forked from siat-nlp/GALAXY
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
52 lines (39 loc) · 1.88 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""
Preprocess script.
"""
import os
import argparse
from galaxy.args import parse_args
from galaxy.data.dataset import Dataset
from galaxy.data.pretrain_field import PretrainBPETextField
from galaxy.models.model_base import ModelBase
LABELED_TAG = 0
UNLABELED_TAG = 1
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--labeled_file", type=str, required=True,
help="The name of labeled dataset (.json format).")
parser.add_argument("--unlabeled_file", type=str, required=True,
help="The name of unlabeled dataset (.json format).")
PretrainBPETextField.add_cmdline_argument(parser)
ModelBase.add_cmdline_argument(parser)
Dataset.add_cmdline_argument(parser)
args = parse_args(parser)
bpe = PretrainBPETextField(args)
build_examples_fn = bpe.build_examples_multi_turn
labeled_train_file = os.path.join(args.data_dir, f'{args.labeled_file}.json')
assert os.path.exists(labeled_train_file), f"{labeled_train_file} isn't exist"
print(f'Assign tag={LABELED_TAG} to {labeled_train_file}')
unlabeled_train_file = os.path.join(args.data_dir, f'{args.unlabeled_file}.json')
assert os.path.exists(unlabeled_train_file), f"{unlabeled_train_file} isn't exist"
print(f'Assign tag={UNLABELED_TAG} to {unlabeled_train_file}')
train_file = os.path.join(args.data_dir, f'{args.data_name}.{args.tokenizer_type}.jsonl')
if not os.path.exists(train_file):
labeled_train_examples = build_examples_fn(labeled_train_file, data_type="train", tag=LABELED_TAG)
unlabeled_train_examples = build_examples_fn(unlabeled_train_file, data_type="train", tag=UNLABELED_TAG)
train_examples = labeled_train_examples + unlabeled_train_examples
bpe.save_examples(train_examples, train_file)
else:
print(f'{train_file} already exists!')
if __name__ == "__main__":
main()