-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapply_model.py
241 lines (207 loc) · 8.51 KB
/
apply_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import argparse
from pathlib import Path
from datetime import datetime
from socket import gethostname
import h5py
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader, DistributedSampler
from torchvision import transforms
import torch.distributed as dist
from network.models.generators import PatchUNet
from network.models.discriminators import PatchDiscriminator
from network.models.gans import MaskedGAN
from simulator.generate_mask import append_npz
from utils.tomography import TomoH5
from utils.misc import toNumpy, Rescale
class H5Dataset(Dataset):
def __init__(self, h5_file, mask_file, flat_file=None, transform=None):
self.h5 = TomoH5(h5_file)
if flat_file is not None:
flat_h5 = TomoH5(flat_file)
self.flats = flat_h5.get_flats()
self.darks = flat_h5.get_darks()
else:
self.flats = self.h5.get_flats()
self.darks = self.h5.get_darks()
self.tomo = self.h5.get_normalized(np.s_[:], self.flats, self.darks, ncore=16)
self.mask = np.load(mask_file)[f'm{h5_file.stem}']
self.patch_size = (1801, 256)
self.patch_h = self.patch_size[0]
self.patch_w = self.patch_size[1]
self.transform = transform
def item_to_idx(self, item):
sino_idx = item // 10
patch_idx = item % 10
return np.s_[:, sino_idx,
patch_idx * self.patch_w:(patch_idx + 1) * self.patch_w]
def __len__(self):
return self.h5.shape[1] * 10
def __getitem__(self, item):
idx = self.item_to_idx(item)
stripe = self.tomo[idx]
mask = self.mask[idx]
if self.transform is not None:
stripe = self.transform(stripe)
mask = torch.Tensor(mask).unsqueeze(0)
# assert stripe.shape == mask.shape == (1, 1801, 256)
inpt = torch.cat((stripe, mask), dim=-3)
# assert inpt.shape == (2, 1801, 256)
target = torch.empty_like(stripe) # target is not needed
return inpt, target, item
def load_model(path, device=None, ddp=False):
# Initialize Empty Model
model = MaskedGAN(PatchUNet(), PatchDiscriminator(),
mode='test', device=device, ddp=ddp)
# Load model state dict from disk
checkpoint = torch.load(path, map_location=device)
# Initialize Generator and Discriminator
gsd = {}
for k, v in checkpoint['gen_state_dict'].items():
if ddp:
gsd[f'module.{k}'] = v
else:
gsd[k] = v
dsd = {}
for k, v in checkpoint['disc_state_dict'].items():
if ddp:
dsd[f'module.{k}'] = v
else:
dsd[k] = v
model.gen.load_state_dict(gsd)
model.disc.load_state_dict(dsd)
return model
def save_output(data, save_dir, file_name=None):
ext = Path(save_dir).suffix
if file_name is None:
file_name = f'test_{datetime.now().strftime("%d-%m-%Y_%H:%M")}'
if ext in ['.h5', '.hdf5', '.hdf', '.nxs']:
with h5py.File(save_dir, 'a') as f:
f.create_dataset(file_name, data=data, chunks=(1801, 1, 2560))
elif ext == '.npz':
append_npz(save_dir, file_name, data)
else:
raise ValueError(f"Unsupported file extension: '{ext}'")
def _run_model(model, dataloader, save_dir, rank=0):
# Apply model
if rank == 0:
print(f"Applying Model ({len(dataloader)} Batches)...", flush=True)
start = datetime.now()
model_out = torch.zeros(1801, 2160, 2560, dtype=torch.float32)
for i, (inpt, target, item) in enumerate(dataloader):
# Run model on batch
model.preprocess(inpt, target)
model.run_passes()
# if ddp, sync output batches across processes
if dist.is_initialized():
all_outputs = torch.empty(
model.fakeB.shape[0] * dist.get_world_size(),
*model.fakeB.shape[1:], dtype=torch.float32).cuda()
dist.all_gather_into_tensor(all_outputs, model.fakeB)
all_outputs.cpu()
all_items = torch.empty(
item.shape[0] * dist.get_world_size(),
*item.shape[1:], dtype=item.dtype).cuda()
