-
Notifications
You must be signed in to change notification settings - Fork 0
/
aluffi-exercises.tex
4786 lines (4058 loc) · 218 KB
/
aluffi-exercises.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Document setup
\documentclass[article, a4paper, 11pt, oneside]{memoir}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[UKenglish]{babel}
% Document info
\newcommand\doctitle{Aluffi, \emph{Algebra: Chapter 0}}
\newcommand\docauthor{Danny Nygård Hansen}
% Formatting and layout
\usepackage[autostyle]{csquotes}
\usepackage[final]{microtype}
\usepackage{xcolor}
\frenchspacing
\usepackage{latex-sty/articlepagestyle}
\usepackage{latex-sty/articlesectionstyle}
% \usepackage{latex-sty/amalgsymbol}
% Fonts
\usepackage[largesmallcaps]{kpfonts}
\DeclareSymbolFontAlphabet{\mathrm}{operators} % https://tex.stackexchange.com/questions/40874/kpfonts-siunitx-and-math-alphabets
\linespread{1.06}
\let\mathfrak\undefined
\usepackage{eufrak}
\usepackage{inconsolata}
% \usepackage{amssymb}
% Hyperlinks
\usepackage{hyperref}
\definecolor{linkcolor}{HTML}{4f4fa3}
\hypersetup{%
pdftitle=\doctitle,
pdfauthor=\docauthor,
colorlinks,
linkcolor=linkcolor,
citecolor=linkcolor,
urlcolor=linkcolor,
bookmarksnumbered=true
}
% Equation numbering
\numberwithin{equation}{chapter}
% Footnotes
\footmarkstyle{\textsuperscript{#1}\hspace{0.25em}}
% Mathematics
\usepackage{latex-sty/basicmathcommands}
\usepackage{latex-sty/framedtheorems}
\usepackage{tikz-cd}
\tikzcdset{arrow style=math font} % https://tex.stackexchange.com/questions/300352/equalities-look-broken-with-tikz-cd-and-math-font
\usetikzlibrary{babel}
% Lists
\usepackage{enumitem}
\setenumerate[0]{label=\normalfont(\alph*)}
\setlist{
listparindent=\parindent,
parsep=0pt,
}
% Bibliography
\usepackage[backend=biber, style=authoryear, maxcitenames=2, useprefix]{biblatex}
\addbibresource{references.bib}
% Title
\title{\doctitle}
\author{\docauthor}
\newcommand{\setF}{\mathbb{F}}
\newcommand{\ev}{\mathrm{ev}}
\newcommand{\calT}{\mathcal{T}}
\newcommand{\calU}{\mathcal{U}}
\newcommand{\calB}{\mathcal{B}}
\newcommand{\calE}{\mathcal{E}}
\newcommand{\calC}{\mathcal{C}}
\newcommand{\calD}{\mathcal{D}}
\newcommand{\calF}{\mathcal{F}}
\newcommand{\calG}{\mathcal{G}}
\newcommand{\calM}{\mathcal{M}}
\newcommand{\calA}{\mathcal{A}}
\newcommand{\calP}{\mathcal{P}}
\newcommand{\calR}{\mathcal{R}}
\newcommand{\calO}{\mathcal{O}}
\newcommand{\strucS}{\mathfrak{S}}
\DeclarePairedDelimiter{\gen}{\langle}{\rangle} % Generating set
\newcommand{\frakL}{\mathfrak{L}}
\newcommand{\frakN}{\mathfrak{N}}
\newcommand{\frakA}{\mathfrak{A}}
\newcommand{\frakB}{\mathfrak{B}}
\newcommand{\ab}{\mathit{ab}}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\stab}{Stab}
% Categories
\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\scat}[1]{\mathbf{#1}} % category supposed to be small
\newcommand{\ncat}[1]{\mathbf{#1}} % named categories like Set, Top
\newcommand{\scatC}{\scat{C}}
\newcommand{\catSet}{\ncat{Set}} % Category of sets
\newcommand{\catGrp}{\ncat{Grp}} % Category of groups
\newcommand{\catFinGrp}{\ncat{FinGrp}} % Category of finite groups
\newcommand{\catAb}{\ncat{Ab}} % Category of abelian groups
\newcommand{\catRing}{\ncat{Ring}} % Category of rings
\newcommand{\catCRing}{\ncat{CRing}} % Category of commutative rings
\newcommand{\catFld}{\ncat{Fld}} % Category of fields
\newcommand{\catMod}[1]{{#1\text{-}\scat{Mod}}}
\newcommand{\catRMod}{\catMod{R}}
\newcommand{\catAlg}[1]{{#1\text{-}\scat{Alg}}}
\newcommand{\catRAlg}{\catAlg{R}}
\newcommand{\End}{\mathrm{End}}
\newcommand{\Hom}{\mathrm{Hom}}
\DeclareMathOperator{\chr}{char}
%% Framed exercise environment
\mdfdefinestyle{swannexercise}{%
skipabove=0.5em plus 0.4em minus 0.2em,
skipbelow=0.5em plus 0.4em minus 0.2em,
leftmargin=-5pt,
rightmargin=-5pt,
innerleftmargin=5pt,
innerrightmargin=5pt,
innertopmargin=5pt,
innerbottommargin=4pt,
linewidth=0pt,
splittopskip=1.2em minus 0.2em,
splitbottomskip=0.5em plus 0.2em minus 0.1em,
backgroundcolor=backgroundcolor,
frametitlebackgroundcolor=titlecolor,
frametitlefont={\scshape},
theoremseparator={},
% theoremspace={},
frametitleaboveskip=3pt,
frametitlebelowskip=2pt
}
\mdtheorem[style=swannexercise]{exerciseframed}{Exercise}
\let\oldexerciseframed\exerciseframed
\renewcommand{\exerciseframed}{%
\crefalias{theorem}{exerciseframed}%
\oldexerciseframed}
\usepackage{listofitems}
\settocdepth{subsection}
\renewenvironment{exerciseframed}[1][]{%
\setsepchar{.}%
\readlist*\mylist{#1}%
\def\smalllabel{\mylist[2].\mylist[3]}%
\refstepcounter{exerciseframed}%
\addcontentsline{toc}{subsection}{Exercise \smalllabel}%
\begin{exerciseframed*}[\smalllabel]%
\label{ex:#1}%
}{%
\end{exerciseframed*}%
}
% https://tex.stackexchange.com/a/23491/63353
\newcommand{\RNum}[1]{\uppercase\expandafter{\romannumeral #1\relax}}
\newcommand{\exref}[1]{%
\setsepchar{.}%
\readlist*\mylist{#1}%
\ifnum \arabic{chapter}=\mylist[1]
\def\mylabel{\mylist[2].\mylist[3]}%
\else
\def\mylabel{\RNum{\mylist[1]}.\mylist[2].\mylist[3]}%
