-
Notifications
You must be signed in to change notification settings - Fork 4
/
metrics.py
503 lines (400 loc) · 18.8 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# code from https://raw.githubusercontent.com/simochen/model-tools/master/pytorch_tools.py
import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
def print_model_param_nums(model=None):
if model == None:
model = torchvision.models.alexnet()
total = sum([param.nelement() if param.requires_grad else 0 for param in model.parameters()])
# print(' + Number of params: %.5fM' % (total / 1e6))
return total / 1e6
def print_model_param_flops(model=None, input_res=[224, 224, 3], multiply_adds=True):
prods = {}
def save_hook(name):
def hook_per(self, input, output):
prods[name] = np.prod(input[0].shape)
return hook_per
list_1=[]
def simple_hook(self, input, output):
list_1.append(np.prod(input[0].shape))
list_2={}
def simple_hook2(self, input, output):
list_2['names'] = np.prod(input[0].shape)
list_conv=[]
def conv_hook(self, input, output):
if isinstance(self,nn.Conv2d):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups)
elif isinstance(self,nn.Conv1d):
batch_size, input_channels, input_length = input[0].size()
output_channels, output_length = output[0].size()
output_height,output_width = 1,output_length
kernel_ops = self.kernel_size[0] * (self.in_channels / self.groups)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = (kernel_ops * (2 if multiply_adds else 1) + bias_ops) * output_channels * output_height * output_width * batch_size
list_conv.append(flops)
list_linear=[]
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1
weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()
flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)
list_bn=[]
def bn_hook(self, input, output):
list_bn.append(input[0].nelement() * 2)
list_relu=[]
def relu_hook(self, input, output):
list_relu.append(input[0].nelement())
list_pooling=[]
def pooling_hook(self, input, output):
if isinstance(self,torch.nn.MaxPool2d) or isinstance(self, torch.nn.AvgPool2d):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size * self.kernel_size
elif isinstance(self,torch.nn.MaxPool1d) or isinstance(self, torch.nn.AvgPool1d):
batch_size,input_channels,input_length = input[0].size()
output_channels,output_length = output[0].size()
output_height,output_width = 1,output_length
kernel_ops = self.kernel_size[0] if isinstance(self.kernel_size,tuple) else self.kernel_size
bias_ops = 0
params = 0
flops = (kernel_ops + bias_ops) * output_channels * output_height * output_width * batch_size
list_pooling.append(flops)
list_upsample=[]
# For bilinear upsample
def upsample_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
flops = output_height * output_width * output_channels * batch_size * 12
list_upsample.append(flops)
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv2d) or isinstance(net, torch.nn.ConvTranspose2d) or isinstance(net,torch.nn.Conv1d):
net.register_forward_hook(conv_hook)
if isinstance(net, torch.nn.Linear):
net.register_forward_hook(linear_hook)
if isinstance(net, torch.nn.BatchNorm2d) or isinstance(net, torch.nn.BatchNorm1d):
net.register_forward_hook(bn_hook)
if isinstance(net, torch.nn.ReLU):
net.register_forward_hook(relu_hook)
if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d) or \
isinstance(net, torch.nn.MaxPool1d) or isinstance(net, torch.nn.AvgPool1d):
net.register_forward_hook(pooling_hook)
if isinstance(net, torch.nn.Upsample):
net.register_forward_hook(upsample_hook)
return
for c in childrens:
foo(c)
if model == None:
model = torchvision.models.alexnet()
foo(model)
if len(input_res) == 3:
input = Variable(torch.rand(input_res[2],input_res[1],input_res[0]).unsqueeze(0), requires_grad = True)
