Skip to content

Latest commit

 

History

History

tensorrt_llm

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tensorrt_llm

CONTAINERS IMAGES RUN BUILD

CONTAINERS
tensorrt_llm:0.10.dev0
   Aliases tensorrt_llm
   Requires L4T ['==r36.*', '>=cu124']
   Dependencies build-essential cuda:11.4 cudnn python tensorrt numpy cmake onnx pytorch:2.2 torchvision huggingface_hub rust transformers cuda-python
   Dockerfile Dockerfile
   Notes The tensorrt-llm:builder container includes the C++ binaries under /opt
tensorrt_llm:0.10.dev0-builder
   Aliases tensorrt_llm:builder
   Requires L4T ['==r36.*', '>=cu124']
   Dependencies build-essential cuda:11.4 cudnn python tensorrt numpy cmake onnx pytorch:2.2 torchvision huggingface_hub rust transformers cuda-python
   Dockerfile Dockerfile
   Notes The tensorrt-llm:builder container includes the C++ binaries under /opt
tensorrt_llm:0.5
   Aliases tensorrt_llm
   Requires L4T ['==r36.*', '==cu122']
   Dependencies build-essential cuda:11.4 cudnn python tensorrt numpy cmake onnx pytorch:2.2 torchvision huggingface_hub rust transformers cuda-python
   Dockerfile Dockerfile
   Notes The tensorrt-llm:builder container includes the C++ binaries under /opt
tensorrt_llm:0.5-builder
   Aliases tensorrt_llm:builder
   Requires L4T ['==r36.*', '==cu122']
   Dependencies build-essential cuda:11.4 cudnn python tensorrt numpy cmake onnx pytorch:2.2 torchvision huggingface_hub rust transformers cuda-python
   Dockerfile Dockerfile
   Notes The tensorrt-llm:builder container includes the C++ binaries under /opt
RUN CONTAINER

To start the container, you can use jetson-containers run and autotag, or manually put together a docker run command:

# automatically pull or build a compatible container image
jetson-containers run $(autotag tensorrt_llm)

# or if using 'docker run' (specify image and mounts/ect)
sudo docker run --runtime nvidia -it --rm --network=host tensorrt_llm:35.2.1

jetson-containers run forwards arguments to docker run with some defaults added (like --runtime nvidia, mounts a /data cache, and detects devices)
autotag finds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it.

To mount your own directories into the container, use the -v or --volume flags:

jetson-containers run -v /path/on/host:/path/in/container $(autotag tensorrt_llm)

To launch the container running a command, as opposed to an interactive shell:

jetson-containers run $(autotag tensorrt_llm) my_app --abc xyz

You can pass any options to it that you would to docker run, and it'll print out the full command that it constructs before executing it.

BUILD CONTAINER

If you use autotag as shown above, it'll ask to build the container for you if needed. To manually build it, first do the system setup, then run:

jetson-containers build tensorrt_llm

The dependencies from above will be built into the container, and it'll be tested during. Run it with --help for build options.