\fi
\hyperref[ex:#1]{Exercise~\mylabel}%
}
\theoremstyle{nonumberplain}
\theoremsymbol{\ensuremath{\square}}
\newtheorem{solution}{Solution}
\let\oldsolution\solution
\renewcommand{\solution}{%
\crefalias{theorem}{solution}%
\oldsolution}
\newcommand{\solutionlabelfont}[1]{{\normalfont\color{linkcolor}#1}}
\newlist{solutionsec}{enumerate}{1}
\setlist[solutionsec]{leftmargin=0pt, parsep=0pt, listparindent=\parindent, font=\solutionlabelfont, label=(\alph*), labelsep=0pt, labelwidth=20pt, itemindent=20pt, align=left, itemsep=10pt}
\renewcommand{\thechapter}{\Roman{chapter}}
% \renewcommand{\thesection}{\arabic{section}}
\DeclarePairedDelimiter{\ord}{\lvert}{\rvert}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Inn}{Inn}
\usepackage{caption} % Links to figures jump correctly
\Crefname{figure}{Figure}{Figures}
\newenvironment{displaytheorem}{%
\begin{displayquote}\itshape%
}{%
\end{displayquote}%
}
\newcommand{\upset}{\operatorname{\uparrow}}
\newcommand{\downset}{\operatorname{\downarrow}}
\newcommand{\matgroup}[3]{\mathrm{#1}_{#2}(#3)}
\newcommand{\GL}[2]{\matgroup{GL}{#1}{#2}}
\newcommand{\SL}[2]{\matgroup{SL}{#1}{#2}}
\newcommand{\catGSet}[1][G]{{#1\text{-}\catSet}}
\newcommand{\frakI}{\mathfrak{I}}
\newcommand{\field}{\mathbb{F}}
\let\bigcoprod\coprod
\renewcommand{\coprod}{\sqcup}
\begin{document}
\maketitle
\chapter{Preliminaries: Set theory and categories}
\chapter{Groups, first encounter}
\section{Definition of group}
\begin{exerciseframed}[2.1.4]
Suppose that $g^2 = e$ for all elements $g$ of a group $G$; prove that $G$ is commutative.
\end{exerciseframed}
\begin{solution}
The hypothesis implies that $g = g\inv$ for all $g \in G$. For $g,h \in G$ we thus have
%
\begin{equation*}
gh
= (gh)\inv
= h\inv g\inv
= hg
\end{equation*}
%
as desired.
\end{solution}
\begin{exerciseframed}[2.1.8]
Let $G$ be a finite abelian group with exactly one element $f$ of order $2$. Prove that $\bigprod_{g \in G} g = f$.
\end{exerciseframed}
\begin{solution}
Every element $g$ in $G$ different from $e$ and $f$ has order greater than two, hence $g \neq g\inv$. The product $\bigprod_{g \in G \setminus \{e,f\}} g$ therefore contains all such elements along with their inverses, and thus equals $e$. The claim follows.
\end{solution}
\begin{exerciseframed}[2.1.9]
Let $G$ be a finite group, of order $n$, and let $m$ be the number of elements $g \in G$ of order exactly $2$. Prove that $n-m$ is odd. Deduce that if $n$ is even, then $G$ necessarily contains elements of order $2$.
\end{exerciseframed}
\begin{solution}
Let $G'$ denote the set of elements in $G$ with order greater than $2$. We claim that $\card{G'}$ is even, and we give two arguments for this fact. First, simply notice that the elements of $G'$ come in pairs $\{g, g\inv\}$ with $g \neq g\inv$.
For a more precise argument (using group theory language we haven't seen yet), consider the inversion map $g \mapsto g\inv$. This restricts to a well-defined map $\iota \colon G' \to G'$, and $\iota$ is a permutation of $G'$. Letting the cyclic group $\gen{\iota} \leq S_{G'}$ act on $G'$ splits $G'$ into orbits of size two, and since these orbits determine a partition of $G'$, $\card{G'}$ must be even.
Now notice that $G'$ contains $n-m-1$ elements since $e$ has order $1$, hence $n-m$ is odd. If $n$ is even, then $m$ must be odd and thus at least $1$.
\end{solution}
\begin{exerciseframed}[2.1.11]
Prove that for all $g,h$ in a group $G$, $\ord{gh} = \ord{hg}$.
\end{exerciseframed}
\begin{solution}
Let $a,g \in G$, and let $n = \ord{g}$. Then
%
\begin{equation*}
(aga\inv)^n
= a g^n a\inv
= e,
\end{equation*}
%
so the order of $aga\inv$ divides the order of $g$. Substituting $g \to aga\inv$ and $a \to a\inv$ shows that $\ord{g}$ also divides $\ord{aga\inv}$, so $\ord{g} = \ord{aga\inv}$. Finally substituting $g \to gh$ and $a \to h$ proves the claim.
Alternatively, the conjugation map $g \mapsto aga\inv$ is an isomorphism, so it preserves orders.
\end{solution}
\begin{exerciseframed}[2.1.13]
Give an example showing that $\ord{gh}$ is not necessarily equal to $\lcm(\ord{g}, \ord{h})$, even if $g$ and $h$ commute.
\end{exerciseframed}
\begin{solution}
In $\ints/4\ints$ we have $\ord{[2]_4} = 2$ and $\ord{[2]_4 + [2]_4} = \ord{[0]_4} = 1$.
\end{solution}
\begin{exerciseframed}[2.1.14]
Prove that if $g$ and $h$ commute \emph{and} $\gcd(\ord{g}, \ord{h}) = 1$, then $\ord{gh} = \ord{g} \, \ord{h}$.
\end{exerciseframed}
\begin{solution}
First recall that $\lcm(\ord{g}, \ord{h}) = \ord{g} \, \ord{h}$, so Proposition~1.14 implies that $\ord{gh}$ divides $\ord{g} \, \ord{h}$. Conversely, letting $N = \ord{gh}$ we have
%
\begin{equation*}
e
= (gh)^{\ord{g}N}
= g^{\ord{g}N} h^{\ord{g}N}
= h^{\ord{g}N},
\end{equation*}
%
so $\ord{h}$ divides $\ord{g}N$. But since $\ord{g}$ and $\ord{h}$ are relatively prime, $\ord{h}$ divides $N$. So does $\ord{g}$, so again using relative primality we find that $\ord{g} \, \ord{h}$ divides $N$. In total, $\ord{gh} = \ord{g} \, \ord{h}$.
