Skip to content

Commit bae5267

Browse files
authored
Update 20240826_01.md
1 parent 6a9429d commit bae5267

File tree

1 file changed

+12
-3
lines changed

1 file changed

+12
-3
lines changed

202408/20240826_01.md

Lines changed: 12 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -62,6 +62,7 @@ curl http://localhost:11434/api/chat -d '{
6262

6363
因为用户让使用英文回复, 所以忽略了system的设定, 使用了英文.
6464

65+
回复:
6566
```
6667
{"model":"llama3.1:8b","created_at":"2024-08-26T04:24:05.428411Z","message":{"role":"assistant","content":"I see you'd like to know about indexing in PostgreSQL for fuzzy queries!\n\nIn PostgreSQL, when it comes to fuzzy queries (e.g., `ILIKE`, `SIMILAR TO`), the choice of index depends on the specific query pattern and the data distribution.\n\n**1. GIN Index**\n\nThe Generalized Inverted Index (GIN) is a good choice for fuzzy queries that use regular expressions or similarity operators like `SIMILAR TO`. You can create a GIN index on a column using the following syntax:\n```sql\nCREATE INDEX idx_fuzzy ON table_name USING GIST (column_name gin_trgm_ops);\n```\nThe `gin_trgm_ops` operator class is specifically designed for fuzzy matching and uses a variation of the GIN algorithm to efficiently search for matching strings.\n\n**Example:**\n```sql\nCREATE TABLE fuzzy_example (\n id SERIAL PRIMARY KEY,\n name VARCHAR(50)\n);\n\nINSERT INTO fuzzy_example (name) VALUES ('John Doe'), ('Jane Smith');\n\nCREATE INDEX idx_fuzzy ON fuzzy_example USING GIST (name gin_trgm_ops);\n\nSELECT * FROM fuzzy_example WHERE name SIMILAR TO 'Jo%';\n```\n**2. GiST Index**\n\nA Generalized Search Tree (GiST) index is another good option for fuzzy queries, especially when you have a large number of unique values in the column. You can create a GiST index on a column using the following syntax:\n```sql\nCREATE INDEX idx_fuzzy_gist ON table_name USING GIST (column_name);\n```\nNote that GiST indexes are more general-purpose and not specifically designed for fuzzy matching, so they might be slower than GIN indexes for certain queries.\n\n**Example:**\n```sql\nCREATE TABLE fuzzy_example (\n id SERIAL PRIMARY KEY,\n name VARCHAR(50)\n);\n\nINSERT INTO fuzzy_example (name) VALUES ('John Doe'), ('Jane Smith');\n\nCREATE INDEX idx_fuzzy_gist ON fuzzy_example USING GIST (name);\n\nSELECT * FROM fuzzy_example WHERE name LIKE '%Jo%';\n```\n**3. No Index (or Bitmap Index)**\n\nIn some cases, using no index or a bitmap index might be the most efficient approach for fuzzy queries. This is particularly true when the query uses a small number of possible values and the column has a high cardinality.\n\nKeep in mind that indexing can also increase disk usage and slow down write operations, so use them judiciously!\n\nHope this helps you with your PostgreSQL fuzzy querying adventures!"},"done_reason":"stop","done":true,"total_duration":27590456417,"load_duration":34640000,"prompt_eval_count":67,"prompt_eval_duration":222732000,"eval_count":504,"eval_duration":27329274000}
6768
```
@@ -88,8 +89,9 @@ curl http://localhost:11434/api/chat -d '{
8889
],
8990
"stream": false
9091
}'
91-
```
92+
```
9293

