-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpointer_decoder.py
353 lines (290 loc) · 14.9 KB
/
pointer_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import tqdm
from heapq import heappush, heappop
class BeamSearchNode(object):
def __init__(self,
hidden_state,
prev_node,
token_id,
log_p,
length,
attn_buffer=None):
if attn_buffer is None:
attn_buffer = []
self.hidden_state = hidden_state
self.prev_node = prev_node
self.token_id = token_id
self.log_p = log_p
self.length = length
self.attn_buffer = attn_buffer
def eval(self):
return self.log_p / float(self.length - 1 + 1e-6)
class PointerDecoder(nn.Module):
def __init__(self,
vocab_size,
embedding_layer,
embedding_dim,
hidden_size,
n_layers,
dropout,
device):
super().__init__()
self.vocab_size = vocab_size
self.embedding_layer = embedding_layer
self.attn = BahdanauAttention(key_dim=hidden_size * 2,
query_dim=hidden_size * 2,
hidden_dim=hidden_size)
self.lstm = nn.GRU(input_size=embedding_dim,
hidden_size=hidden_size * 2,
num_layers=1, # n_layers,
dropout=0, # dropout if n_layers > 1 else 0,
bidirectional=False,
batch_first=True)
self.dropout = nn.Dropout(dropout)
self.Wo = nn.Linear(in_features=hidden_size * 2 + hidden_size * 2,
out_features=vocab_size)
self.We = nn.Linear(in_features=hidden_size * 2,
out_features=hidden_size * 2)
self.Wc = nn.Linear(in_features=hidden_size * 2,
out_features=1)
self.Ws = nn.Linear(in_features=hidden_size * 2,
out_features=1)
self.Wx = nn.Linear(in_features=embedding_dim,
out_features=1)
self.Wg = nn.Linear(in_features=hidden_size * 2 + hidden_size * 2 + embedding_dim,
out_features=1)
self.device = device
def one_step_forward(self,
encoder_outputs,
decoder_input,
coverage,
previous_decoder_hidden_state,
extended_source_ids,
len_src_oovs):
"""Run one step"""
batch_size = encoder_outputs.size(0)
input_embedded = self.dropout(self.embedding_layer(decoder_input))
# 1. update decoder hidden state first based on input and previous hidden state
decoder_output, decoder_hidden_state = self.lstm(input_embedded, previous_decoder_hidden_state)
# print(decoder_output.shape)
# 2.compute context vector and attn scores based on encoder output and last hidden state
# use decoder_output as query to compute context vector
# last_decoder_hidden_state = decoder_hidden_state.permute(1, 0, 2)
# last_decoder_hidden_state = decoder_hidden_state[0][-1, :, :].unsqueeze(0).permute(1, 0, 2)
last_decoder_hidden_state = decoder_hidden_state[-1].unsqueeze(0).permute(1, 0, 2)
context_vec, att_scores = self.attn(encoder_outputs,
last_decoder_hidden_state,
coverage,
extended_source_ids)
# 3. compute p_vocab based on last decoder hidden state and context vec
context_vec = context_vec.squeeze(1)
p_vocab = F.softmax(self.Wo(torch.cat([decoder_output.squeeze(1),
context_vec],
dim=-1)),
dim=-1)
# 4. compute probability of generating token from vocab
p_gen = F.sigmoid(self.Wc(context_vec) +
self.Ws(last_decoder_hidden_state.squeeze(1)) +
self.Wx(input_embedded).squeeze(1))
# 5. compute final probs by combining attention scores with p_vocab
max_num_src_oov = max(len_src_oovs)
p_copy = torch.zeros((batch_size, self.vocab_size + max_num_src_oov + 1),
dtype=torch.float,
device=self.device)
# projecting the attn score into the final probs
att_scores = att_scores.squeeze(1)
p_copy = p_copy.scatter_reduce_(1,
extended_source_ids.clip(0, p_copy.size(1) - 1),
att_scores,
reduce='amax')[:, :-1]