elif len(input_res) == 2:
input = Variable(torch.rand(input_res[1], input_res[0]).unsqueeze(0), requires_grad=True)
else:
raise Exception('Invalid input')
out = model(input)
total_flops = (sum(list_conv) + sum(list_linear) + sum(list_bn) + sum(list_relu) + sum(list_pooling) + sum(list_upsample))
# print(' + Number of FLOPs: %.5fG' % (total_flops / 1e9))
return total_flops / 1e9
def print_forward(model=None):
if model == None:
model = torchvision.models.resnet18()
select_layer = model.layer1[0].conv1
grads={}
def save_grad(name):
def hook(self, input, output):
grads[name] = input
return hook
select_layer.register_forward_hook(save_grad('select_layer'))
input = Variable(torch.rand(3,224,224).unsqueeze(0), requires_grad = True)
out = model(input)
# print(grads['select_layer'])
print(grads)
def print_value():
grads = {}
def save_grad(name):
def hook(grad):
grads[name] = grad
return hook
x = Variable(torch.randn(1,1), requires_grad=True)
y = 3*x
z = y**2
# In here, save_grad('y') returns a hook (a function) that keeps 'y' as name
y.register_hook(save_grad('y'))
z.register_hook(save_grad('z'))
z.backward()
print('HW')
print("grads['y']: {}".format(grads['y']))
print(grads['z'])
def print_layers_num(model=None):
if model == None:
model = torchvision.models.resnet18()
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, torch.nn.Conv2d):
print(' ')
#可以用来统计不同层的个数
# net.register_backward_hook(print)
return 1
count = 0
for c in childrens:
count += foo(c)
return count
print(foo(model))
def check_summary(model=None):
def torch_summarize(model, show_weights=True, show_parameters=True):
"""Summarizes torch model by showing trainable parameters and weights."""
from torch.nn.modules.module import _addindent
tmpstr = model.__class__.__name__ + ' (\n'
for key, module in model._modules.items():
# if it contains layers let call it recursively to get params and weights
if type(module) in [
torch.nn.modules.container.Container,
torch.nn.modules.container.Sequential
]:
modstr = torch_summarize(module)
else:
modstr = module.__repr__()
modstr = _addindent(modstr, 2)
params = sum([np.prod(p.size()) for p in module.parameters()])
weights = tuple([tuple(p.size()) for p in module.parameters()])
tmpstr += ' (' + key + '): ' + modstr
if show_weights:
tmpstr += ', weights={}'.format(weights)
if show_parameters:
tmpstr += ', parameters={}'.format(params)
tmpstr += '\n'
tmpstr = tmpstr + ')'
return tmpstr
# Test
if model == None:
model = torchvision.models.alexnet()
print(torch_summarize(model))
#https://gist.github.com/wassname/0fb8f95e4272e6bdd27bd7df386716b7
#summarize a torch model like in keras, showing parameters and output shape
def show_summary(model=None):
from collections import OrderedDict
import pandas as pd
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from torch import nn
def get_names_dict(model):
"""
Recursive walk to get names including path
"""
names = {}
def _get_names(module, parent_name=''):
for key, module in module.named_children():
name = parent_name + '.' + key if parent_name else key
names[name]=module
if isinstance(module, torch.nn.Module):
_get_names(module, parent_name=name)
_get_names(model)
return names
def torch_summarize_df(input_size, model, weights=False, input_shape=True, nb_trainable=False):
"""
Summarizes torch model by showing trainable parameters and weights.
author: wassname
url: https://gist.github.com/wassname/0fb8f95e4272e6bdd27bd7df386716b7
license: MIT
Modified from:
- https://github.com/pytorch/pytorch/issues/2001#issuecomment-313735757
- https://gist.github.com/wassname/0fb8f95e4272e6bdd27bd7df386716b7/
Usage:
import torchvision.models as models
model = models.alexnet()
df = torch_summarize_df(input_size=(3, 224,224), model=model)
print(df)
