-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathclassify.html
37 lines (36 loc) · 1.88 KB
/
classify.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>MXNetJS: Deep Learning Classification on Browser</title>
<link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
<script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>
<script src="libmxnet_predict.js"></script>
<script src="mxnet_predict.js"></script>
<script src="classify_image.js"></script>
</head>
<body>
<h1>MXNetJS: Deep Learning Classification on Browser</h1>
Image URL<input name="imageurl" id="imageURL" type="text"><br>
Max output <input id="max-output" value="5"></br>
<button onclick="start()">Classify the Image</button>
<p> Because of crossOrigin restriction, not all URL works!</p>
<p> Contribution is more than welcomed</p>
<p> Sample url: <a href="https://raw.githubusercontent.com/dmlc/mxnet.js/master/data/cat.png">https://raw.githubusercontent.com/dmlc/mxnet.js/master/data/cat.png </a></p>
<p> We are using a model called "fast poor",the performance is near AlexNet, but model size is only 7.6MB in JSON format</p>
<p> Interestingly, Microsoft Edge and Firefox's performance is 8X better than Chrome (0.6-0.8 vs 6-8 second). </p>
<p> MXNet Code: <a href="https://github.com/dmlc/mxnet"> https://github.com/dmlc/mxnet </a> </p>
<p> MXNet.js Code: <a href="https://github.com/dmlc/mxnet.js"> https://github.com/dmlc/mxnet.js </a> </p>
<div class="progress">
<div id="myProgress", class="progress-bar" role="progressbar" aria-valuenow="0"
aria-valuemin="0" aria-valuemax="100" style="width:0%">
</div>
</div>
<div id="image">
<canvas id="myCanvas" width="224" height="224"></canvas>
</div>
<div id="result"></div>
</body>
</html>