dist.all_gather_into_tensor(all_items, item.cuda())
all_items.cpu()
else:
all_outputs = model.fakeB
all_items = item
# Append batch to final array
for p in range(len(all_items)):
idx = dataloader.dataset.item_to_idx(all_items[p])
model_out[idx] = all_outputs[p].detach()
if i % 10 == 0 and rank == 0:
print(f"\tBatch [{i + 1}/{len(dataloader)}]", flush=True)
if rank == 0:
print(f"Finished in {datetime.now() - start}\n", flush=True)
# Save Model Output
if rank == 0:
print("Saving Output...", flush=True)
start = datetime.now()
save_output(toNumpy(model_out), save_dir)
print(f"Done in {datetime.now() - start}\n", flush=True)
def init_ddp():
world_size = int(os.environ["WORLD_SIZE"])
rank = int(os.environ["SLURM_PROCID"])
gpus_per_node = int(os.environ["SLURM_GPUS_ON_NODE"])
assert gpus_per_node == torch.cuda.device_count()
print(f"Rank {rank} of {world_size} on {gethostname()} "
f"{gpus_per_node} allocated GPUs per node.", flush=True)
print('Group initialization')
dist.init_process_group("nccl", rank=rank, world_size=world_size)
if rank == 0:
print(f"Group initialized: {dist.is_initialized()}", flush=True)
else:
print(f'Group initilized from rank {rank}')
local_rank = torch.distributed.get_rank()
print(f"host: {gethostname()}, rank: {rank}, local_rank: {local_rank}")
return world_size, rank
def load_dataset(data_dir, mask_file=None, ddp=False, world_size=0, rank=0):
transform = transforms.Compose([
transforms.ToTensor(),
Rescale(a=-1, b=1, imin=0, imax=1)
])
dataset = H5Dataset(data_dir, mask_file, transform=transform)
if ddp:
sampler = DistributedSampler(dataset, num_replicas=world_size,
rank=rank, shuffle=False)
dataloader = DataLoader(dataset, batch_size=10, sampler=sampler,
num_workers=int(
os.environ["SLURM_CPUS_PER_TASK"]))
else:
dataloader = DataLoader(dataset, batch_size=10, shuffle=False,
num_workers=10)
return dataloader
def apply_model(model_file, data_dir, save_dir, mask_file=None, device=None,
ddp=False):
# Initialise multi-node, multi-GPU training
if ddp:
world_size, rank = init_ddp()
else:
world_size = rank = 0
# Load Dataset
print("Loading Dataset...", flush=True)
start = datetime.now()
dataloader = load_dataset(data_dir, mask_file, ddp, world_size, rank)
print(f"Done in {datetime.now() - start}\n", flush=True)
# Load GAN
print("\nLoading GAN...", flush=True)
start = datetime.now()
gan = load_model(model_file, device, ddp)
print(f"Done in {datetime.now() - start}\n", flush=True)
# Run model & save output
_run_model(gan, dataloader, save_dir, rank)
if ddp:
dist.destroy_process_group()
def get_args():
parser = argparse.ArgumentParser(description="Generate a stripe mask.")
parser.add_argument("model", type=str,
help="Checkpoint file of model to use.")
parser.add_argument("h5", type=str,
help="HDF5 or Nexus file containing raw tomographic "
"data to apply model to.")
parser.add_argument("--flats", type=str, default=None,
help="HDF5 or Nexus file containing flats and darks.")
parser.add_argument('-m', "--mask", type=str, default=None,
help="Path to archive file containg mask.")
parser.add_argument('-o', "--out", type=str, default=None,
help="File to save output to. Can be HDF5 or NPZ.")
parser.add_argument("--ddp", action="store_true",
help="Use multiple nodes and multiple GPUs")
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
model_path = Path(args.model)
data_path = Path(args.h5)
mask_path = Path(args.mask)
save_path = Path(args.out)
multi_node = args.ddp
# Use GPU if available
if torch.cuda.is_available():
d = torch.device('cuda')
else:
d = torch.device('cpu')
apply_model(model_path, data_path, save_path, mask_file=mask_path,
device=d, ddp=multi_node)