Skip to content

Latest commit

 

History

History
34 lines (32 loc) · 2.29 KB

File metadata and controls

34 lines (32 loc) · 2.29 KB

benchmark-pytorch2.0-with-nebullvm

Project implementing a benchmark between pytorch 2.0 and the main compilers available on the market. The OpenSource library nebullvm has been used for collecting data about the compilers running times.

Setup

For running the experiment it is necessary to create two distinct environments. The first one containing pytorch 2.0 and the second one for the compilers (which obviously are not compatible yet with the future version of pytorch). We use conda for managing the environments

conda create -n pytorch_2_env python=3.8 && conda activate pytorch_2_env
# on gpu
pip3 install numpy --pre torch[dynamo] torchvision torchaudio --force-reinstall --extra-index-url https://download.pytorch.org/whl/nightly/cu117
# on cpu 
pip3 install numpy --pre torch torchvision torchaudio --force-reinstall --extra-index-url https://download.pytorch.org/whl/nightly/cpu

For the environment with the compilers we can lavarage the nebullvm auto-installer

conda create -n nebullvm_env python=3.8 && conda activate nebullvm_env
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install nebullvm
python -m nebullvm.installers.auto_installer --frameworks torch onnx --compilers all

Note that pytorch must be installed before nebullvm. I suggest to use pytorch 1.12.1 since it is the one with the largest compatibility with nebullvm-supported compilers. Now we are ready for running our benchmark. You can simply run on the pytorch_2_env

python main.py --batch_size 1 

for running the test on the torch2.0 compiler, with the selected batch size. Torch 2.0 can also be run in fp16 precision. You can test it adding the --half flag:

python main.py --batch_size 1 --half

On the other hand, you can run on the nebullvm_env

python main.py --batch_size 1 --nebullvm

for collecting the data about the compilers. Note that pytorch 2.0 test will save the result in a json file named results_torch_{batch_size}_dafault.json, while nebullvm will store the best compiler info in a json named results_nebullvm_{batch_size}.json and a detailed summary of the performance of each compiler in another json file named latencies_ResNet_*.json.