forked from StevensDeptECE/robosim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vec_3d.cc
40 lines (29 loc) · 1.91 KB
/
vec_3d.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <cmath>
#include <iostream>
#include "vec_3d.hh"
using namespace std;
// Pavlos Tziranis, Anastasios, Aldrin
// colaborators
// View "vec_3d.hh" for constructor comments/clarifications
vec_3d::vec_3d(double a = 0, double b = 0, double c = 0): x(a), y(b), z(c) {} // initialize a vec_3d at the origin (0,0,0)
ostream& operator<<(ostream& s, const vec_3d& v) {
return s << "(" << v.x << "," << v.y << "," << v.z << ")"; // cout individual values (xyz) of a vec_3d with commas and
// parentheses
}
vec_3d operator-(vec_3d p, vec_3d k) {
return vec_3d( p.x - k.x, p.y - k.y,p.z - k.z); // computes the difference between the respective values in
// two vectors returning a vector with solutions
}
vec_3d operator+(vec_3d i, vec_3d j) {
return vec_3d(i.x + j.x, i.y + j.y, i.z + j.z); // computes the summation of the respective values
// in two vectors returning a vector with solutions
}
vec_3d vec_3d::operator-() {return vec_3d(-x, -y, -z);} // negates the x y and z components of a vector
double dot(const vec_3d a, const vec_3d b) {return a.x * b.x + a.y * b.y + a.z * b.z;} // computes dot product of two vectors returning a value
double vec_3d::mag() {return sqrt((x * x) + (y * y) + (z * z));} // magnitude of the vector using summation of components squared inside
// sqrt() from library cmath
double vec_3d::magsq() {return (x * x) + (y * y) + (z * z);} // magnitude of the vector squared to cancel sqrt() from library cmath
double vec_3d::dist(const vec_3d b) { // computes a traveled distance using the magnitude of the difference between two vectors
double a = x - b.x, c = y - b.y, d = z - b.z;
return sqrt(a * a + c * c + d * d);
}