\end{solution}
\begin{exerciseframed}[2.1.15]
Let $G$ be a commutative group, and let $g \in G$ be an element of maximal finite order. Prove that if $h \in G$ has finite order in $G$, then $\ord{h}$ divides $\ord{g}$.
\end{exerciseframed}
\begin{solution}
If not, then some prime $p$ divides $\ord{h}$ strictly more times than it does $\ord{g}$, say $\ord{h} = p^n s$ and $\ord{g} = p^m r$ with $m < n$ and $r,s$ relatively prime to $p$. Then $\ord{g^{p^m}} = r$ and $\ord{h^s} = p^n$ are relatively prime, so \exref{2.1.14} implies that $\ord{g^{p^m} h^s} = p^n r$, which is strictly greater than $\ord{g}$. This is a contradiction, so $\ord{h}$ does in fact divide $\ord{g}$.
\end{solution}
\section{Examples of groups}
\begin{remarkbreak}[Bezout's identity]
The identity in \exref{2.2.13} is known as \emph{Bezout's identity}. Notice that if $a,b,m,n \in \ints$ satisfy
%
\begin{equation*}
am + bn = 1,
\end{equation*}
%
then the exercise not only shows that $m$ and $n$ are relatively prime, but also that $(a,b)$, $(m,b)$ and $(a,n)$ are pairs of relatively prime integers.
If $[m]_n \in (\ints/n\ints)^*$, then there exist $a,b \in \ints$ such that $am + bn = 1$. But this also shows that $a$ and $n$ are relatively prime (so $[a]_n$ is a multiplicative inverse of $[m]_n$), finishing the proof of Proposition~2.6 which says that $(\ints/n\ints)^*$ is a group.
\end{remarkbreak}
\begin{exerciseframed}[2.2.1]
One can associate an $n \times n$ matrix $M_\sigma$ with a permutation $\sigma \in S_n$ by letting the entry at\footnotemark{} $(i,\sigma(i))$ be $1$ and letting all other entries be $0$. Prove that, with this notation,
%
\begin{equation*}
M_\sigma M_\tau = M_{\tau\sigma}
\end{equation*}
%
for all $\sigma, \tau \in S_n$, where the product on the right is the ordinary product of matrices.
\end{exerciseframed}\footnotetext{Contrary to Aluffi, we prefer to let permutation act on the left.}
\begin{solution}
Notice that, for $1 \leq i,j \leq n$,
%
\begin{equation*}
(M_\sigma M_\tau)_{ij}
= \sum_{k=1}^n (M_\sigma)_{ik} (M_\tau)_{kj},
\end{equation*}
%
and that the summand $(M_\sigma)_{ik} (M_\tau)_{kj}$ is $1$ just when $\sigma(i) = k$ and $\tau\sigma(i) = j$, and $0$ otherwise. Thus,
%
\begin{equation*}
(M_\sigma M_\tau)_{ij} =
\begin{cases}
1, & \tau\sigma(i) = j, \\
0, & \text{otherwise},
\end{cases}
\end{equation*}
%
which is just the definition of the matrix $M_{\tau\sigma}$.
\end{solution}
\begin{exerciseframed}[2.2.5]
Describe generators and relations for all dihedral groups $D_{2n}$.
\end{exerciseframed}
\begin{solution}
Consider a regular $n$-gon, let $x$ be reflection about a line through its centre and a vertex, and let $y$ be the counterclockwise rotation by $2\pi/n$. Then $x$ and $y$ generate $D_{2n}$ subject to a series of relations. First of all, clearly $x^2 = e$ and $y^n = e$ (more precisely, $x$ and $y$ have order $2$ and $n$ respectively). Furthermore, a geometric argument shows that $(xy)^2 = e$, or equivalently that $yx = xy^{n-1}$. By applying this third relation successively, any product $x^{i_1} y^{i_2} x^{i_3} y^{i_4} \cdots$ can be reduced to one on the form $x^i y^j$. Using the other two relations we find that we can choose $i$ and $j$ such that $0 \leq i \leq 1$ and $0 \leq j < n$, which yields $2n$ products on this form.
Next we show that all these products are different. Given two products $x^{i_1} y^{j_1}$ and $x^{i_2} y^{j_2}$, if either $i_1 = i_2$ or $j_1 = j_2$ then this is obvious. So assume that $i_1 \neq i_2$ and $j_1 \neq j_2$. Without loss of generality also assume that $i_1 = 0$ and $i_2 = 1$. Now consider the equation
%
\begin{equation*}
y^{j_2 - j_1} = x.
\end{equation*}
%
It follows from Proposition~1.13 that $j_2 - j_1 = \pm n/2$. But the third relation above then implies that
%
\begin{equation*}
y^{\frac{n}{2} + 1}
= y^{\frac{n}{2} + n - 1},
\end{equation*}
%
or $e = y^{n-2}$ which is impossible. Hence the equation has no solutions, and all products $x^i y^j$ are distinct.
\end{solution}
\begin{exerciseframed}[2.2.13]
Prove that if $\gcd(m,n) = 1$, then there exist integers $a$ and $b$ such that
%
\begin{equation*}
am + bn = 1.
\end{equation*}
%
Conversely, prove that if $am + bn = 1$ for some integers $a$ and $b$, then $\gcd(m,n) = 1$.
\end{exerciseframed}
\begin{solution}
By Corollary~2.5, the class $[m]_n$ generates $\ints/n\ints$. Hence there exists an $a \in \ints$ such that $a [m]_n = [1]_n$. But then $qn = am - 1$ for some $q \in \ints$, i.e. $am + (-q)n = 1$.
Conversely, if $am + bn = 1$ and $d$ divides both $m$ and $n$, then $d$ also divides $1$ and hence $d = \pm 1$.
\end{solution}
\section[The category Grp][The category $\catGrp$]{The category $\catGrp$}
\newcommand{\frakS}{\mathfrak{S}}
\begin{remarkbreak}[Universal algebra]
Let $A$ be a set and let $n \in \naturals$. An \emph{operation on $A$} is a set function $A^n \to A$. The set $A^0 \cong 1$ is a singleton and is only determined up to isomorphism in $\catSet$. The number $n$ is called the operation's \emph{arity}, and we say that the operation is \emph{$n$-ary}. A $0$-ary operation is also called a \emph{constant}. If $c \colon \{*\} \to A$ is a constant, then instead of $c(*)$ we simply write $c$.