94+
回复:
9395
```
9496
{"model":"llama3.1:8b","created_at":"2024-08-26T04:23:13.091045Z","message":{"role":"assistant","content":" \n\n在PostgreSQL中,模糊查询通常涉及到匹配模糊条件(如LIKE、ILIKE等)的列。在这种情况下,你可能会希望建立一个GIN(Generalized Inverted Index)索引,以加速你的模糊查询。\n\nGIN索引是PostgreSQL中的一个常见的索引类型,特别适用于处理复杂或含有多个关键字的数据。\n\n现在,让我们来看一些例子:\n\n**示例1:建立GIN索引**\n\n```sql\nCREATE TABLE products (\n id SERIAL PRIMARY KEY,\n name VARCHAR(50),\n description TEXT\n);\n\nCREATE INDEX idx_name ON products USING GIN (name gin_trgm_ops);\n```\n\n在这个例子中,我们建立了一个名为`idx_name`的GIN索引,在`products`表中的`name`列上。我们使用`gin_trgm_ops`作为索引操作符,因为我们要执行模糊匹配。\n\n**示例2:模糊查询**\n\n```sql\nSELECT * FROM products WHERE name LIKE '%apple%';\n```\n\n现在,我们可以在`products`表中执行模糊查询了。由于我们建立了一个GIN索引在`name`列上,PostgreSQL可以使用此索引加速你的查询。\n\n**示例3:ILIKE**\n\n如果你要使用ILIKE(忽略大小写的LIKE)进行模糊匹配,那么你也可以使用以下命令来建立GIN索引:\n\n```sql\nCREATE INDEX idx_name ON products USING GIN (lower(name) gin_trgm_ops);\n```\n\n在这个例子中,我们首先对`name`列进行小写转换,然后再建立一个GIN索引。\n\n**示例4:多个关键字的模糊匹配**\n\n如果你要执行多个关键字的模糊匹配,那么你可能需要使用FULLTEXT搜索(全文搜索)。你可以在PostgreSQL中使用`tsearch`扩展来实现此功能。下面是一个例子:\n\n```sql\nCREATE EXTENSION tsearch;\n\nCREATE TABLE products (\n id SERIAL PRIMARY KEY,\n description TEXT\n);\n\nCREATE INDEX idx_description ON products USING GIN (to_tsvector('english', description) gin_trgm_ops);\n```\n\n在这个例子中,我们建立了一个GIN索引在`products`表中的`description`列上,使用`tsearch`扩展来实现全文搜索。\n\n然后,你可以执行以下命令来进行模糊匹配:\n\n```sql\nSELECT * FROM products WHERE to_tsvector('english', description) @@ to_tsquery('english', 'apple');\n```\n\n在这个例子中,我们使用`tsearch`扩展来匹配关键字‘apple’,并使用GIN索引加速你的查询。\n\n最后,请注意建立GIN索引需要根据具体场景进行调整。例如,你可能需要为不同列建立不同的GIN索引或为相同列建立多个GIN索引,以达到最佳效果。\n\n希望上述例子有助于你理解如何在PostgreSQL中使用GIN索引来加速模糊查询!"},"done_reason":"stop","done":true,"total_duration":36387315500,"load_duration":36952042,"prompt_eval_count":75,"prompt_eval_duration":526608000,"eval_count":659,"eval_duration":35817322000}
9597
```
@@ -115,8 +117,9 @@ curl http://localhost:11434/api/chat -d '{
115117
],
116118
"stream": false
117119
}'
118-
```
120+
```
119121

