-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdrain_instance.py
83 lines (69 loc) · 2.95 KB
/
drain_instance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import boto3
import json
import os
import time
import random
from botocore.config import Config
from botocore.exceptions import ClientError
session = boto3.session.Session()
config = Config(
retries = {
'max_attempts': 4,
'mode': 'standard'
}
)
ecs = session.client(service_name='ecs', config=config)
clusterName = os.environ["CLUSTER_NAME"]
def ciFor(ec2Id):
paginator = ecs.get_paginator('list_container_instances')
for page in paginator.paginate(cluster=clusterName):
descResp = ecs.describe_container_instances(cluster=clusterName, containerInstances=page['containerInstanceArns'])
for ci in descResp['containerInstances']:
if ci['ec2InstanceId'] == ec2Id:
return ci['containerInstanceArn'], ci['status']
return None, None
def taskExists(clusterName, ciId):
running_tasks = ecs.list_tasks(cluster=clusterName, containerInstance=ciId, desiredStatus='RUNNING')['taskArns']
if (len(running_tasks) > 0):
return True
# Assume there are not more than 100 tasks in a container
stopping_tasks = ecs.list_tasks(cluster=clusterName, containerInstance=ciId, desiredStatus='STOPPED')['taskArns']
for task_arn in stopping_tasks:
response = ecs.describe_tasks(
cluster=clusterName,
tasks=[task_arn]
)
status = response['tasks'][0]['lastStatus']
if status != 'STOPPED':
return True
print('No tasks, will proceed terminating the instance')
return False
def lambda_handler(event, context):
msg = json.loads(event['Records'][0]['Sns']['Message'])
ec2Id = msg['EC2InstanceId']
asgName = msg['AutoScalingGroupName']
lifecycleHookName = msg['LifecycleHookName']
topicArn = event['Records'][0]['Sns']['TopicArn']
if msg['LifecycleTransition'] != 'autoscaling:EC2_INSTANCE_TERMINATING':
return
# wait for random time to avoid ThrottlingException of AWS API call
sec = random.uniform(0, 5)
time.sleep(sec)
try:
ciId, status = ciFor(ec2Id)
if ciId == None:
return
if status != 'DRAINING':
ecs.update_container_instances_state(cluster=clusterName,containerInstances=[ciId],status='DRAINING')
if taskExists(clusterName, ciId):
time.sleep(5)
session.client('sns', config=config).publish(TopicArn=topicArn, Message=json.dumps(msg), Subject='Invoking lambda again')
else:
session.client('autoscaling', config=config).complete_lifecycle_action(LifecycleHookName=lifecycleHookName, AutoScalingGroupName=asgName, LifecycleActionResult='CONTINUE', InstanceId=ec2Id)
except ClientError as exception_obj:
if exception_obj.response['Error']['Code'] == 'ThrottlingException':
sec = random.uniform(3, 5)
time.sleep(sec)
session.client('sns').publish(TopicArn=topicArn, Message=json.dumps(msg), Subject='Invoking lambda again')
else:
raise