-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_reports.py
153 lines (123 loc) · 7.53 KB
/
generate_reports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/python
import argparse
import json
import os
from os import listdir, path
import copy
from pathlib import Path
import pandas as pd
import numpy as np
from scipy import sparse
from echr.utils.folders import make_build_folder
from echr.utils.logger import getlogger
from echr.utils.cli import TAB
from rich.markdown import Markdown
from rich.console import Console
from rich.table import Table
from rich.progress import (
Progress,
BarColumn,
TimeRemainingColumn,
)
from rich.panel import Panel
from rich.tree import Tree
from echr_experiments.config import ANALYSIS_PATH, \
BINARY_DESC_OUTPUT_FILE, \
MULTICLASS_DESC_OUTPUT_FILE, \
MULTILABEL_DESC_OUTPUT_FILE
from echr_experiments.latex import initialize_latex_env
from math import floor, log10
def run(console, build, force):
__console = console
global print
print = __console.print
N = 2
print(Markdown("- **Prepare binary datasets descriptions**"))
with open(BINARY_DESC_OUTPUT_FILE, 'r') as f:
binary_desc = json.load(f)
binary_desc = pd.read_json(BINARY_DESC_OUTPUT_FILE)
binary_desc = binary_desc.reindex(sorted(binary_desc.columns, key=lambda x: int(x) if x != 'p1-1' else 999), axis=1)
binary_desc.columns = [f'Article {c}' for c in binary_desc.columns]
binary_desc = binary_desc.T
prev = binary_desc['prevalence']
binary_desc = binary_desc.astype(int)
binary_desc['prevalence'] = prev.apply(lambda x: round(x, N - int(floor(log10(abs(x))))))
binary_desc.columns = [c.replace('_', ' ').title() for c in binary_desc.columns]
binary_desc.to_latex(Path(ANALYSIS_PATH) / 'tables' / 'binary_datasets_summary.tex',
bold_rows=False, label='table:binary_datasets', caption='Datasets description for binary classification.')
print(Markdown("- **Prepare multilabel dataset descriptions**"))
with open(MULTICLASS_DESC_OUTPUT_FILE, 'r') as f:
multiclass_desc = json.load(f)
multiclass_desc = pd.DataFrame(multiclass_desc['Multiclass'].values())
multiclass_desc['sort'] = multiclass_desc['Article'].apply(lambda x: int(x) if x != 'p1-1' else 999)
multiclass_desc['Article'] = multiclass_desc['Article'].apply(lambda x: f'Article {x}')
multiclass_desc = multiclass_desc.sort_values(by="sort")
multiclass_desc['Prev. Violation'] = multiclass_desc['Violation'] / multiclass_desc['Size'].sum()
multiclass_desc['Prev. No-Violation'] = multiclass_desc['No-Violation'] / multiclass_desc['Size'].sum()
multiclass_desc['Prevalence'] = multiclass_desc['Prevalence'].apply(lambda x: round(x, N - int(floor(log10(abs(x))))))
multiclass_desc['Prev. Violation'] = multiclass_desc['Prev. Violation'].apply(lambda x: round(x, N - int(floor(log10(abs(x))))))
multiclass_desc['Prev. No-Violation'] = multiclass_desc['Prev. No-Violation'].apply(lambda x: round(x, N - 1 - int(floor(log10(abs(x))))))
multiclass_desc['Violation'] = multiclass_desc.apply(lambda x: "{} ({:.3f})".format(x['Violation'], x['Prev. Violation']), axis=1)
multiclass_desc['No-Violation'] = multiclass_desc.apply(lambda x: "{} ({:.3f})".format(x['No-Violation'], x['Prev. No-Violation']), axis=1)
multiclass_desc = multiclass_desc[['Article', 'Size', 'Violation', 'No-Violation', 'Prevalence']]
multiclass_desc = multiclass_desc.rename(columns={'Article': ""})
multiclass_desc.to_latex(Path(ANALYSIS_PATH) / 'tables' / 'multiclass_datasets_summary.tex',
bold_rows=True, index=False, label='table:multiclass_datasets',
caption='Datasets description for multiclass classification.')