# print(p_gen)
# extend the p_vocab vector
p_extended_vocab = torch.zeros_like(p_copy, device=self.device)
p_extended_vocab[:, :p_vocab.size(1)] = p_vocab
p_final = p_gen * p_extended_vocab + (1 - p_gen) * p_copy
# apply log function
p_final = torch.log(p_final + 1e-9)
return p_final.unsqueeze(1), att_scores, decoder_hidden_state, p_gen
@staticmethod
def compute_coverage(attn_scores):
if len(attn_scores) == 0:
return None
return torch.sum(torch.cat(attn_scores, dim=1), dim=1)
# attn_scores = torch.cat(attn_scores, dim =1)
# batch_size = attn_scores.size(0)
#
# attn_scores = attn_scores.view(-1, attn_scores.size(-1))
# _, max_attn_indices = torch.max(attn_scores, dim=-1)
#
# mask = torch.nn.functional.one_hot(max_attn_indices, attn_scores.size(-1))
# coverage = mask*attn_scores # batch_size*time_step, source_len
# coverage = coverage.view(batch_size, -1, coverage.size(-1)) # batch_Sze, timestep, src_len
#
# max_attn_coverage = torch.sum(coverage, dim=1) # batch_sizee, timestep
# # print(coverage.shape)
# # print(coverage)
# coverage = torch.sum(attn_scores.view(batch_size, -1, attn_scores.size(-1)), dim=1)
# return max_attn_coverage, coverage
# print(max_attn_indices.shape)
# return torch.sum(torch.cat(attn_scores, dim=1), dim=1)
# coverage = torch.cat(attn_scores, dim=1)
# coverage = torch.sum(coverage, dim=1)
# _, indices = attn_scores.max(dim=-1)
# torch.nn.functional.one_hot(indices, n)
# return coverage
def forward(self,
extended_source_ids,
encoder_outputs,
len_src_oovs,
encoder_hidden_state,
sos_id,
unk_id,
max_len,
dec_inp_ids=None,
use_coverage=True):
batch_size = encoder_outputs.size(0)
decoder_hidden_state = encoder_hidden_state
decoder_input = torch.empty(batch_size, 1, dtype=torch.long, device=self.device).fill_(sos_id)
p_finals = []
cov_losses = []
attn_scores_buffer = []
# coverage = torch.zeros(batch_size, encoder_outputs.size(1), device=device)
coverage = None
max_attn_coverage = None
p_gen_buffer = []
if dec_inp_ids is not None:
max_len = dec_inp_ids.shape[1]
for i in range(max_len):
p_final, attn_scores, decoder_hidden_state, p_gen = self.one_step_forward(encoder_outputs=encoder_outputs,
decoder_input=decoder_input,
coverage=coverage,
previous_decoder_hidden_state=decoder_hidden_state,
extended_source_ids=extended_source_ids,
len_src_oovs=len_src_oovs)
p_finals.append(p_final)
p_gen_buffer.append(p_gen)
p_teacher_forcing = 1 # random.random()
if dec_inp_ids is not None: # and p_teacher_forcing > 0.2: # 0.8 chance of doing teacher forcing
decoder_input = dec_inp_ids[:, i].unsqueeze(1)
else: # inference mode
_, topi = p_final.topk(1, largest=True, dim=-1)
decoder_input = topi.detach().squeeze(1) # [batch_size, 1]
# as some ids might be temporary ids from source ids. these id must be converted to unk ids
decoder_input[decoder_input >= self.vocab_size] = unk_id
if len(attn_scores_buffer) > 0:
coverage = self.compute_coverage(attn_scores_buffer)
if max_attn_coverage is not None:
cov_loss = torch.min(max_attn_coverage, attn_scores)
cov_loss = torch.sum(cov_loss, dim=-1)
cov_losses.append(cov_loss)
attn_scores_buffer.append(attn_scores.unsqueeze(1))
p_gen_buffer = torch.stack(p_gen_buffer)
p_gen_buffer = p_gen_buffer.view(-1)
p_finals = torch.cat(p_finals, dim=1)
if cov_losses:
cov_losses = torch.cat(cov_losses)
return p_finals, cov_losses, p_gen_buffer
def beam_decode(self,
extended_source_ids,
encoder_outputs,
len_src_oovs,
encoder_hidden_state,
sos_id,
unk_id,
eos_id,
max_len,
topk=3,
use_coverage=True):
batch_output_sequences = []
