-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec.ml
111 lines (82 loc) · 3.02 KB
/
vec.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
type zero = Z
type 'a succ = S
type 'a nat =
| Zero : zero nat
| Succ : 'a nat -> 'a succ nat
type ('a, 'b) vec =
| [] : (zero, 'b) vec
| (::) : 'b * ('n, 'b) vec -> ('n succ, 'b) vec
type 'a fin =
| FZ : 'a succ fin
| FS : 'a fin -> 'a succ fin
let rec fmax : type n. n nat -> n fin = fun n ->
match n with
| Zero -> failwith "impossible"
| Succ Zero -> FZ
| Succ k -> FS (fmax k)
let rec fweak : type n. n fin -> n succ fin = function
| FZ -> FZ
| FS i -> FS (fweak i)
let rec vtab : type n. n nat -> (n fin -> 'x) -> (n, 'x) vec = fun n f -> match n with
| Zero -> []
| Succ k -> f FZ :: vtab k (fun i -> f (FS i))
(* let rec vtab2 : type n. n nat -> (n fin -> 'x) -> (n, 'x) vec = fun n f -> match n with
| Zero -> []
| Succ k ->
f (fmax n) :: vtab2 k (fun i -> f (fweak i)) *)
let rec length : type n. (n, 'a) vec -> n nat = function
| [] -> Zero
| _ :: xs -> Succ (length xs)
let rec vproj : type n. (n, 'a) vec -> n fin -> 'a = fun v f -> match v, f with
| x :: _, FZ -> x
| _ :: xs, FS i -> vproj xs i
| [], _ -> .
let rec vec : type n. n nat -> 'a -> (n, 'a) vec = fun n thing -> match n with
| Zero -> []
| Succ prev -> thing :: vec prev thing
let rec va_apply : type n. (n, ('a -> 'b)) vec -> (n, 'a) vec -> (n, 'b) vec = fun fs xs ->
match fs, xs with
| [], [] -> []
| f :: fs, x :: xs -> f x :: va_apply fs xs
let (<*>) = va_apply
let map : type n. ('a -> 'b) -> (n, 'a) vec -> (n, 'b) vec = fun f xs ->
let len = length xs in
let fs = vec len f in
fs <*> xs
let head = function x :: _ -> x
let tail = function _ :: xs -> xs
let rec foldr : type n. ('a -> 'b -> 'b) -> 'b -> (n, 'a) vec -> 'b = fun f init -> function
| [] -> init
| x :: xs -> f x (foldr f init xs)
let rec to_list : type n. (n, 'a) vec -> 'a list = function
| [] -> []
| x :: xs -> x :: to_list xs
type 'a vec_exist = VecExist : ('n, 'a) vec -> 'a vec_exist
let rec of_list : 'a list -> 'a vec_exist = function
| [] -> VecExist []
| x :: xs ->
let VecExist xs = of_list xs in
VecExist (x :: xs)
let rec filter : type n. ('a -> bool) -> (n, 'a) vec -> 'a vec_exist = fun f -> function
| [] -> VecExist []
| x :: xs ->
let VecExist xs = filter f xs in
if f x
then VecExist xs
else VecExist (x :: xs)
let rec zip : type n. (n, 'a) vec -> (n, 'b) vec -> (n, 'a * 'b) vec =
fun xs ys ->
match xs, ys with
| [], [] -> []
| x :: xs, y :: ys -> (x, y) :: zip xs ys
let rec v_zip : type n. (n, 'a) vec -> (n, 'b) vec -> (n, 'a * 'b) vec =
fun xs ys ->
let n = length xs in
let f = vec n (fun a b -> a, b) in
f <*> xs <*> ys
type 'a more_than_five = 'a succ succ succ succ succ
let take5 : type n. (n more_than_five, 'a) vec -> (zero more_than_five, 'a) vec = function
| a :: b :: c :: d :: e :: _ -> [a;b;c;d;e]
| _ -> .
let magic : zero fin -> 'a = function
| _ -> .