diff --git a/vis/lowcat_plotting.py b/vis/lowcat_plotting.py
index eb6b348..561f14c 100644
--- a/vis/lowcat_plotting.py
+++ b/vis/lowcat_plotting.py
@@ -106,14 +106,21 @@ def main():
# Figure 5 top: GOES flux and WLSG vs CME speed. Colourbar shows angular width (halo)
plotly_double(x1data = np.log10(df['FL_GOES'].astype('float64')), x1title = 'GOES Flux [Wm-2]',
x2data = df['SMART_WLSG'].astype('float64'), x2title='WLsg [G/Mm]',
- y1data = np.log10(df['COR2_V'].astype('float64')), y1title = 'CME Speed [ms-1]',
- y1range = [2, 3.2],
+ y1data = df['COR2_V'].astype('float64'), y1title = 'CME Speed [ms-1]',
+ y1range = [0., 2000.],
weightdata = '10',
colourdata = df['COR2_WIDTH'].astype('float64'), colourdata_title='CME width [o]',
colourdata_max=360, colourdata_min=0, colourdata_step=90,
- filedata = 'halo_cme_properties_log10_colour',
- colourscale='Viridis'
- )
+ filedata = 'halo_cme_properties_new_colorscale',
+ colourscale=[[0, 'rgb(54,50,153)'],
+ [0.25, 'rgb(54,50,153)'],
+ [0.25, 'rgb(17,123,215)'],
+ [0.5, 'rgb(17,123,215)'],
+ [0.5, 'rgb(37,180,167)'],
+ [0.75, 'rgb(37,180,167)'],
+ [0.75, 'rgb(249,210,41)'],
+ [1.0, 'rgb(249,210,41)']]
+ ) #'Viridis'
# Figure 5 bottom: Bmin.max, Total area and flux, PSL length, and R value vs CME speed. Colours show flare class.
plotly_multi(x1data = np.log10(np.abs(df['SMART_BMIN'].astype('float64'))), x1title = 'Bmin [G]',