batch_size = encoder_outputs.size(0)
for i in range(batch_size):
# assign last encoder hidden state to decoder hidden state
decoder_hidden_state = encoder_hidden_state[:, i, :].unsqueeze(0)
encoder_output = encoder_outputs[i, :, :].unsqueeze(0)
# starting node
start_node = BeamSearchNode(hidden_state=decoder_hidden_state,
prev_node=None,
token_id=sos_id,
log_p=0,
length=1)
nodes = []
end_nodes = []
# start the queue
heappush(nodes, (-start_node.eval(), id(start_node), start_node))
# heappush(step_t_nodes, (-start_node.eval(), id(start_node), start_node))
# a flag to know when already get enough top k sequences
flag = False
step = 0
# give up when decoding takes too long
while step < 300:
step_t_nodes = []
# renew end_nodes because the current end nodes are in nodes
end_nodes = []
while len(nodes) != 0:
# fetch the best node
score, _, current_node = heappop(nodes)
token_id = current_node.token_id
if token_id >= self.vocab_size:
token_id = unk_id
decoder_input = torch.tensor([token_id], dtype=torch.long, device=self.device).unsqueeze(0)
decoder_hidden_state = current_node.hidden_state
attn_buffer = current_node.attn_buffer
if current_node.token_id == eos_id and current_node.prev_node is not None: # reach eos token
end_nodes.append((score, id(current_node), current_node))
# if we reach maximum # of sequences required
if len(end_nodes) >= topk:
flag = True
break
else:
continue
# decode one step using decoder
coverage = self.compute_coverage(attn_buffer)
p_final, att_scores, decoder_hidden_state, p_gen = self.one_step_forward(
encoder_outputs=encoder_output,
decoder_input=decoder_input,
previous_decoder_hidden_state=decoder_hidden_state,
extended_source_ids=extended_source_ids[i, :].unsqueeze(0),
len_src_oovs=[len_src_oovs[i]],
coverage=coverage,
)
attn_buffer.append(att_scores.unsqueeze(1))
# compute next topk tokens
topk_log_p, topk_indices = p_final.topk(topk)
topk_log_p = topk_log_p.flatten().cpu().numpy()
topk_indices = topk_indices.flatten().cpu().numpy()
for k in range(topk):
node = BeamSearchNode(hidden_state=copy.copy(decoder_hidden_state),
prev_node=current_node,
token_id=topk_indices[k],
log_p=topk_log_p[k] + current_node.log_p,
length=current_node.length + 1,
attn_buffer=copy.copy(attn_buffer))
# heappush(nodes, (-node.eval(), id(node), node))
heappush(step_t_nodes, (-node.eval(), id(node), node))
if flag:
break
# extend current end nodes to compare scores
if len(end_nodes) > 0:
step_t_nodes.extend(end_nodes)
# sort by score of top nodes at step t. nodes always contains end nodes (if have any).
# e.g if nodes contains one end node which is <eos> then in the next while loop,
# it only runs forward to find topk - 1 end nodes (save more running time).
nodes = sorted(step_t_nodes, key=lambda x: x[0])[:topk]
step += 1
# Node: all the end nodes always in nodes after sort and get top k
# Because: A < A + positive numer (notice -node.eval())
# if len(end_nodes) == 0:
# # end_nodes = [heappop(nodes) for _ in range(topk)]
# end_nodes = nodes
if len(end_nodes) < topk:
end_nodes = nodes
# here I only return top 1 sequence,
# remove the break and use a buffer to save top k output sequences of each input sequence
for score, _id, node in sorted(end_nodes, key=lambda x: x[0]):
sequence = [node.token_id]
while node.prev_node is not None:
node = node.prev_node
sequence.append(node.token_id)
sequence = sequence[::-1] # reverse
batch_output_sequences.append(sequence)
break
return batch_output_sequences