An \emph{algebra} is a pair $\frakA = \langle A, F \rangle$, where $A$ is a set\footnote{Many authors require $A$ to be nonempty, e.g. Manzano and Bergman} and $F$ is a collection (of arbitrary cardinality) of operations on $A$. Writing $F = \set{f_i}{i \in I}$ for some index set $I$, the \emph{(similarity) type} of $\frakA$ is the function $\rho \colon I \to \naturals$ where $\rho(i)$ is the arity of $f_i$. If $I$ is a finite set, then writing $I = \{1, \ldots, k\}$ we display the type of an algebra by the tuple $\langle \rho(1), \ldots, \rho(k) \rangle$, and we also refer to this tuple as the type of the algebra. Notice that if any operation in $F$ is a constant, then $A$ must be nonempty.
A \emph{subalgebra} of $\frakA$ is an algebra $\frakS = \langle S, F_S \rangle$ such that $S \subseteq A$, and such that for each $g \in F_S$ there is an $f \in F$ with $g = f|_S$. Notice that a subset $S \subseteq A$ induces a subalgebra if $f(S^n) \subseteq S$ for all $f \in F$, where $n = \rho(f)$. We will usually identify the algebra $\frakS$ with the underlying set $S$.
When considering the family of algebras with a particular similarity type, it is common to index the operations on each algebra by a family $\calF$ of \emph{operation symbols}. In this case we write $\calF^\frakA$ for the set of operations on $\frakA$, and for each $f \in \calF$ we write $f^\frakA$ for the corresponding operation on $\frakA$.
Let $\frakA = \langle A, \calF^\frakA \rangle$ and $\frakB = \langle B, \calF^\frakB \rangle$ be algebras of the same similarity type $\rho \colon \calF \to \naturals$. A set function $\phi \colon A \to B$ is called a \emph{homomorphism} from $\frakA$ to $\frakB$ if
%
\begin{equation*}
\phi \left( f^\frakA(a_1, \ldots, a_n) \right)
= f^\frakB \left( \phi(a_1), \ldots, \phi(a_n) \right)
\end{equation*}
%
with $n = \rho(f)$ for all $f \in \calF$ and all $a_1, \ldots, a_n \in A$. In this case we write $\phi \colon \frakA \to \frakB$. This is equivalent to the diagram (in $\catSet$)
%
\begin{equation*}
\begin{tikzcd}
A^n
\ar[r, "\phi \times \cdots \times \phi"]
\ar[d, "f^\frakA", swap]
& B^n
\ar[d, "f^\frakB"] \\
A
\ar[r, "\phi", swap]
& B
\end{tikzcd}
\end{equation*}
%
commuting for all $f \in \calF$. In the case where $\rho(f) = 0$ we interpret the $0$-fold product of $\phi$ with itself as the unique map $1 \to 1$, and the above square is equivalent to the triangle
%
\begin{equation*}
\begin{tikzcd}[column sep=small]
& 1
\ar[dl, "f^\frakA", swap]
\ar[dr, "f^\frakB"] \\
A
\ar[rr, "\phi", swap]
&& B
\end{tikzcd}
\end{equation*}
%
Then $f^\frakA$ and $f^\frakB$ are constants, and this diagram means that $\phi(f^\frakA) = f^\frakB$, i.e. that $\phi$ preserves the constant corresponding to $f$.
By pasting together two of the above types of diagrams, it is easy to see that function composition preserves homomorphisms. Since the identity on each algebra is obviously a homomorphism, each similarity type gives rise to a category.
\end{remarkbreak}
\begin{remarkbreak}[Images and preimages of subalgebras]
Let $\frakA = \langle A, \calF^\frakA \rangle$ and $\frakB = \langle B, \calF^\frakB \rangle$ be algebras of the same type $\rho \colon \calF \to \naturals$, where $\calF$ is a family of operation symbols. Further let $S \subseteq A$ and $T \subseteq B$ be subalgebras, and let $\phi \colon \frakA \to \frakB$ a homomorphism.
We first claim that $\phi(S)$ is a subalgebra of $\frakB$. Consider $f \in \calF$ and let $n = \rho(f)$. For any $y_1, \ldots, y_n \in \phi(S)$ there exist $x_1, \ldots, x_n \in S$ such that $\phi(x_i) = y_i$ for $i = 1, \ldots n$. Then $f^\frakA(x_1, \ldots, x_n) \in S$ since $S$ is a subalgebra, and because $\phi$ is a homomorphism we have
%
\begin{equation*}
f^\frakB(y_1, \ldots, y_n)
= f^\frakB \bigl( \phi(x_1), \ldots, \phi(x_n) \bigr)
= \phi \bigl( f^\frakA(x_1, \ldots, x_n) \bigr)
\in \phi(S)
\end{equation*}
%
as required.
Next we claim that $\phi\preim(T)$ is either empty (if this is not allowed in the definition of an algebra) or a subalgebra of $\frakA$. If $x_1, \ldots, x_n \in \phi\preim(T)$, then $\phi(x_1), \ldots, \phi(x_n) \in T$. Hence
%
\begin{equation*}
\phi \bigl( f^\frakA(x_1, \ldots, x_n) \bigr)
= f^\frakB \bigl( \phi(x_1), \ldots, \phi(x_n) \bigr)
\in T
\end{equation*}
%
since $T$ is a subalgebra. Hence $f^\frakA(x_1, \ldots, x_n) \in \phi\inv(T)$ as claimed. Furthermore, if there is a nullary symbol $f$ in $\calF$, then $\phi\preim(T)$ is nonempty since it must contain the image of $f^\frakA$.
\end{remarkbreak}
\begin{remarkbreak}[Homomorphisms and generating subalgebras]
\label{rem:generating-subalgebra}
If $\frakA = \langle A, F \rangle$ is an algebra and $S \subseteq A$, then we denote the smallest subalgebra of $\frakA$ containing $S$ by $\gen{S}_\frakA$, or simply $\gen{S}$ if $\frakA$ is understood.
