-
Notifications
You must be signed in to change notification settings - Fork 0
/
solution.py
274 lines (231 loc) · 9.27 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from utils import *
import copy
import itertools
rows = 'ABCDEFGHI'
cols = '123456789'
history = []
def cross(A, B):
"Cross product of elements in A and elements in B."
return [s+t for s in A for t in B]
boxes = [r + c for r in rows for c in cols]
row_units = [cross(r, cols) for r in rows]
column_units = [cross(rows, c) for c in cols]
square_units = [cross(rs, cs) for rs in ('ABC','DEF','GHI') for cs in ('123','456','789')]
unitlist = row_units + column_units + square_units
diagonal_units=[[s+t for s,t in zip(rows,cols)],[s+t for s,t in zip(rows,cols[::-1])]]
# TODO: Update the unit list to add the new diagonal units
unitlist = unitlist + diagonal_units
# Must be called after all units (including diagonals) are added to the unitlist
units = dict((s, [u for u in unitlist if s in u]) for s in boxes)
peers = dict((s, set(sum(units[s],[]))-set([s]))for s in boxes)
def assign_value(values, box, value):
"""You must use this function to update your values dictionary if you want to
try using the provided visualization tool. This function records each assignment
(in order) for later reconstruction.
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict
The values dictionary with the naked twins eliminated from peers
"""
# Don't waste memory appending actions that don't actually change any values
if values[box] == value:
return values
values[box] = value
if len(value) == 1:
history.append(values.copy())
return values
def naked_twins(values):
"""Eliminate values using the naked twins strategy.
The naked twins strategy says that if you have two or more unallocated boxes
in a unit and there are only two digits that can go in those two boxes, then
those two digits can be eliminated from the possible assignments of all other
boxes in the same unit.
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict
The values dictionary with the naked twins eliminated from peers
Notes
-----
Your solution can either process all pairs of naked twins from the input once,
or it can continue processing pairs of naked twins until there are no such
pairs remaining -- the project assistant test suite will accept either
convention. However, it will not accept code that does not process all pairs
of naked twins from the original input. (For example, if you start processing
pairs of twins and eliminate another pair of twins before the second pair
is processed then your code will fail the PA test suite.)
The first convention is preferred for consistency with the other strategies,
and because it is simpler (since the reduce_puzzle function already calls this
strategy repeatedly).
See Also
--------
Pseudocode for this algorithm on github:
https://github.com/udacity/artificial-intelligence/blob/master/Projects/1_Sudoku/pseudocode.md
"""
# TODO: Implement this function!
# First we find those boxes that have only 2 options that could possibly be used to fill it
for unit in unitlist:
twooptionboxes = [box for box in unit if len(values[box])==2]
# then we pair up the boxes to make multiple possible combinations
possibletwins = [list(pair) for pair in itertools.combinations(twooptionboxes,2)]
# Now finding the naked twins
for pair in possibletwins:
if values[pair[0]] == values[pair[1]]:
# Eliminating the naked twins from values
for box in unit:
if box!= pair[0] and box!= pair[1]:
for digit in values[pair[0]]:
values[box] = values[box].replace(digit,'')
return values
raise NotImplementedError
def grid_values(grid):
"""
Convert grid into a dict of {square: char} with '123456789' for empties.
Args:
grid(string) - A grid in string form.
Returns:
A grid in dictionary form
Keys: The boxes, e.g., 'A1'
Values: The value in each box, e.g., '8'. If the box has no value, then the value will be '123456789'.
"""
chars = []
digits = '123456789'
for c in grid:
if c in digits:
chars.append(c)
if c == '.':
chars.append(digits)
assert len(chars) == 81
return dict(zip(boxes, chars))
def display(values):
"""
Display the values as a 2-D grid.
Args:
values(dict): The sudoku in dictionary form
"""
width = 1+max(len(values[s]) for s in boxes)
line = '+'.join(['-'*(width*3)]*3)
for r in rows:
print(''.join(values[r+c].center(width)+('|' if c in '36' else '')
for c in cols))
if r in 'CF': print(line)
return
def eliminate(values):
"""Apply the eliminate strategy to a Sudoku puzzle
The eliminate strategy says that if a box has a value assigned, then none
of the peers of that box can have the same value.
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict
The values dictionary with the assigned values eliminated from peers
"""
# TODO: Copy your code from the classroom to complete this function
solved_values = [box for box in values.keys() if len(values[box]) == 1]
for box in solved_values:
digit = values[box]
if len(digit) == 1:
for peer in peers[box]:
values = assign_value(values,peer,values[peer].replace(digit, ''))
return values
def only_choice(values):
"""Apply the only choice strategy to a Sudoku puzzle
The only choice strategy says that if only one box in a unit allows a certain
digit, then that box must be assigned that digit.
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict
The values dictionary with all single-valued boxes assigned
Notes
-----
You should be able to complete this function by copying your code from the classroom
"""
# TODO: Copy your code from the classroom to complete this function
for unit in unitlist:
for digit in '123456789':
dplaces = [box for box in unit if digit in values[box]]
if len(dplaces) == 1:
values[dplaces[0]] = digit
return values
def reduce_puzzle(values):
"""Reduce a Sudoku puzzle by repeatedly applying all constraint strategies
Parameters
----------
values(dict)
a dictionary of the form {'box_name': '123456789', ...}
Returns
-------
dict or False
The values dictionary after continued application of the constraint strategies
no longer produces any changes, or False if the puzzle is unsolvable
"""
# TODO: Copy your code from the classroom and modify it to complete this function
solved_values = [box for box in values.keys() if len(values[box]) == 1]
stalled = False
while not stalled:
solved_values_before = len([box for box in values.keys() if len(values[box]) == 1])
# Using Eliminate strategy
values = eliminate(values)
# Using only choice strategy
values = only_choice(values)
values = naked_twins(values)
solved_values_after = len([box for box in values.keys() if len(values[box]) == 1])
stalled = solved_values_before == solved_values_after
if len([box for box in values.keys() if len(values[box]) == 0]):
return False
return values
def search(values):
values = reduce_puzzle(values)
if values is False:
return False ## Failed earlier
if all(len(values[s]) == 1 for s in boxes):
return values ## Solved!
# Choose one of the unfilled squares with the fewest possibilities
n,s = min((len(values[s]), s) for s in boxes if len(values[s]) > 1)
# Now use recurrence to solve each one of the resulting sudokus, and
for value in values[s]:
new_sudoku = values.copy()
new_sudoku[s] = value
attempt = search(new_sudoku)
if attempt:
return attempt
def solve(grid):
"""Find the solution to a Sudoku puzzle using search and constraint propagation
Parameters
----------
grid(string)
a string representing a sudoku grid.
Ex. '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
Returns
-------
dict or False
The dictionary representation of the final sudoku grid or False if no solution exists.
"""
values = grid_values(grid)
values = search(values)
return values
# below code from http://www.analyzingdata.org/portfolio/300-sudoku/
if __name__ == '__main__':
diag_sudoku_grid = '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
display(solve(diag_sudoku_grid))
try:
from visualize import visualize_assignments
visualize_assignments(assignments)
except SystemExit:
pass
except:
print('We could not visualize your board due to a pygame issue. Not a problem! It is not a requirement.')