print(Markdown("- **Prepare multilabel dataset descriptions**"))
with open(MULTILABEL_DESC_OUTPUT_FILE, 'r') as f:
multilabel_desc = json.load(f)
print(multilabel_desc)
multilabel_desc = pd.DataFrame(multilabel_desc['Multilabel'].values())
multilabel_desc = multilabel_desc[multilabel_desc['Size'] > 100 ]
multilabel_desc['sort'] = multilabel_desc['Article'].apply(lambda x: int(x) if not x.startswith('p') else 999)
multilabel_desc['Article'] = multilabel_desc['Article'].apply(lambda x: f'Article {x}')
multilabel_desc = multilabel_desc.sort_values(by="sort")
print(multilabel_desc)
multilabel_desc['Prev. Violation'] = multilabel_desc['Violation'] / multilabel_desc['Size'].sum()
multilabel_desc['Prev. No-Violation'] = multilabel_desc['No-Violation'] / multilabel_desc['Size'].sum()
multilabel_desc['Prevalence'] = multilabel_desc['Prevalence'].apply(lambda x: round(x, N - int(floor(log10(abs(x))))) if x > 0 else 0)
multilabel_desc['Prev. Violation'] = multilabel_desc['Prev. Violation'].apply(lambda x: round(x, N - int(floor(log10(abs(x))))) if x > 0 else 0)
multilabel_desc['Prev. No-Violation'] = multilabel_desc['Prev. No-Violation'].apply(lambda x: round(x, N - 1 - int(floor(log10(abs(x))))) if x > 0 else 0)
multilabel_desc['Violation'] = multilabel_desc.apply(lambda x: "{} ({:.3f})".format(x['Violation'], x['Prev. Violation']), axis=1)
multilabel_desc['No-Violation'] = multilabel_desc.apply(lambda x: "{} ({:.3f})".format(x['No-Violation'], x['Prev. No-Violation']), axis=1)
multilabel_desc = multilabel_desc[['Article', 'Size', 'Violation', 'No-Violation', 'Prevalence']]
multilabel_desc = multilabel_desc.rename(columns={'Article': ""})
multilabel_desc.to_latex(Path(ANALYSIS_PATH) / 'tables' / 'multilabel_datasets_summary.tex',
bold_rows=True, index=False, label='table:multilabel_datasets',
caption='Datasets description for multilabel classification.')
from os import listdir
from os.path import isfile, join
tables = Path(ANALYSIS_PATH) / 'tables'
cm = Path(ANALYSIS_PATH) / 'cm'
best_tables = sorted([f for f in listdir(tables) if isfile(join(tables, f)) and '_best' in f])
summary_tables = sorted([f for f in listdir(tables) if isfile(join(tables, f)) and '_summary' in f and 'datasets' not in f])
binary_tables = sorted([f for f in listdir(tables) if isfile(join(tables, f)) and f.startswith('binary') and '_article_' in f])
multiclass_tables = sorted([f for f in listdir(tables) if isfile(join(tables, f)) and f.startswith('multiclass') and 'datasets' not in f])
multilabel_tables = sorted([f for f in listdir(tables) if isfile(join(tables, f)) and f.startswith('multilabel') and 'datasets' not in f])
binary_cm = sorted([f for f in listdir(cm) if isfile(join(cm, f)) and f.startswith('binary_cm_normalized')])
multiclass_cm = sorted([f for f in listdir(cm) if isfile(join(cm, f)) and f.startswith('multiclass_cm')])
latex_jinja_env = initialize_latex_env()
template = latex_jinja_env.get_template('template_report.tex')
with open(Path(ANALYSIS_PATH) / 'report.tex', 'w') as f:
f.write(template.render(
binary_tables=binary_tables,
multiclass_tables=multiclass_tables,
multilabel_tables=multilabel_tables,
summary_tables=summary_tables,
best_tables=best_tables,
binary_cm=binary_cm,
multiclass_cm=multiclass_cm,
section2='Short Form'))
def main(args):
console = Console(record=True)
run(console, args.build, args.force)
def parse_args(parser):
args = parser.parse_args()
return args
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Generate post-experiments reports')
parser.add_argument('--build', type=str, default="./build/echr_database/")
parser.add_argument('-f', '--force', action='store_true')
args = parse_args(parser)
main(args)