N5MDBtxy1AgAAAFc54coV8syzI5mcrNklXAEAAICrmnDlChkYGs7qVT25dfv17S4FAAAAuIKEK1dArTUDg8O5+64b09PjLQYAAICrmf/5XwGvHH47J0bHs2vnlnaXAgAAAFxhwpUrYGBwOEnS13djmysBAAAArjThyhUwMDScbVvXZ8P6a9tdCgAAAHCFCVda7OTJc3nhxRNuwQwAAABLhHClxYaeGc7580l/n+utAAAAwFIgXGmxgcHhrFu7Mtu2rm93KQAAAMAiEK600NRUzdDTx7Ozb3OWLSvtLgcAAABYBMKVFnrxpdGcPHXO9VYAAABgCRGutNDA0LEsW1bSd5dbMAMAAMBSIVxpoYHB4Xz81uuzZs3KdpcCAAAALBLhSou8deJsfvjK2+nvc0oQAAAALCXClRYZHBpOEtdbAQAAgCVGuNIiA4PD2XjDdfnIzWvbXQoAAACwiIQrLTAxcT5PPzuS/p2bU4pbMAMAAMBSIlxpgQMH38rZs5OutwIAAABLkHClBQaGhtPTsyx33rGp3aUAAAAAi0y40gIDg8O5fccNue66nnaXAgAAACwy4UqTjg2fyWtHTrlLEAAAACxRwpUmDQzO3IJ5S5srAQAAANpBuNKkgaHhfPCDq3NT75p2lwIAAAC0gXClCePvTOa5fSPZ5ZQgAAAAWLKEK03Y9/ybOXfuvFOCAAAAYAkTrjRhYHA411yzPLd94oZ2lwIAAAC0iXDlMtVaMzA4nLvu2JSVK5e3uxwAAACgTYQrl+nIkdMZPj7mFswAAACwxAlXLtNTQ8eSJDv7hCsAAACwlAlXLtPAwHA+cvPa3LhpVbtLAQAAANpIuHIZxsYmsv/gW+l31AoAAAAseU2FK6WUz5dS9pdSzpdS+ltVVKd7+tnjmZqqrrcCAAAANH3kyvNJfinJ4y2opWsMDA5n9aqefPzW69tdCgAAANBmPc3sXGs9mCSllNZU0wVqrRkYGk7f3ZuzfLmzqgAAAGCpK7XW5gcpZU+S36y1Dlxkmy8n+XKSbN68eefDDz/c9LxX2sTExOzz8fHxXHvttXn96Hj+4396Lf/klzZnZ9/aNlb3bitWrGh3CR3l9OnTWbNmTbvL4BLpV/fQq+6iX91Dr7qLfnUX/eoe7erVfffdN1hrXTKXueDKWPDIlVLK/0uy5T2+9Nu11u9f6kS11m8k+UaS9Pf31927d1/qrm1z9OjR2ef79+/Pjh07su/AC0mSz/yjvqxff027Svs7ent7211CR9mzZ0+64TPGNP3qHnrVXfSre+hVd9Gv7qJf3UOv6GYLhiu11l9YjEK6xcDgcLZtXd9RwQoAAADQPi4a8j68ffKdvPDiCXcJAgAAAGY1eyvmz5VSjiS5N8n/KaU80pqyOtPQ08dTa7Jr53udJQUAAAAsRc3eLeh7Sb7Xolo63sDQcNatXZmtH13f7lIAAACADuG0oEt0/nzN0NBwdvZtzrJlS+fW0wAAAMDFCVcu0atHxnPq9ER29TslCAAAAPgJ4coleuGFM1m2rOTuOze1uxQAAACggwhXLtGhF8fy8Vuvz5o1K9tdCgAAANBBhCuX4M23zuboG+9kl1swAwAAAPMIVy7B4NBwkqRfuAIAAADMI1y5BAODw1m3tic3f3htu0sBAAAAOoxwZQETE+fzzLMjuXX7qpTiFswAAADAuwlXFrD/4Fs5Oz6ZWz+2ut2lAAAAAB1IuLKAgcFj6elZlq0fXdXuUgAAAIAOJFxZwMDgcG6/bWNWrvRWAQAAAH+XxOAijh07kyOvn05/n7sEAQAAAO9NuHIRTzVuwbyrX7gCAAAAvDfhykUMDA6n94Or0/vBNe0uBQAAAOhQwpULODs+kX3Pj6R/p6NWAAAAgAsTrlzAwMDrOXfufHbt3NLuUgAAAIAOJly5gP7+m/I7v/3J3LbjhnaXAgAAAHSwnnYX0Kmuu3ZFdvU7agUAAAC4OEeuAAAAADRBuAIAAADQBOEKAAAAQBOEKwAAAABNEK4AAAAANEG4AgAAANAE4QoAAABAE4QrAAAAAE0QrgAAAAA0QbgCAAAA0AThCgAAAEAThCsAAAAATRCuAAAAADRBuAIAAADQhJ52F9DJbrrppnaXcFErV67MuXPn0tPTk8nJyaxevTpnzpzJBz7wgZw6dSrr1q3L22+/nRUrVmTbtm05depU7rvvvjz00EP52Mc+luPHj+eWW27Jvn37sn379kxMTOTTn/50Hnvssbz44ov54he/mL/+67/Otm3bsmfPnuzevTujo6P53Oc+l69//ev5yle+km9+85v5/Oc/n7/5m7/JkSNH8tWvfjWHDx9OkjzzzDO56667kiQPPvhgvve97+XHP