Let $\frakA = \langle A, \calF^\frakA \rangle$ and $\frakB = \langle B, \calF^\frakB \rangle$ be algebras of the same type, where $\calF$ is a family of operation symbols. If $\phi \colon \frakA \to \frakB$ is a homomorphism and $S \subseteq A$ is any subset, then we claim that $\gen{\phi(S)}_\frakB = \phi(\gen{S}_\frakA)$. The inclusion \enquote{$\subseteq$} is obvious since the image of a subalgebra is a subalgebra. For the other inclusion, first define $S_0 = S$ and
%
\begin{equation*}
S_{n+1}
= S_n \union \set[\big]{f^\frakA(a_1, \ldots, a_k)}{a_1, \ldots, a_k \in S_n \text{ and } f \in \calF}
\end{equation*}
%
for $n \in \naturals$. Then clearly $\gen{S}_\frakA = \bigunion_{n\in\naturals} S_n$. Since function images respect unions, it suffices to show that $\phi(S_n) \subseteq \gen{\phi(S)}_\frakB$ for all $n \in \naturals$. This is obvious for $n = 0$. Next assume that the inclusion holds for some $n \in \naturals$, let $f \in \calF$ have rank $k$, and let $a_1, \ldots, a_k \in S_n$. Then
%
\begin{equation*}
\phi \bigl( f^\frakA(a_1, \ldots, a_k) \bigr)
= f^\frakB \bigl( \phi(a_1), \ldots, \phi(a_k) \bigr)
\in \gen{\phi(S)}_\frakB
\end{equation*}
%
by induction, since each $\phi(a_i)$ lies in $\phi(S_n)$.
\end{remarkbreak}
\begin{remark}
The universal algebra definition of groups is as follows: First, a \emph{semigroup} is an algebra $\langle S, \,\cdot\, \rangle$, where $\cdot$ is a binary operation (in infix notation), satisfying the associative law
%
\begin{equation*}
x \cdot (y \cdot z)
= (x \cdot y) \cdot z.
\end{equation*}
%
A \emph{monoid} is an algebra $\langle M, \,\cdot\,, e \rangle$, where $e$ is a constant, such that $\langle M, \,\cdot\, \rangle$ is a semigroup, and which satisfies the identities
%
\begin{equation*}
x \cdot e = x
\quad \text{and} \quad
e \cdot x = x.
\end{equation*}
%
Finally, a \emph{group} is an algebra $\langle G, \,\cdot\,, \iota, e \rangle$, where $\iota$ is a unary operation, such that $\langle G, \,\cdot\,, e \rangle$ is a monoid, and which satisfies
%
\begin{equation*}
x \cdot \iota(x)
= e
= \iota(x) \cdot x.
\end{equation*}
%
We usually denote the operation $\cdot$ by concatenation, and we write $\iota(x) = x\inv$.
For a map $\phi \colon G \to H$ between groups, it turns out that for $\phi$ to be a group homomorphism it is sufficient that $\phi$ commutes with the group operation. This is obviously also the case for semigroups, but for monoids we do require it to respect both the group operation and preserve the identity.
\end{remark}
\begin{exerciseframed}[2.3.3]
Show that if $G,H$ are \emph{abelian} groups, then $G \prod H$ satisfies the universal property for coproducts in $\catAb$.
\end{exerciseframed}
\begin{solution}
Let $\phi_G \colon G \to K$ and $\phi_H \colon H \to K$ be homomorphisms into an abelian group $K$. Define a map $\psi \colon G \prod H \to K$ by
%
\begin{equation*}
\psi(g,h)
= \phi_G(g) \phi_H(h).
\end{equation*}
%
We first show that $\psi$ is a group homomorphism. For $g_1,g_2 \in G$ and $h_1, h_2 \in H$ we have
%
\begin{align*}
\psi((g_1,h_1)(g_2,h_2))
&= \psi(g_1 g_2, h_1 h_2)
= \phi_G(g_1 g_2) \phi_H(h_1 h_2) \\
&= \phi_G(g_1) \phi_G(g_2) \phi_H(h_1) \phi_H(h_2) \\
&= \phi_G(g_1) \phi_H(h_1) \phi_G(g_2) \phi_H(h_2) \\
&= \psi(g_1, h_1) \psi(g_2, h_2).
\end{align*}
%
In the fourth equality we used that $K$ is abelian. Next we show that the diagram
%
\begin{equation*}
\begin{tikzcd}
G
\ar[dr, "\iota_G"]
\ar[drr, "\phi_G", bend left] \\
& G \prod H
\ar[r, "\psi"]
& K \\
H
\ar[ur, "\iota_H", swap]
\ar[urr, "\phi_H", bend right, swap]
\end{tikzcd}
\end{equation*}
%
commutes, where $\iota_G(g) = (g, e_H)$ and $\iota_H(h) = (e_G, h)$. For the upper triangle we have
%
\begin{equation*}
(\psi \circ \iota_G)(g)
= \psi(g, e_G)
= \phi_G(g) \phi_H(e_G)
= \phi_G(g) e_K
= \phi_G(g),
\end{equation*}
%
and similarly for the lower triangle. Finally notice that $\psi$ is unique with this property, since if $\chi \colon G \prod H \to K$ is any such homomorphism we have
%
\begin{equation*}
\chi(g,h)
= \chi(g,e_H) \chi(e_G,h)
= (\chi \circ \iota_G)(g) (\chi \circ \iota_H)(h)
= \phi_G(g) \phi_H(h),
\end{equation*}
%
so $\chi = \psi$.
\end{solution}
\begin{exerciseframed}[2.3.4]
Let $G,H$ be groups, and assume that $G \cong H \times G$. Can you conclude that $H$ is trivial?
\end{exerciseframed}
\begin{solution}
Let $H$ be any nontrivial group, and let $G = \bigprod_{n\in\naturals} H$. Then the map $\phi \colon G \to H \prod G$ given by
%
\begin{equation*}
\phi(h_1, h_2, h_3, \ldots)
= \bigl( h_1, (h_2, h_3, \ldots) \bigr)
\end{equation*}
%
is an isomorphism.
\end{solution}
\begin{exerciseframed}[2.3.5]
Prove that $\rationals$ is not the direct product of two nontrivial groups.
\end{exerciseframed}
\begin{solution}
Let $G$ and $H$ be groups such that there is an isomorphism $\phi \colon \rationals \to G \prod H$. Assume without loss of generality that $G$ is nontrivial, and consider the map $\phi_G = \pi_G \circ \phi$. We claim that $\phi_G$ is injective.
First notice that if $g \in G$ has finite order then $g = 0_G$, since $(g,0_H)$ has finite order in $G \prod H$. Let $p,q \in \ints$ with $p,q \neq 0$, and notice that $\phi_G(p/q) = 0_G$ implies that
%
\begin{equation*}
0_G
= q \phi_G \Bigl( \frac{p}{q} \Bigr)
= \phi_G(p)
= p \phi_G(1).