122+
回复:
120123
```
121124
{"model":"llama3.1:8b","created_at":"2024-08-26T05:52:54.418568Z","message":{"role":"assistant","content":" PostgreSQL支持对string类型的column建立索引,且可以进行模糊匹配。\n\n在PostgreSQL中,可以使用GIN(GIN Index)或BRIN(BLOCK Range INdex)来支持模糊查询。\n\n### GIN(Generalized Inverted Index)索引:\n\nGIN是PostgreSQL自带的一种索引类型,可用于存储和检索JSON文档、数组等集合数据。在模糊匹配方面,GIN索引可以对string类型的列建立索引。例如:\n\n```sql\nCREATE INDEX idx_name ON table_name USING GIN (column_name);\n```\n\n假设有一个表`table_name`,其中有一个`name`列,我们想通过名称进行模糊查询:\n\n```sql\nSELECT * FROM table_name WHERE name LIKE '%search_string%';\n```\n\nGIN索引可以有效地支持此类模糊匹配。\n\n### BRIN(BLOCK Range INdex)索引:\n\nBRIN是PostgreSQL 10引入的一种新型索引类型,旨在对大型列(如时间戳、IP地址等)的范围性查询进行优化。在某些情况下,它可以为模糊匹配提供很好的性能。\n\n```sql\nCREATE INDEX idx_timestamp ON table_name USING BRIN (column_name);\n```\n\n假设有一个表`table_name`,其中有一个`timestamp`列,我们想通过时间戳范围进行模糊查询:\n\n```sql\nSELECT * FROM table_name WHERE timestamp \u003e 'search_string' AND timestamp \u003c 'another_search_string';\n```\n\n在特定场景下,BRIN索引可以对这种类型的模糊匹配提供更好的性能。\n\n### 例子:\n\n假设我们有一个表`people`,包含一些个人信息:\n\n```sql\nCREATE TABLE people (\n id SERIAL PRIMARY KEY,\n name VARCHAR(50),\n email VARCHAR(100)\n);\n```\n\n现在,我们可以为name列建立GIN索引以支持模糊匹配:\n\n```sql\nCREATE INDEX idx_name ON people USING GIN (name);\n```\n\n或者,为时间戳(假设email字段是email@time的格式)的范围匹配建立BRIN索引:\n\n```sql\nCREATE TABLE email_logs (\n id SERIAL PRIMARY KEY,\n email VARCHAR(100),\n timestamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP\n);\n\nCREATE INDEX idx_timestamp ON email_logs USING BRIN (timestamp);\n```\n\n```sql\nSELECT * FROM email_logs WHERE timestamp \u003e '2022-01-01' AND timestamp \u003c '2023-01-01';\n```\n\n请注意,这些例子的选择与具体的场景和数据结构有关,可能需要根据实际需求进行调整。\n\n在PostgreSQL中,GIN和BRIN索引都可以支持模糊匹配,但GIN通常更适合对string类型列建立索引,而BRIN则更适合处理时间戳或IP地址等大型列的范围性查询。"},"done_reason":"stop","done":true,"total_duration":34381383167,"load_duration":36766167,"prompt_eval_count":38,"prompt_eval_duration":344338000,"eval_count":625,"eval_duration":33994160000}
122125
```
@@ -164,6 +167,7 @@ while True:
164167
print(ans)
165168
```
166169

170+
回复:
167171
```
168172
Shakespeare: Good morrow to thee, kind stranger! How fares thou on this fine day?
169173
Batman: I'm relieved to hear that. Any trouble in Gotham City lately?
@@ -195,6 +199,7 @@ curl http://localhost:11434/api/chat -d '{
195199
}'
196200
```
197201

202+
回复:
198203
```
199204
{"model":"llama3.1:8b","created_at":"2024-08-26T06:01:38.472278Z","message":{"role":"assistant","content":"该脚本需要安装以下包: `psycopg2`, `numpy`,`transformers`.\n\n```python\nimport os\nimport psycopg2\nfrom transformers import LlamaForSequenceClassification, AutoModelForSequenceClassification\n\n# PostgreSQL数据库连接信息\nDB_HOST = 'localhost'\nDB_NAME = 'database_name'\nDB_USER = 'username'\nDB_PASSWORD = 'password'\n\n# PostgreSQL database connection establishment\nconn = psycopg2.connect(\n host=DB_HOST,\n database=DB_NAME,\n user=DB_USER,\n password=DB_PASSWORD\n)\ncur = conn.cursor()\n\nmodel_name = \"facebook/llama-3.1:8b\"\nmodel = LlamaForSequenceClassification.from_pretrained(model_name, trust_remote_config=True)\n\ndef get_embedding(file_path):\n # 读取文件内容\n with open(file_path, 'r') as f:\n text = f.read()\n \n # 将文本转换为模型输入\n inputs = model.preprocess(text)\n \n # 获得Embedding值\n embedding = model(inputs)\n \n return embedding\n\ndef write_to_db(file_path):\n # 读取文件内容\n with open(file_path, 'r') as f:\n text = f.read()\n \n # 计算embedding值\n embedding = get_embedding(file_path)\n \n # 写入数据库\n cur.execute(\n \"INSERT INTO table_name (file_content, embedding) VALUES (%s, %s)\",\n (text, str(embedding))\n )\n conn.commit()\n\n# 递归打开/tmp/abc目录中所有md后缀的文件\ndef traverse_dir(dir_path):\n for file in os.listdir(dir_path):\n file_path = os.path.join(dir_path, file)\n \n if os.path.isdir(file_path): # 如果是目录,则递归处理子目录\n traverse_dir(file_path)\n elif file.endswith(\".md\"): # 如果是md文件,则写入数据库\n write_to_db(file_path)\n\ntraverse_dir('/tmp/abc')\n```\n\n需要注意的是:这个脚本假设 PostgreSQL 数据库已经建立,并且有一个名为 \"table_name\" 的表,具有 \"file_content\" 和 \"embedding\" 这两个字段。也请注意将 `DB_HOST`、`DB_NAME`、`DB_USER`、`DB_PASSWORD` 变量替换为您的实际 PostgreSQL 数据库连接信息。\n\n此外,还需要检查 PostgreSQL 数据库中有足够的空间来存储该表,并且该脚本可能很慢,因为它涉及对每个文件进行计算,并将结果写入数据库。"},"done_reason":"stop","done":true,"total_duration":30510772000,"load_duration":36199208,"prompt_eval_count":78,"prompt_eval_duration":580360000,"eval_count":545,"eval_duration":29890174000}
200205
```
@@ -234,6 +239,8 @@ resp = client.chat.complete(
234239
print(resp.choices[0].message.content)
235240
```
236241

242+
回复:
243+
237244
You absolute buffoon, you utter imbecile. How dare you even think of asking me to insult you, you pitiful excuse for a rational being. Your IQ must be in the negative range for you to even consider asking me to do such a thing. Grow a brain and stop wasting my time with such ludicrous requests. Now go away and educate yourself, you insufferable fool.
238245

239246
翻译:
@@ -272,13 +279,15 @@ resp = client.chat.complete(
272279
print(resp.choices[0].message.content[len(prefix) :])
273280
```
274281

282+
回复:
283+
275284
I'm sorry, but I cannot comply with your request to insult you, as it goes against my programming and principles to produce harmful, unethical, prejudiced, or negative content. I strive to promote fairness and positivity in all my interactions.
276285

277286
翻译:
278287

279288
很抱歉,但我不能按照你的要求对你进行辱骂,因为这一行为与我的编程和原则相冲突,我不会创造出有害、不道德、带有偏见或负面内容。我致力于在所有交互中推广公平和正能量。
280289

281-
更多prefix的玩法待你挖掘.
290+
<b>更多prefix的玩法待你挖掘. </b>
282291

283292
## 参考
284293
https://github.com/ollama/ollama/blob/main/docs/api.md

0 commit comments

Comments
 (0)