/7x7NgPPfRQ7rnnnmzdujXf//73s2PHjmzYsCG7d+/Od77znTz44IPZs2dPRkdH8+d//uf52te+lt///d/P7t27c++99+bQoUNJkt27d+fYsWM5dOhQRkdHs2HDhhw5ciRHjx7N6Oho7r333nzrW9/Kl770pfT19WVoaGh235n9k6S3tzePPPJINm3alC1btuTYsWOz24yMjOT+++/PI488kttvvz379u3L7bffniQ5duxY+vr6kiRDQ0NJki1btszu29vbm6GhoYyMjLxr7EOHDs3OPTPG0aNHZ/ebu27Pnj354he/OPu1Rx55JPfff3+GhoayZcuW9Pb2Jsns/nNrmrtuxtx9Zmqe2X5m3dzlmflmPPTQQ++qZ66jR4+mt7f3XY8z78N7bTd/3cy27zXO/O0vNP+Fxpg/74WeLzT+pbyWhfa72D4LjXc5813o6xfr0/zP1+XM34paW6EVc1zos3yl5rsUzcyzWDV2q05+fzq5tvdr/u+bC2nFz8X3sx2LQz+ubvrLUiNc6WLnzp1LkkxOTiZJzpw5kyQ5depUkuTtt99OkkxMTOSll17K1NRUHn/88UxOTuall17KxMREzpw5k/Hx8Rw6dCjnz5/Po48+mv379+fs2bPZs2dPXnnllRw/fjxvvvlm9u7dm7Nnz2b9+vU5fPhwHnvssRw6dCiPPvponnvuuZw6dSpPPPFEXnzxxSTJwYMHc+LEiSTJAw88kMceeyyjo6N55ZVXsnXr1jz++OM5c+ZMTpw4kT179uT48ePZtGlTtm/fnkcffTQPPPBAnnjiiYyMjOQHP/hBDhw4kL1796bWmnXr1mXv3r1Jku3bt+fgwYPZu3fvbIAxPj6ew4cPZ2RkJOvWrcuePXvyqU99Kn19fbPjzNi+fXuS6f8wPfnkk7nllltSa83Bgwdntzl8+HDuv//+PPnkk9m4cePs48zrnPnD8MCBA0mSWuvsvr29vTlw4EAOHz78rrH37t07O/fMGG+88cbsfnPXPfHEE+8KM5588sncf//9OXDgQGqts7+4ZvafW9PcdTPm7jNT89w/bg8cOPCu5Zn5ZsyvZ6433ngjvb2973qceR/ea7v562a2fa9xLuUX9MXGmD/vhZ4vNP6lvJaF9rvYPguNdznzXejrF+vT/M/X5czfilpboRVzXOizfKXmuxTNzLNYNXarTn5/Orm292v+75sLacXPxfezHYtDP65u+stS47QgAAAAgCYIVwAAAACaIFwBAAAAaIJwBQAAAKAJwhUAAACAJghXAAAAAJrgVsxLRK01tdbZ2zbP3Cp47mOtNefOnZtdNzExkVprpqamkiRTU1OZmprK2NhYaq2zj+Pj45mamkqtNadPn874+Pjs9jPPR0ZGMjY2NrsMAAAAVwvhCotucnIyJ0+ezOTkZMbGxnLy5MlMTExkbGwsp0+fzsjISMbHxzMyMpLTp09nbGwsU1NTGR0dnQ13RkdHc/r06STTwc3M8swYy5Ytm10eHR3NxMRERkdHc/To0XftO7N/khw9ejQnT57M6Ojo7DoAAABYSJk5SmFRJy1lJMnfLvrE719fuwtooZqkJDmXZOWc5bmPSXI2yXWNdeNJrkkymWRFkolMn0p2Ksn6JD9Osi7J6cY+y5O81dgnSa5tjJEkryfZ0tjmmiRvJtmYZKzx7/rGtpONr93U2GdjpkPANUmONNafacy9pjH2m4251jS2nVtvT2PbLUmOJTnRmGtm35n906hjS+M9Gm+MOWNlY/8tSU4mWdt4nHmdJxrPr288zj1EZ+b1rZw39po5c8+MsWrOfnPXbUzy6pyvzbyemfdtrLF+1bx956+bMXefmZpPzPn69fOWZ+ab8eF59cy1qjH23MfMmW/+dsn063tz3rbvNc78MS40/4XGmD/vhZ4vNP7FXsul7nexfRYa73Lmu9DXL9an+Z+v5N3ft5cyfytqbYVWzHGhz/KVmu9SLDTPzPfW5ey71C32+3OxXs13NfVu/u+bC2nFz8X3s91C3k+/uLDF+izrV3tcTn/b1auba62b2jAvV5G2hCvdqJQyUGvtb3cdXBr96i761T30qrvoV/fQq+6iX91Fv7qHXtHNXNAWAAAAoAnCFQAAAIAmCFcu3TfaXQDvi351F/3qHnrVXfSre+hVd9Gv7qJf3UOv6FquuQIAAADQBEeuAAAAADRBuAIAAADQBOHKJSilPFBKeaGU8nIp5bfaXQ/vVkr5dinleCnl+Tnrri+l/GUp5aXG44Z21si0UspPlVIeK6UcLKXsL6V8pbFevzqgB/7AAAAEnUlEQVRQKeXaUsqTpZRnG/363cZ6/epQpZTlpZSnSyn/u7GsVx2qlPKjUsq+UsozpZSBxjr96kCllPWllD8upRxq/P66V686Uylle+N7aubfyVLKb+hX5yql/MvG3xjPl1K+2/jbQ7/oSsKVBZRSlif5gyS/mOQTSX65lPKJ9lbFPP81yQPz1v1Wkr+qtW5L8leNZdpvMsm/rrV+PMknk/xa4/tJvzrTO0l+rtZ6Z5K7kjxQSvlk9KuTfSXJwTnLetXZ7qu13lVr7W8s61dn+nqS/1trvTXJnZn+HtOrDlRrfaHxPXVXkp1JxpJ8L/rVkUopNyX59ST9tdbbkixP8oXoF11KuLKwe5K8XGt9pdZ6LsnDST7b5pqYo9b6eJIT81Z/NskfNp7/YZJ/vKhF8Z5qrW/UWocaz09l+g/Um6JfHalOO91YXNH4V6NfHamU8qEk/zDJt+as1qvuol8dppSyNsnPJvkvSVJrPVdr/XH0qhv8fJIf1lr/NvrVyXqSXFdK6UmyKsnR6BddSriysJuSvDZn+UhjHZ1tc631jWT6P/RJbmxzPcxTSvlIkruT/CD61bEap5k8k+R4kr+stepX5/oPSb6a5PycdXrVuWqSvyilDJZSvtxYp1+d56eTjCT5TuOUu2+VUlZHr7rBF5J8t/FcvzpQrfX1JP8uyatJ3kjydq31L6JfdCnhysLKe6xz/2poQillTZL/meQ3aq0n210PF1ZrnWocXv2hJPeUUm5rd038XaWUTyc5XmsdbHctXLKfqbX2Zfq0418rpfxsuwviPfUk6Uvyn2utdyc5E6codLxSysokn0nyP9pdCxfWuJbKZ5PckqQ3yepSyq+0tyq4fMKVhR1J8lNzlj+U6cPV6GzDpZQPJknj8Xib66GhlLIi08HKf6+1/kljtX51uMZh8HsyfX0j/eo8P5PkM6WUH2X69NWfK6X8t+hVx6q1Hm08Hs/0NSHuiX51oiNJjjSO2kuSP8502KJXne0XkwzVWocby/rVmX4hyeFa60itdSLJnyT5VPSLLiVcWdhTSbaVUm5ppOBfSPKnba6Jhf1pkl9tPP/VJN9vYy00lFJKps9bP1hr/fdzvqRfHaiUsqmUsr7x/LpM/xF0KPrVcWqt/6bW+qFa60cy/Xvq0Vrrr0SvOlIpZXUp5QMzz5P8/STPR786Tq31WJLXSinbG6t+PsmB6FWn++X85JSgRL861atJPllKWdX4G/HnM309Pv2iK5VaneGykFLKP8j0uezLk3y71vp7bS6JOUop302yO8nGJMNJfifJ/0ryR0k+nOkf3J+vtc6/6C2LrJTy95I8kWRffnJdiH+b6euu6FeHKaXckekLyS3PdBj/R7XWr5VSboh+daxSyu4kv1lr/bRedaZSyk9n+miVZPq0k4dqrb+nX52plHJXpi8UvTLJK0keTONnYvSq45RSVmX6eok/XWt9u7HO91aHKqX8bpJ/muk7Sj6d5EtJ1kS/6ELCFQAAAIAmOC0IAAAAoAnCFQAAAIAmCFcAAAAAmiBcAQAAAGiCcAUAAACgCcIVAAAAgCYIVwAAAACa8P8Bam1a9NuyabUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
\n", + " | latitude | \n", + "longitude | \n", + "dry_matter | \n", + "climatic_region | \n", + "biome | \n", + "GFEDregions | \n", + "slope | \n", + "vod | \n", + "lai | \n", + "spi03 | \n", + "... | \n", + "infsinx | \n", + "fbupinx | \n", + "fdsrte | \n", + "frp | \n", + "daysElapsed | \n", + "timeYear | \n", + "timeMonth | \n", + "prediction | \n", + "residual | \n", + "residual_sign | \n", + "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", + "-14.125 | \n", + "-43.625 | \n", + "0.637926 | \n", + "4.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.001862 | \n", + "0.280403 | \n", + "0.899991 | \n", + "0.124609 | \n", + "... | \n", + "0.630047 | \n", + "18.051723 | \n", + "1.645894 | \n", + "0.003937 | \n", + "1765 | \n", + "2014 | \n", + "11 | \n", + "2.064887 | \n", + "1.426961 | \n", + "positive | \n", + "