\end{equation*}
%
Hence $\phi_G(1) = 0_G$, and so $\ints \subseteq \ker \phi_G$. Furthermore, if $a,b \in \ints$ with $b \neq 0$, then
%
\begin{equation*}
b \phi_G \Bigl( \frac{a}{b} \Bigr)
= \phi_G(a)
= 0_G,
\end{equation*}
%
so $\phi_G(a/b)$ has finite order and hence equals $0_G$. Thus if $\ker \phi_G$ is nontrivial, then $\ker \phi_G = \rationals$. But since $\phi_G$ is surjective and $G$ is nontrivial, this is impossible. Hence $\phi_G$ is injective. On the other hand, the kernel of $\phi_G$ is clearly $1 \prod H$, so $H$ must be trivial.
\end{solution}
\begin{exerciseframed}[2.3.6]
Consider the product $C_2 \prod C_3$ of the cyclic groups $C_2,C_3$. By \exref{2.3.3}, this group is a coproduct of $C_2$ and $C_3$ in $\catAb$. Show that it is \emph{not} a coproduct of $C_2$ and $C_3$ in $\catGrp$.
\end{exerciseframed}
\begin{solution}
Denote by $g$ and $h$ generators of $C_2$ and $C_3$ respectively, and define group homomorphisms $\phi_2 \colon C_2 \to S_3$ and $\phi_3 \colon C_3 \to S_3$ by
%
\begin{equation*}
\phi_2(g) = (1 \; 2)
\quad \text{and} \quad
\phi_3(h) = (1 \; 2 \; 3).
\end{equation*}
%
Assume that $C_2 \prod C_3$ is a coproduct of $C_2$ and $C_3$ in $\catGrp$. Then there exists a homomorphism $\psi \colon C_2 \prod C_3 \to S_3$ such that $\phi_2 = \psi \circ \iota_2$ and $\phi_3 = \psi \circ \iota_3$. Since $C_2 \prod C_3$ is commutative, it follows that
%
\begin{equation*}
(1 \; 2) (1 \; 2 \; 3)
= \psi( \iota_2(g) \iota_3(h) )
= \psi( \iota_3(h) \iota_2(g) )
= (1 \; 2 \; 3) (1 \; 2).
\end{equation*}
%
But this is false, so $C_2 \prod C_3$ is not a coproduct of $C_2$ and $C_3$ in $\catGrp$.
\end{solution}
\begin{exerciseframed}[2.3.8]
Define a group $G$ with two generators $x,y$ subject (only) to the relations $x^2 = e_G$, $y^3 = e_G$. Prove that $G$ is a coproduct of $C_2$ and $C_3$ in $\catGrp$.
\end{exerciseframed}
\begin{solution}
Denote the generators of $C_2$ and $C_3$ by $g$ and $h$ respectively, and let $\phi_2 \colon C_2 \to H$ and $\phi_3 \colon C_3 \to H$ be homomorphisms into a group $H$. Define a map $\psi \colon G \to H$ by letting $\psi(x) = \phi_2(g)$ and $\psi(y) = \phi_3(h)$ and extending to all elements in $G$ by requiring that $\psi$ be a homomorphism. Then $\phi_2 = \psi \circ \iota_2$ and $\phi_3 = \psi \circ \iota_3$, and $\psi$ is clearly unique with this property, so $G$ is indeed a coproduct.
\end{solution}
\section{Group homomorphisms}
\begin{remarkbreak}[Cyclic groups]
We prove that a group $G$ is generated by a single element if and only if it is cyclic. The \enquote{if} part is clear, so assume that $G$ is generated by some element $g$ and consider the exponential map $\epsilon_g \colon \ints \to G$ given by $\epsilon_g(n) = g^n$. This is clearly a surjective group homomorphism, so if it is injective then $G \cong \ints$, and if it is trivial then $G \cong 1$.
Otherwise choose $m_1 < m_2$ such that $g^{m_1} = g^{m_2}$. Then $g^{m_2 - m_1} = e$, so let $m$ be the smallest positive integer such that $g^m = e$. It follows that the kernel of $\epsilon_g$ is $m\ints$, so in this case $G \cong \ints/m\ints$.
\end{remarkbreak}
\begin{exerciseframed}[2.4.1]
Check that the function $\pi_m^n$ defined in §4.1 is well-defined and makes the diagram commute. Verify that it is a group homomorphism. % Why is the hypothesis $m \mid n$ necessary?
\end{exerciseframed}
\begin{solution}
Recall that $\pi_m^n \colon \ints/n\ints \to \ints/m\ints$ is defined by $\pi_m^n([a]_n) = [a]_m$, assuming that $m \mid n$. To show that this is well-defined, let $a,b \in \ints$ with $a \equiv b \pmod n$. This means that $n \mid a - b$, and hence that $m \mid a - b$, i.e. that $a \equiv b \pmod m$. In other words, $[a]_n = [b]_n$ implies that $[a]_m = [b]_m$, and thus $\pi_m^n$ is well-defined. It is also obvious that the diagram
%
\begin{equation*}
\begin{tikzcd}
\ints
\ar[d, "\pi_n", swap]
\ar[dr, "\pi_m"] \\
\ints/n\ints
\ar[r, "\pi_m^n", swap]
& \ints/m\ints
\end{tikzcd}
\end{equation*}
%
commutes, since $\pi_n(a) = [a]_n$ and $\pi_m(a) = [a]_m$.
Finally we show that $\pi_m^n$ is a homomorphism. For $a,b \in \ints$ we have
%
\begin{align*}
\pi_m^n([a]_n + [b]_n)
&= \pi_m^n([a + b]_n)
= [a + b]_m
= [a]_m + [b]_m \\
&= \pi_m^n([a]_n) + \pi_m^n([b]_n)
\end{align*}
%
as desired.
\end{solution}
\begin{exerciseframed}[2.4.4]
Prove that no two of the groups $(\ints, +)$, $(\rationals, +)$, $(\reals, +)$ are isomorphic to one another. Can you decide whether $(\reals, +)$, $(\complex, +)$ \emph{are} isomorphic to one another?
\end{exerciseframed}
\begin{solution}
Firstly, $\reals$ is uncountable so cannot be isomorphic to $\ints$ or $\rationals$. Secondly, $\ints$ is cyclic but $\rationals$ is not: This follows since if $p \in \rationals^*$, then $p/2 \not\in \gen{p}$, and hence $p$ is not a generator of $\rationals$.
Next we claim that $\reals$ and $\complex$ are indeed isomorphic. Both $\reals$ and $\complex \cong \reals^2$ are $\rationals$-vector spaces, so let $\calB$ be a Hamel basis of $\reals$ (using the axiom of choice, not sure if the claim holds without it). Then
%
\begin{equation*}
\calC
= \set{(b,0)}{b \in \calB} \union \set{(0,b)}{b \in \calB}
\end{equation*}
%
is a Hamel basis of $\complex$. Again using the axiom of choice we have $\card{\calB} = \card{\calB \prod \calB}$, and since $\card{\calB} \leq \card{\calC} \leq \card{\calB \prod \calB}$, $\reals$ and $\complex$ are equidimensional as $\rationals$-vector spaces. They are thus isomorphic as vector spaces, and hence as abelian groups.