# name class_name input_shape output_shape num_params
# 1 features=>0 Conv2d (-1, 3, 224, 224) (-1, 64, 55, 55) 23296#(3*11*11+1)*64
# 2 features=>1 ReLU (-1, 64, 55, 55) (-1, 64, 55, 55) 0
# ...
"""
def register_hook(module):
def hook(module, input, output):
name = ''
for key, item in names.items():
if item == module:
name = key
#<class 'torch.nn.modules.conv.Conv2d'>
class_name = str(module.__class__).split('.')[-1].split("'")[0]
module_idx = len(summary)
m_key = module_idx + 1
summary[m_key] = OrderedDict()
summary[m_key]['name'] = name
summary[m_key]['class_name'] = class_name
if input_shape:
summary[m_key][
'input_shape'] = (-1, ) + tuple(input[0].size())[1:]
summary[m_key]['output_shape'] = (-1, ) + tuple(output.size())[1:]
if weights:
summary[m_key]['weights'] = list(
[tuple(p.size()) for p in module.parameters()])
# summary[m_key]['trainable'] = any([p.requires_grad for p in module.parameters()])
if nb_trainable:
params_trainable = sum([torch.LongTensor(list(p.size())).prod() for p in module.parameters() if p.requires_grad])
summary[m_key]['nb_trainable'] = params_trainable
params = sum([torch.LongTensor(list(p.size())).prod() for p in module.parameters()])
summary[m_key]['nb_params'] = params
if not isinstance(module, nn.Sequential) and \
not isinstance(module, nn.ModuleList) and \
not (module == model):
hooks.append(module.register_forward_hook(hook))
# Names are stored in parent and path+name is unique not the name
names = get_names_dict(model)
# check if there are multiple inputs to the network
if isinstance(input_size[0], (list, tuple)):
x = [Variable(torch.rand(1, *in_size)) for in_size in input_size]
else:
x = Variable(torch.rand(1, *input_size))
if next(model.parameters()).is_cuda:
x = x.cuda()
# create properties
summary = OrderedDict()
hooks = []
# register hook
model.apply(register_hook)
# make a forward pass
model(x)
# remove these hooks
for h in hooks:
h.remove()
# make dataframe
df_summary = pd.DataFrame.from_dict(summary, orient='index')
return df_summary
# Test on alexnet
if model == None:
model = torchvision.models.alexnet()
df = torch_summarize_df(input_size=(3, 224, 224), model=model)
print(df)
# # Output
# name class_name input_shape output_shape num_params
# 1 features=>0 Conv2d (-1, 3, 224, 224) (-1, 64, 55, 55) 23296#nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
# 2 features=>1 ReLU (-1, 64, 55, 55) (-1, 64, 55, 55) 0
# 3 features=>2 MaxPool2d (-1, 64, 55, 55) (-1, 64, 27, 27) 0
# 4 features=>3 Conv2d (-1, 64, 27, 27) (-1, 192, 27, 27) 307392
# 5 features=>4 ReLU (-1, 192, 27, 27) (-1, 192, 27, 27) 0
# 6 features=>5 MaxPool2d (-1, 192, 27, 27) (-1, 192, 13, 13) 0
# 7 features=>6 Conv2d (-1, 192, 13, 13) (-1, 384, 13, 13) 663936
# 8 features=>7 ReLU (-1, 384, 13, 13) (-1, 384, 13, 13) 0
# 9 features=>8 Conv2d (-1, 384, 13, 13) (-1, 256, 13, 13) 884992
# 10 features=>9 ReLU (-1, 256, 13, 13) (-1, 256, 13, 13) 0
# 11 features=>10 Conv2d (-1, 256, 13, 13) (-1, 256, 13, 13) 590080
# 12 features=>11 ReLU (-1, 256, 13, 13) (-1, 256, 13, 13) 0
# 13 features=>12 MaxPool2d (-1, 256, 13, 13) (-1, 256, 6, 6) 0
# 14 classifier=>0 Dropout (-1, 9216) (-1, 9216) 0
# 15 classifier=>1 Linear (-1, 9216) (-1, 4096) 37752832
# 16 classifier=>2 ReLU (-1, 4096) (-1, 4096) 0
# 17 classifier=>3 Dropout (-1, 4096) (-1, 4096) 0
# 18 classifier=>4 Linear (-1, 4096) (-1, 4096) 16781312
# 19 classifier=>5 ReLU (-1, 4096) (-1, 4096) 0
# 20 classifier=>6 Linear (-1, 4096) (-1, 1000) 4097000
def show_save_tensor(model=None):