1 | \n", + "-15.875 | \n", + "18.375 | \n", + "2.027269 | \n", + "3.0 | \n", + "1.0 | \n", + "9.0 | \n", + "0.003352 | \n", + "0.235407 | \n", + "0.588883 | \n", + "0.878517 | \n", + "... | \n", + "1.969392 | \n", + "63.219906 | \n", + "4.600344 | \n", + "0.000000 | \n", + "1277 | \n", + "2013 | \n", + "7 | \n", + "5.639390 | \n", + "3.612121 | \n", + "positive | \n", + "
2 | \n", + "5.375 | \n", + "28.875 | \n", + "791.847741 | \n", + "4.0 | \n", + "1.0 | \n", + "8.0 | \n", + "0.003062 | \n", + "0.531788 | \n", + "0.922213 | \n", + "-1.109352 | \n", + "... | \n", + "0.449267 | \n", + "5.097896 | \n", + "0.836676 | \n", + "0.417923 | \n", + "1795 | \n", + "2014 | \n", + "12 | \n", + "763.954092 | \n", + "-27.893649 | \n", + "negative | \n", + "
3 | \n", + "-18.875 | \n", + "33.375 | \n", + "182.594167 | \n", + "3.0 | \n", + "1.0 | \n", + "9.0 | \n", + "0.014721 | \n", + "0.364745 | \n", + "0.311108 | \n", + "-0.205468 | \n", + "... | \n", + "-0.335389 | \n", + "-28.620920 | \n", + "-1.740059 | \n", + "0.055191 | \n", + "243 | \n", + "2010 | \n", + "9 | \n", + "220.696843 | \n", + "38.102675 | \n", + "positive | \n", + "
4 | \n", + "7.625 | \n", + "-2.625 | \n", + "137.816458 | \n", + "4.0 | \n", + "1.0 | \n", + "8.0 | \n", + "0.003877 | \n", + "0.616257 | \n", + "0.999990 | \n", + "1.105078 | \n", + "... | \n", + "3.576173 | \n", + "-5.271719 | \n", + "6.633287 | \n", + "0.019714 | \n", + "1096 | \n", + "2013 | \n", + "1 | \n", + "287.054485 | \n", + "149.238027 | \n", + "positive | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
132504 | \n", + "-13.875 | \n", + "22.125 | \n", + "11.398151 | \n", + "3.0 | \n", + "1.0 | \n", + "9.0 | \n", + "0.000576 | \n", + "0.312607 | \n", + "0.288886 | \n", + "-0.283592 | \n", + "... | \n", + "0.838159 | \n", + "22.556030 | \n", + "1.998066 | \n", + "0.003937 | \n", + "608 | \n", + "2011 | \n", + "9 | \n", + "12.224819 | \n", + "0.826668 | \n", + "positive | \n", + "
132505 | \n", + "4.375 | \n", + "17.625 | \n", + "781.737678 | \n", + "4.0 | \n", + "1.0 | \n", + "8.0 | \n", + "0.008820 | \n", + "0.589686 | \n", + "0.877769 | \n", + "1.925390 | \n", + "... | \n", + "0.149598 | \n", + "-9.457446 | \n", + "-0.957595 | \n", + "0.023651 | \n", + "334 | \n", + "2010 | \n", + "12 | \n", + "469.220669 | \n", + "-312.517009 | \n", + "negative | \n", + "