\end{solution}
\begin{exerciseframed}[2.4.8]
Let $G$ be a group, and let $g \in G$. Prove that the function $\gamma_g \colon G \to G$ defined by $\gamma_g(a) = gag\inv$ is an automorphism of $G$. (The automorphisms $\gamma_g$ are called \enquote{inner} automorphisms of $G$.) Prove that the function $G \to \Aut(G)$ defined by $g \mapsto \gamma_g$ is a homomorphism. Prove that this homomorphism is trivial if and only if $G$ is abelian.
\end{exerciseframed}
\begin{solution}
For $a,b \in G$ we have
%
\begin{equation*}
\gamma_g(ab)
= g(ab)g\inv
= (gag\inv)(gbg\inv)
= \gamma_g(a) \gamma_g(b),
\end{equation*}
%
so $\gamma_g$ is a homomorphism. It is obviously invertible with $\gamma_g\inv = \gamma_{g\inv}$, hence an isomorphism.
Now let also $h \in G$. Then
%
\begin{equation*}
(\gamma_{gh})(a)
= (gh)a(gh)\inv
= g(hah\inv)g\inv
= \gamma_g(hah\inv)
= (\gamma_g \circ \gamma_h)(a),
\end{equation*}
%
so $g \mapsto \gamma_g$ is a homomorphism.
\end{solution}
\begin{exerciseframed}[2.4.9]
Prove that if $m,n$ are positive integers such that $\gcd(m,n) = 1$, then $C_{mn} \cong C_m \prod C_n$.
\end{exerciseframed}
\begin{solution}
The map $\pi = (\pi_m^{mn}, \pi_n^{mn})$ is a group homomorphism, and since the sets $C_{mn}$ and $C_m \prod C_n$ have the same cardinality, it suffices to show that $\pi$ is injective. Using additive notation, if $\pi([a]_{mn}) = \pi([b]_{mn})$ then $[a]_m = [b]_m$, i.e. $m \mid a - b$. Similarly $n \mid a - b$, and since $\gcd(m,n) = 1$ we have $mn \mid a - b$. It follows that $[a]_{mn} = [b]_{mn}$ as desired.
In fact, it is easy to see that $\pi$ is a \emph{ring} homomorphism (hence isomorphism) between $\ints/mn\ints$ and $\ints/m\ints \prod \ints/n\ints$.
\end{solution}
\begin{exerciseframed}[2.4.10]
Let $p \neq q$ be odd prime integers; show that $(\ints/pq\ints)^*$ is not cyclic.
\end{exerciseframed}
\begin{solution}
If $R$ and $S$ are rings, then it is easy to see that $(R \prod S)^* \cong R^* \prod S^*$ as groups.\footnote{In fact, the functor $(-)^* \colon \catRing \to \catGrp$ given by $R \mapsto R^*$ is right adjoint to the functor sending a group $G$ to the group ring $\ints[G]$. There is a similar functor into the category of monoids mapping a ring to its underlying multiplicative monoid, and this is right adjoint to the functor $M \mapsto \ints[M]$.} In particular, \exref{2.4.9} implies that $(\ints/pq\ints)^*$ is isomorphic to $(\ints/p\ints)^* \prod (\ints/q\ints)^*$ and thus has order $(p-1)(q-1)$.
If $(a,b) \in (\ints/p\ints)^* \prod (\ints/q\ints)^*$ is a generator, then $\ord{a} = p-1$ and $\ord{b} = q-1$, so the order of $(a,b) = (a,1)(1,b)$ divides
%
\begin{equation*}
\lcm(\ord{(a,1)}, \ord{(1,b)})
= \lcm(\ord{a}, \ord{b})
= \frac{(p-1)(q-1)}{\gcd(p-1, q-1)}.
\end{equation*}
%
But $p-1$ and $q-1$ are both even, so this is strictly less than $(p-1)(q-1)$, so $(a,b)$ cannot be a generator, which is a contradiction. Hence $(\ints/p\ints)^* \prod (\ints/q\ints)^*$ is not cyclic.
\end{solution}
\begin{exerciseframed}[2.4.11]
In due time we will prove the easy fact that if $p$ is a prime integer, then the equation $x^d = 1$ can have at most $d$ solutions in $\ints/p\ints$. Assume this fact, and prove that the multiplicative group $(\ints/p\ints)^*$ is cyclic.
\end{exerciseframed}
\begin{solution}
Let $g \in G$ have maximal order. Then \exref{2.1.15} implies that $h^{\ord{g}} = 1$ for all $h \in G$. The equation $x^{\ord{g}} = 1$ thus has at least $p-1$ solutions, so $\ord{g} \geq p-1$.
\end{solution}
\begin{exerciseframed}[2.4.14]
Prove that the order of the group of automorphisms of a cyclic group $C_n$ is the number of positive integers $r < n$ that are relatively prime to $n$. (This is called \emph{Euler's $\phi$-function}; cf. \exref{2.6.14}.)
\end{exerciseframed}
\begin{solution}
We use additive notation. Let $\phi \in \Aut_\catGrp(\ints/n\ints)$ be an automorphism, and let $k \in \ints$. Then
%
\begin{equation*}
\phi([k])
= k \phi([1]),
\end{equation*}
%
so every automorphism (indeed every \emph{endo}morphism) is given by multiplication by some element $\phi([1])$. Next notice that since $\phi$ is injective, we must have $\phi([1]) \in (\ints/n\ints)^*$, otherwise we would have $\phi([k]) = [0]$ for some $k \neq 0$. Hence the map
%
\begin{align*}
\mu \colon (\ints/n\ints)^* &\to \Aut_\catGrp(\ints/n\ints), \\
k &\mapsto \mu_k,
\end{align*}
%
where $\mu_k$ is multiplication by $k$, is surjective if it is well-defined. But it is, since $\mu_k\inv = \mu_{k\inv}$. It is also clearly injective, which proves the desired claim.
In fact $\mu$ is a group homomorphism, since
%
\begin{equation*}
\mu_{k+l}(x)
= (k+l)x
= kx + lx
= \mu_k(x) + \mu_l(x),
\end{equation*}
%
hence a group isomorphism.