import torch
import torchvision
import matplotlib.pyplot as plt
def vis_tensor(tensor, ch = 0, all_kernels=False, nrow=8, padding = 2):
'''
ch: channel for visualization
allkernels: all kernels for visualization
'''
n,c,h,w = tensor.shape
if all_kernels:
tensor = tensor.view(n*c ,-1, w, h)
elif c != 3:
tensor = tensor[:, ch,:,:].unsqueeze(dim=1)
rows = np.min((tensor.shape[0]//nrow + 1, 64 ))
grid = torchvision.utils.make_grid(tensor, nrow=nrow, normalize=True, padding=padding)
# plt.figure(figsize=(nrow,rows))
plt.imshow(grid.numpy().transpose((1, 2, 0)))#CHW HWC
def save_tensor(tensor, filename, ch=0, all_kernels=False, nrow=8, padding=2):
n,c,h,w = tensor.shape
if all_kernels:
tensor = tensor.view(n*c ,-1, w, h)
elif c != 3:
tensor = tensor[:, ch,:,:].unsqueeze(dim=1)
torchvision.utils.save_image(tensor, filename, nrow = nrow,normalize=True, padding=padding)
if model == None:
model = torchvision.models.resnet18(pretrained=True)
mm = model.double()
filters = mm.modules
body_model = [i for i in mm.children()][0]
# layer1 = body_model[0]
layer1 = body_model
tensor = layer1.weight.data.clone()
vis_tensor(tensor)
save_tensor(tensor,'test.png')
plt.axis('off')
plt.ioff()
plt.show()
def print_autograd_graph(model=None):
from graphviz import Digraph
def make_dot(var, params=None):
""" Produces Graphviz representation of PyTorch autograd graph
Blue nodes are the Variables that require grad, orange are Tensors
saved for backward in torch.autograd.Function
Args:
var: output Variable
params: dict of (name, Variable) to add names to node that
require grad (TODO: make optional)
"""
if params is not None:
#assert all(isinstance(p, Variable) for p in params.values())
param_map = {id(v): k for k, v in params.items()}
node_attr = dict(style='filled',
shape='box',
align='left',
fontsize='12',
ranksep='0.1',
height='0.2')
dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
seen = set()
def size_to_str(size):
return '('+(', ').join(['%d' % v for v in size])+')'
def add_nodes(var):
if var not in seen:
if torch.is_tensor(var):
dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
elif hasattr(var, 'variable'):
u = var.variable
#name = param_map[id(u)] if params is not None else ''
#node_name = '%s\n %s' % (name, size_to_str(u.size()))
node_name = '%s\n %s' % (param_map.get(id(u.data)), size_to_str(u.size()))
dot.node(str(id(var)), node_name, fillcolor='lightblue')
else:
dot.node(str(id(var)), str(type(var).__name__))
seen.add(var)
if hasattr(var, 'next_functions'):
for u in var.next_functions:
if u[0] is not None:
dot.edge(str(id(u[0])), str(id(var)))
add_nodes(u[0])
if hasattr(var, 'saved_tensors'):
for t in var.saved_tensors:
dot.edge(str(id(t)), str(id(var)))
add_nodes(t)
add_nodes(var.grad_fn)
return dot
torch.manual_seed(1)
inputs = torch.randn(1,3,224,224)
if model == None:
model = torchvision.models.resnet18(pretrained=False)
y = model(Variable(inputs))
#print(y)
g = make_dot(y, params=model.state_dict())
g.view()
#g
if __name__=='__main__':
import fire
fire. Fire()