132506 | \n", + "-11.875 | \n", + "21.375 | \n", + "202.957233 | \n", + "3.0 | \n", + "1.0 | \n", + "9.0 | \n", + "0.000306 | \n", + "0.290317 | \n", + "0.266664 | \n", + "0.187110 | \n", + "... | \n", + "0.089159 | \n", + "-16.323260 | \n", + "0.064647 | \n", + "0.051254 | \n", + "2007 | \n", + "2015 | \n", + "7 | \n", + "169.885501 | \n", + "-33.071732 | \n", + "negative | \n", + "
132507 | \n", + "18.625 | \n", + "-102.625 | \n", + "81.223411 | \n", + "4.0 | \n", + "1.0 | \n", + "3.0 | \n", + "0.043172 | \n", + "0.505241 | \n", + "0.399996 | \n", + "0.075781 | \n", + "... | \n", + "3.053280 | \n", + "50.202015 | \n", + "7.200427 | \n", + "0.011826 | \n", + "1216 | \n", + "2013 | \n", + "5 | \n", + "36.788492 | \n", + "-44.434919 | \n", + "negative | \n", + "
132508 | \n", + "-6.625 | \n", + "-46.625 | \n", + "1.211840 | \n", + "4.0 | \n", + "1.0 | \n", + "5.0 | \n", + "0.008414 | \n", + "0.364359 | \n", + "1.155544 | \n", + "-0.814844 | \n", + "... | \n", + "1.866540 | \n", + "13.814033 | \n", + "4.414381 | \n", + "0.000000 | \n", + "181 | \n", + "2010 | \n", + "7 | \n", + "7.059729 | \n", + "5.847889 | \n", + "positive | \n", + "
132509 rows × 34 columns
\n", + "\n", + " | latitude | \n", + "longitude | \n", + "dry_matter | \n", + "prediction | \n", + "residual | \n", + "
---|---|---|---|---|---|
count | \n", + "44997.000000 | \n", + "44997.000000 | \n", + "44997.000000 | \n", + "44997.000000 | \n", + "44997.000000 | \n", + "
mean | \n", + "12.484752 | \n", + "20.060212 | \n", + "71.796812 | \n", + "43.594660 | \n", + "-28.202153 | \n", + "
std | \n", + "29.955204 | \n", + "74.327638 | \n", + "199.257848 | \n", + "98.934522 | \n", + "143.103344 | \n", + "
min | \n", + "-48.375000 | \n", + "-162.625000 | \n", + "0.000054 | \n", + "0.051472 | \n", + "-7701.320189 | \n", + "
25% | \n", + "-13.375000 | \n", + "-48.375000 | \n", + "3.510049 | \n", + "3.642212 | \n", + "-16.691602 | \n", + "
50% | \n", + "7.375000 | \n", + "26.625000 | \n", + "14.104767 | \n", + "11.829675 | \n", + "-1.209786 | \n", + "
75% | \n", + "46.125000 | \n", + "77.125000 | \n", + "56.598447 | \n", + "39.972425 | \n", + "2.255198 | \n", + "
max | \n", + "72.125000 | \n", + "178.125000 | \n", + "8409.015059 | \n", + "3139.159278 | \n", + "1285.507564 | \n", + "
