diff --git a/vis/lowcat_plotting.py b/vis/lowcat_plotting.py index eb6b348..561f14c 100644 --- a/vis/lowcat_plotting.py +++ b/vis/lowcat_plotting.py @@ -106,14 +106,21 @@ def main(): # Figure 5 top: GOES flux and WLSG vs CME speed. Colourbar shows angular width (halo) plotly_double(x1data = np.log10(df['FL_GOES'].astype('float64')), x1title = 'GOES Flux [Wm-2]', x2data = df['SMART_WLSG'].astype('float64'), x2title='WLsg [G/Mm]', - y1data = np.log10(df['COR2_V'].astype('float64')), y1title = 'CME Speed [ms-1]', - y1range = [2, 3.2], + y1data = df['COR2_V'].astype('float64'), y1title = 'CME Speed [ms-1]', + y1range = [0., 2000.], weightdata = '10', colourdata = df['COR2_WIDTH'].astype('float64'), colourdata_title='CME width [o]', colourdata_max=360, colourdata_min=0, colourdata_step=90, - filedata = 'halo_cme_properties_log10_colour', - colourscale='Viridis' - ) + filedata = 'halo_cme_properties_new_colorscale', + colourscale=[[0, 'rgb(54,50,153)'], + [0.25, 'rgb(54,50,153)'], + [0.25, 'rgb(17,123,215)'], + [0.5, 'rgb(17,123,215)'], + [0.5, 'rgb(37,180,167)'], + [0.75, 'rgb(37,180,167)'], + [0.75, 'rgb(249,210,41)'], + [1.0, 'rgb(249,210,41)']] + ) #'Viridis' # Figure 5 bottom: Bmin.max, Total area and flux, PSL length, and R value vs CME speed. Colours show flare class. plotly_multi(x1data = np.log10(np.abs(df['SMART_BMIN'].astype('float64'))), x1title = 'Bmin [G]',