\end{solution}
\section{Free groups}
\begin{exerciseframed}[2.5.3]
Use the universal property of free groups to prove that the map $j \colon A \to F(A)$ is injective, for all sets $A$.
\end{exerciseframed}
\begin{solution}
This is obvious for sets with less than two elements, so assume that there are elements $a,b \in A$ with $a \neq b$. Define a set function $f \colon A \to \ints$ by letting $f(a) = 1$ and $f(x) = 0$ for $x \neq a$. By the universal property there exists a group homomorphism $\phi \colon F(A) \to \ints$ such that $f = \phi \circ j$. Then
%
\begin{equation*}
\phi(j(a))
= f(a)
\neq f(b)
= \phi(j(b)),
\end{equation*}
%
so we must have $j(a) \neq j(b)$, and thus $j$ is injective.
\end{solution}
\begin{exerciseframed}[2.5.8]
Prove that $F(A \coprod B) = F(A) * F(B)$ for all sets $A,B$.
\end{exerciseframed}
\begin{solution}
Given homomorphisms $\phi_A \colon F(A) \to G$ and $\phi_B \colon F(B) \to G$ into a group $G$, we must prove the existence and uniqueness of a homomorphism $\psi \colon F(A \coprod B) \to G$ such that the diagram
%
\begin{equation*}
\begin{tikzcd}
F(A)
\ar[dr, "k_A"]
\ar[drr, "\phi_A", bend left] \\
& F(A \coprod B)
\ar[r, "\psi", dashed]
& G \\
F(B)
\ar[ur, "k_B", swap]
\ar[urr, "\phi_B", bend right, swap]
\end{tikzcd}
\end{equation*}
%
commutes, for suitable definitions of $k_A$ and $k_B$. Denoting the injection from $A$ into $F(A)$ by $j_A$, we let $f_A = \phi_A \circ j_A$, and we define $f_B$ analogously. The universal property for coproducts in $\catSet$ yields a unique set function $f \colon A \coprod B \to G$ making the diagram
%
\begin{equation*}
\begin{tikzcd}
A
\ar[dr, "i_A"]
\ar[drr, "f_A", bend left] \\
& A \coprod B
\ar[r, "f", dashed]
& G \\
B
\ar[ur, "i_B", swap]
\ar[urr, "f_B", bend right, swap]
\end{tikzcd}
\end{equation*}
%
commute. The universal property for free groups then yields a unique homomorphism $\psi \colon F(A \coprod B) \to G$ such that
%
\begin{equation*}
\begin{tikzcd}
F(A \coprod B)
\ar[r, "\psi", dashed]
& G \\
A \coprod B
\ar[u, "j"]
\ar[ur, "f", swap]
\end{tikzcd}
\end{equation*}
%
commutes. Choose $k_A$ to be the unique homomorphism such that $k_A \circ j_A = j \circ i_A$. Then we have
%
\begin{equation*}
\phi_A \circ j_A
= f_A
= f \circ i_A
= \psi \circ j \circ i_A
= \psi \circ k_A \circ j_A,
\end{equation*}
%
and since $j_A$ is injective by \exref{2.5.3} it follows that $\psi_A = \psi \circ k_A$ as desired.
It remains to be shown that $\psi$ is unique with this property. But any such homomorphism making the first diagram commutes would induce arrows such that the other diagrams also commute, hence induce the same unique arrow $\psi$ in the final diagram. Hence $\psi$ is unique which proves the claim.
\end{solution}
\begin{exerciseframed}[2.5.10]
Let $F = F^\ab(A)$.
%
\begin{enumerate}
\item Define an equivalence relation $\sim$ on $F$ by setting $f' \sim f$ if and only if $f - f' = 2g$ for some $g \in F$. Prove that $F/{\sim}$ is a finite set if and only if $A$ is finite, and in that case $\card{F/{\sim}} = 2^{\card{A}}$.
\item Assume $F^\ab(B) \cong F^\ab(A)$. If $A$ is finite, prove that $B$ is also, and that $A \cong B$ as sets.
\end{enumerate}
\end{exerciseframed}
\begin{solution}
\begin{solutionsec}
\item Writing $f = \sum_{a \in A} m_a j(a)$ and $f' = \sum_{a \in A} m'_a j(a)$ in the notation of §5.4, we find that
%
\begin{equation*}
2g
= f - f'
= \sum_{a \in A} (m_a - m'_a) j(a)
\end{equation*}
%
for some $g \in F$ if and only if $m_a \equiv m'_a \pmod 2$ for all $a \in A$. That is, the $\sim$-equivalence classes are determined by a choice of sign for each coefficient $m_a$. If $A$ is finite there are finitely many such choices, namely $2^{\card{A}}$. Conversely, it is clear that there are at least as many choices as elements in $A$, so $\card{F/{\sim}} \geq \card{A}$. Thus $F/{\sim}$ is finite if and only if $A$ is.
\item Let $\phi \colon F^\ab(A) \to F^\ab(B)$ be an isomorphism. Let $\sim_A$ and $\sim_B$ denote the above equivalence relations on $F^\ab(A)$ and $F^\ab(B)$ respectively, and notice that $f \sim_A f'$ if and only if $\phi(f) \sim_B \phi(f')$. Thus the number of $\sim_A$- and $\sim_B$-equivalence classes agree, so (a) implies that $A$ is finite if and only if $B$ is finite. In this case we have
%
\begin{equation*}
2^{\card{A}}
= \card{F^\ab(A)/{\sim_A}}
= \card{F^\ab(B)/{\sim_B}}
= 2^{\card{B}}.
\end{equation*}
%
It follows that $\card{A} = \card{B}$, and thus that $A \cong B$ as sets.
\end{solutionsec}
\end{solution}
\section{Subgroups}
\begin{remark}
We restate Proposition~6.6 in more explicitly categorical language: Let $\phi \colon G \to G'$ be a homomorphism. The inclusion $i \colon \ker\phi \to G$ is an equaliser of $\phi$ and the trivial map $e \colon G \to G'$. In other words, for any group homomorphism $\alpha \colon K \to G$ such that $\phi \circ \alpha = e \circ \alpha$ there is a unique homomorphism $\overline\alpha \colon K \to \ker\phi$ such that the following diagram commutes:
%
\begin{equation*}
\begin{tikzcd}[row sep=tiny]
K
\ar[dr, "\alpha"]
\ar[dd, "\overline\alpha", swap, dashed]
\\
& G
\ar[r, "\phi", shift left]
\ar[r, "e", shift right, swap]
& G'
\\
\ker\phi
\ar[ur, "i", swap, hook]
\end{tikzcd}
\end{equation*}
%