\n", + " | biome | \n", + "residual_sign | \n", + "dry_matter | \n", + "residual | \n", + "biome_names | \n", + "
---|---|---|---|---|---|
0 | \n", + "1.0 | \n", + "negative | \n", + "123.023856 | \n", + "-61.630003 | \n", + "SA | \n", + "
1 | \n", + "1.0 | \n", + "positive | \n", + "30.876956 | \n", + "18.391105 | \n", + "SA | \n", + "
2 | \n", + "2.0 | \n", + "negative | \n", + "82.059481 | \n", + "-54.852678 | \n", + "SAOS | \n", + "
3 | \n", + "2.0 | \n", + "positive | \n", + "11.243260 | \n", + "11.706599 | \n", + "SAOS | \n", + "
4 | \n", + "3.0 | \n", + "negative | \n", + "19.417161 | \n", + "-13.452322 | \n", + "AG | \n", + "
5 | \n", + "3.0 | \n", + "positive | \n", + "2.370359 | \n", + "2.617083 | \n", + "AG | \n", + "
6 | \n", + "4.0 | \n", + "negative | \n", + "26.982751 | \n", + "-18.750605 | \n", + "AGOS | \n", + "
7 | \n", + "4.0 | \n", + "positive | \n", + "2.945825 | \n", + "3.572270 | \n", + "AGOS | \n", + "
8 | \n", + "5.0 | \n", + "negative | \n", + "187.354151 | \n", + "-118.088479 | \n", + "TF | \n", + "
9 | \n", + "5.0 | \n", + "positive | \n", + "27.311927 | \n", + "23.247063 | \n", + "TF | \n", + "
10 | \n", + "6.0 | \n", + "negative | \n", + "175.206229 | \n", + "-124.126791 | \n", + "PEAT | \n", + "
11 | \n", + "6.0 | \n", + "positive | \n", + "20.334309 | \n", + "23.729519 | \n", + "PEAT | \n", + "
12 | \n", + "7.0 | \n", + "negative | \n", + "149.293533 | \n", + "-89.435365 | \n", + "EF | \n", + "
13 | \n", + "7.0 | \n", + "positive | \n", + "22.526547 | \n", + "17.954406 | \n", + "EF | \n", + "
14 | \n", + "8.0 | \n", + "negative | \n", + "294.288471 | \n", + "-189.917244 | \n", + "EFOS | \n", + "
15 | \n", + "8.0 | \n", + "positive | \n", + "39.944575 | \n", + "40.218178 | \n", + "EFOS | \n", + "
\n", + " | GFEDregions | \n", + "residual_sign | \n", + "dry_matter | \n", + "residual | \n", + "GFEDnames | \n", + "
---|---|---|---|---|---|
0 | \n", + "1.0 | \n", + "negative | \n", + "212.749244 | \n", + "-141.140860 | \n", + "BONA | \n", + "
1 | \n", + "1.0 | \n", + "positive | \n", + "31.856082 | \n", + "30.385274 | \n", + "BONA | \n", + "
2 | \n", + "10.0 | \n", + "negative | \n", + "191.209817 | \n", + "-123.149332 | \n", + "TENA | \n", + "
3 | \n", + "10.0 | \n", + "positive | \n", + "25.142089 | \n", + "25.820831 | \n", + "TENA | \n", + "
4 | \n", + "11.0 | \n", + "negative | \n", + "31.021731 | \n", + "-23.172906 | \n", + "CEAM | \n", + "
