forked from mit-han-lab/torchquantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_example.py
257 lines (208 loc) · 8.06 KB
/
mnist_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import torch.nn.functional as F
import torch.optim as optim
import argparse
import random
import numpy as np
import torchquantum as tq
from torchquantum.plugins import (
tq2qiskit_measurement,
qiskit_assemble_circs,
op_history2qiskit,
op_history2qiskit_expand_params,
)
from torchquantum.datasets import MNIST
from torch.optim.lr_scheduler import CosineAnnealingLR
class QFCModel(tq.QuantumModule):
class QLayer(tq.QuantumModule):
def __init__(self):
super().__init__()
self.n_wires = 4
self.random_layer = tq.RandomLayer(
n_ops=50, wires=list(range(self.n_wires))
)
# gates with trainable parameters
self.rx0 = tq.RX(has_params=True, trainable=True)
self.ry0 = tq.RY(has_params=True, trainable=True)
self.rz0 = tq.RZ(has_params=True, trainable=True)
self.crx0 = tq.CRX(has_params=True, trainable=True)
def forward(self, qdev: tq.QuantumDevice):
self.random_layer(qdev)
# some trainable gates (instantiated ahead of time)
self.rx0(qdev, wires=0)
self.ry0(qdev, wires=1)
self.rz0(qdev, wires=3)
self.crx0(qdev, wires=[0, 2])
# add some more non-parameterized gates (add on-the-fly)
qdev.h(wires=3) # type: ignore
qdev.sx(wires=2) # type: ignore
qdev.cnot(wires=[3, 0]) # type: ignore
qdev.rx(
wires=1,
params=torch.tensor([0.1]),
static=self.static_mode,
parent_graph=self.graph,
) # type: ignore
def __init__(self):
super().__init__()
self.n_wires = 4
self.encoder = tq.GeneralEncoder(tq.encoder_op_list_name_dict["4x4_u3rx"])
self.q_layer = self.QLayer()
self.measure = tq.MeasureAll(tq.PauliZ)
def forward(self, x, use_qiskit=False):
qdev = tq.QuantumDevice(
n_wires=self.n_wires, bsz=x.shape[0], device=x.device, record_op=True
)
bsz = x.shape[0]
x = F.avg_pool2d(x, 6).view(bsz, 16)
devi = x.device
if use_qiskit:
# use qiskit to process the circuit
# create the qiskit circuit for encoder
self.encoder(qdev, x)
op_history_parameterized = qdev.op_history
qdev.reset_op_history()
encoder_circs = op_history2qiskit_expand_params(self.n_wires, op_history_parameterized, bsz=bsz)
# create the qiskit circuit for trainable quantum layers
self.q_layer(qdev)
op_history_fixed = qdev.op_history
qdev.reset_op_history()
q_layer_circ = op_history2qiskit(self.n_wires, op_history_fixed)
# create the qiskit circuit for measurement
measurement_circ = tq2qiskit_measurement(qdev, self.measure)
# assemble the encoder, trainable quantum layers, and measurement circuits
assembled_circs = qiskit_assemble_circs(
encoder_circs, q_layer_circ, measurement_circ
)
# call the qiskit processor to process the circuit
x0 = self.qiskit_processor.process_ready_circs(qdev, assembled_circs).to( # type: ignore
devi
)
x = x0
else:
# use torchquantum to process the circuit
self.encoder(qdev, x)
qdev.reset_op_history()
self.q_layer(qdev)
x = self.measure(qdev)
x = x.reshape(bsz, 2, 2).sum(-1).squeeze()
x = F.log_softmax(x, dim=1)
return x
def train(dataflow, model, device, optimizer):
for feed_dict in dataflow["train"]:
inputs = feed_dict["image"].to(device)
targets = feed_dict["digit"].to(device)
outputs = model(inputs)
loss = F.nll_loss(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"loss: {loss.item()}", end="\r")
def valid_test(dataflow, split, model, device, qiskit=False):
target_all = []
output_all = []
with torch.no_grad():
for feed_dict in dataflow[split]:
inputs = feed_dict["image"].to(device)
targets = feed_dict["digit"].to(device)
outputs = model(inputs, use_qiskit=qiskit)
target_all.append(targets)
output_all.append(outputs)
target_all = torch.cat(target_all, dim=0)
output_all = torch.cat(output_all, dim=0)
_, indices = output_all.topk(1, dim=1)
masks = indices.eq(target_all.view(-1, 1).expand_as(indices))
size = target_all.shape[0]
corrects = masks.sum().item()
accuracy = corrects / size
loss = F.nll_loss(output_all, target_all).item()
print(f"{split} set accuracy: {accuracy}")
print(f"{split} set loss: {loss}")
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--static", action="store_true", help="compute with " "static mode"
)
parser.add_argument("--pdb", action="store_true", help="debug with pdb")
parser.add_argument(
"--wires-per-block", type=int, default=2, help="wires per block int static mode"
)
parser.add_argument(
"--epochs", type=int, default=2, help="number of training epochs"
)
args = parser.parse_args()
if args.pdb:
import pdb
pdb.set_trace()
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
dataset = MNIST(
root="./mnist_data",
train_valid_split_ratio=[0.9, 0.1],
digits_of_interest=[3, 6],
n_test_samples=75,
)
dataflow = dict()
for split in dataset:
sampler = torch.utils.data.RandomSampler(dataset[split])
dataflow[split] = torch.utils.data.DataLoader(
dataset[split],
batch_size=256,
sampler=sampler,
num_workers=8,
pin_memory=True,
)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
model = QFCModel().to(device)
n_epochs = args.epochs
optimizer = optim.Adam(model.parameters(), lr=5e-3, weight_decay=1e-4)
scheduler = CosineAnnealingLR(optimizer, T_max=n_epochs)
if args.static:
# optionally to switch to the static mode, which can bring speedup
# on training
model.q_layer.static_on(wires_per_block=args.wires_per_block)
for epoch in range(1, n_epochs + 1):
# train
print(f"Epoch {epoch}:")
train(dataflow, model, device, optimizer)
print(optimizer.param_groups[0]["lr"])
# valid
valid_test(dataflow, "valid", model, device)
scheduler.step()
# test
valid_test(dataflow, "test", model, device, qiskit=False)
# run on Qiskit simulator and real Quantum Computers
try:
from qiskit import IBMQ
from torchquantum.plugins import QiskitProcessor
# firstly perform simulate
print(f"\nTest with Qiskit Simulator")
processor_simulation = QiskitProcessor(use_real_qc=False)
model.set_qiskit_processor(processor_simulation)
valid_test(dataflow, "test", model, device, qiskit=True)
# then try to run on REAL QC
backend_name = "ibmq_lima"
print(f"\nTest on Real Quantum Computer {backend_name}")
# Please specify your own hub group and project if you have the
# IBMQ premium plan to access more machines.
processor_real_qc = QiskitProcessor(
use_real_qc=True,
backend_name=backend_name,
hub="ibm-q",
group="open",
project="main",
)
model.set_qiskit_processor(processor_real_qc)
valid_test(dataflow, "test", model, device, qiskit=True)
except ImportError:
print(
"Please install qiskit, create an IBM Q Experience Account and "
"save the account token according to the instruction at "
"'https://github.com/Qiskit/qiskit-ibmq-provider', "
"then try again."
)
if __name__ == "__main__":
main()