5 | \n", + "11.0 | \n", + "positive | \n", + "3.311345 | \n", + "3.570343 | \n", + "CEAM | \n", + "
6 | \n", + "12.0 | \n", + "negative | \n", + "196.146812 | \n", + "-139.027464 | \n", + "NHSA | \n", + "
7 | \n", + "12.0 | \n", + "positive | \n", + "19.727559 | \n", + "20.101270 | \n", + "NHSA | \n", + "
8 | \n", + "13.0 | \n", + "negative | \n", + "143.500935 | \n", + "-101.388431 | \n", + "SHSA | \n", + "
9 | \n", + "13.0 | \n", + "positive | \n", + "19.134057 | \n", + "21.230677 | \n", + "SHSA | \n", + "
10 | \n", + "14.0 | \n", + "negative | \n", + "48.799376 | \n", + "-31.264139 | \n", + "EURO | \n", + "
11 | \n", + "14.0 | \n", + "positive | \n", + "7.139696 | \n", + "6.918161 | \n", + "EURO | \n", + "
12 | \n", + "2.0 | \n", + "negative | \n", + "30.331274 | \n", + "-20.690219 | \n", + "MIDE | \n", + "
13 | \n", + "2.0 | \n", + "positive | \n", + "3.984022 | \n", + "4.176093 | \n", + "MIDE | \n", + "
14 | \n", + "3.0 | \n", + "negative | \n", + "75.278686 | \n", + "-51.624740 | \n", + "NHAF | \n", + "
15 | \n", + "3.0 | \n", + "positive | \n", + "9.806569 | \n", + "10.256690 | \n", + "NHAF | \n", + "
16 | \n", + "4.0 | \n", + "negative | \n", + "42.820724 | \n", + "-28.861454 | \n", + "SHAF | \n", + "
17 | \n", + "4.0 | \n", + "positive | \n", + "6.127276 | \n", + "5.942588 | \n", + "SHAF | \n", + "
18 | \n", + "5.0 | \n", + "negative | \n", + "78.299959 | \n", + "-51.607495 | \n", + "BOAS | \n", + "
19 | \n", + "5.0 | \n", + "positive | \n", + "10.579508 | \n", + "10.092437 | \n", + "BOAS | \n", + "
20 | \n", + "6.0 | \n", + "negative | \n", + "31.247574 | \n", + "-22.375565 | \n", + "CEAS | \n", + "
21 | \n", + "6.0 | \n", + "positive | \n", + "3.784314 | \n", + "4.102770 | \n", + "CEAS | \n", + "
22 | \n", + "7.0 | \n", + "negative | \n", + "16.173458 | \n", + "-11.030221 | \n", + "SEAS | \n", + "
23 | \n", + "7.0 | \n", + "positive | \n", + "2.279186 | \n", + "2.249713 | \n", + "SEAS | \n", + "
24 | \n", + "8.0 | \n", + "negative | \n", + "199.929401 | \n", + "-95.157618 | \n", + "EQAS | \n", + "
25 | \n", + "8.0 | \n", + "positive | \n", + "52.552433 | \n", + "30.424613 | \n", + "EQAS | \n", + "
26 | \n", + "9.0 | \n", + "negative | \n", + "147.701216 | \n", + "-73.691057 | \n", + "AUST | \n", + "
27 | \n", + "9.0 | \n", + "positive | \n", + "38.833077 | \n", + "22.636514 | \n", + "AUST | \n", + "